Analysis of Interpolation Methods in the Validation of Backscattering Coefficient Products
Abstract
:1. Introduction
2. Methods
2.1. Backscattering Coefficient Product Validation Workflow
- (1)
- Relative radiation validation accuracy
- (2)
- Absolute radiation validation accuracy
2.2. Interpolation Methods
2.2.1. Bilinear Interpolation
2.2.2. FFT Interpolation
3. Experimental Area and Data
4. Results and Discussion
4.1. Point Target Response Function Analysis
4.2. RCS Extraction Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, X. The Radiometric Calibration of Satellite Borne Synthetic Aperture Radar. Aerosp. Shanghai 1998, 15, 7. [Google Scholar]
- Jin, R.; Ran, Y.; Liu, Q.; Zhang, R.; Li, X.; Ma, G.; Ge, Y.; Liu, S.; Xiao, Q. Key Methods and Experiment Verification for the Validation of Quantitative Remote Sensing Products. Adv. Earth Sci. 2017, 32, 630–642. [Google Scholar]
- Jiang, X.; Li, Z.; Xi, X.; Li, X. Basic Frame of Remote Sensing Validation System. Arid Land Geogr. 2008, 4, 567–571. [Google Scholar]
- Ulaby, F.T. Microwave Remote Sensing; Scientific Publishing House: Beijing, China, 1987. [Google Scholar]
- Guo, H. Radar Earth Observation Theory and Applications; Scientific Publishing House: Beijing, China, 2000. [Google Scholar]
- Freeman, A.J.I.T. SAR Calibration: An Overview. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1107–1121. [Google Scholar] [CrossRef]
- Wong, L.G.C.F.H. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation; Publishing House of Electronics Industry: Beijing, China, 2012. [Google Scholar]
- Prasad, K.P.; Satyanarayana, P.J.E.L. Fast Interpolation Algorithm Using FFT. Electron. Lett. 1986, 22, 185–187. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X. Research on Fast Fourier Transform Algorithm Based on Interpolation Re-sampling Method. Water Power 2012, 38, 3. [Google Scholar]
- Chen, J.; Zhang, B.; Wang, C.; Lei, W. Comparative Study on the Applicability of Two Corner Reflector based Radiometric Calibration Methods for High Resolution Airborne SAR Image. Remote Sens. Technol. Appl. 2015, 30, 677–683. [Google Scholar]
- Freeman, A.; Shen, Y.; Werner, C.L. Polarimetric SAR Calibration Experiment Using Active Radar Calibrators. IEEE Trans. Geosci. Remote Sens. 1990, 28, 224–240. [Google Scholar] [CrossRef]
- Gray, A.L.; Vachon, P.W. Synthetic Aperture Radar Calibration Using Reference Reflectors. IEEE Trans. Geosci. Remote Sens. 1990, 28, 374–383. [Google Scholar] [CrossRef]
- Shimada, M.; Oaku, H.; Nakai, M. SAR Calibration Using Frequency-Tunable Active Radar Calibrators. IEEE Trans. Geosci. Remote Sens. 1999, 37, 564–573. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, P.; Zeng, Q. Study on Corner Reflectors in SAR Calibration. Remote Sens. Inf. 2010, 3, 38–42. [Google Scholar]
- Zhou, X.; Zeng, Q.; Jiao, J.; Wang, Q.; Xiong, S.; Gao, S. Research on Space-borne SAR Field Calibration Experiment—A Case Study of TerraSAR-X Field Calibration. Remote Sens. Technol. Appl. 2014, 5, 711–718. [Google Scholar]
- Wang, J.; Li, H.; Wang, J.; Miao, Z. A Scheme and Its Analysis for Fast Linear Image Interpolation. Acta Electron. Sin. 2009, 37, 1481–1486. [Google Scholar]
- Guo, X. A Study of the Filtering Algorithm for Quasi-bilinear Interpolation Based on Curvature. Master’s Thesis, Hebei Normal University, Shijiazhuang, China, 2013. [Google Scholar]
- Zhang, Y.; Chen, L.; Hao, H.; Zheng, G.; Liang, J. Improved Algorithm for Interpolation Based on FFT. J. Data Acquis. Process. 2013, 2, 173–177. [Google Scholar]
- Bailey, K. A Novel Approach to Real-time Bilinear Interpolation. In Proceedings of the IEEE International Workshop on Electronic Design, Perth, WA, Australia, 28–30 January 2004. [Google Scholar]
- Sharma, S.; Dadhich, G.; Rambhia, M.; Mathur, A.K.; Prajapati, R.P.; Patel, P.R.; Shukla, A. Radiometric Calibration Stability Assessment for the RISAT-1 SAR Sensor Using a Deployed Point Target Array at the Desalpar Site, Rann of Kutch, India. Int. J. Remote Sens. 2017, 38, 7242–7259. [Google Scholar] [CrossRef]
- Sun, J.; Yu, W.; Deng, Y. The SAR Payload Design and Performance for the GF-3 Mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Li, X.; Ren, Y. The Method Study on Automatic Sea Ice Detection with Gao Fen-3 Synthetic Aperture Radar Data in Polar Regions. J. Oceanogr. 2018, 9, 113–124. [Google Scholar]
- Yu, W.; Wu, S. Comparison of Several Interpolation Algorithms in Range-doppler Method. J. Electron. Inf. Technol. 2001, 3, 308–312. [Google Scholar]
- Yang, X.; Lou, C.; Xu, J.; Zhao, Y. Software-Defined Radio: Principles and Practice, 1st ed.; Electronic Industry Publishing House: Beijing, China, 2007; pp. 8–20. [Google Scholar]
- Zhang, G.; Jia, X.; Yin, C.; Li, Y. Comparison of Interpolation Algorithms in Synthetic Aperture Radar Imaging Processing. Foreign Electron. Meas. Technol. 2008, 8, 9–11. [Google Scholar]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; Publishing House of Electronics Industry: Beijing, China, 2004. [Google Scholar]
- Schanze, T. Sinc Interpolation of Discrete Periodic Signals. EEE Trans. Signal Process 1995, 43, 1502–1503. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing, 3rd ed.; Publishing House of Electronics Industry: Beijing, China, 2015. [Google Scholar]
- Han, D. Comparison of Commonly Used Image Interpolation Methods. In Proceedings of the ICCSEE 2013, Hangzhou, China, 22 March 2013. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Process, 4th ed.; Publishing House of Electronic Industry: Beijing, China, 2007. [Google Scholar]
- Li, L.; Zhang, F.; Shao, Y.; Wei, Q.; Huang, Q.; Jiao, Y. Airborne SAR Radiometric Calibration Based on Improved Sliding Window Integral Method. Sensors 2022, 22, 320. [Google Scholar] [CrossRef] [PubMed]
Imaging Mode | Nominal Resolution/m | Swath Width/km | Polarization | |
---|---|---|---|---|
Spotlight (SL) | 1 | 10 | HH/VV | |
Stripmap | Ultra-Fine Strip (UFS) | 3 | 30 | HH/VV |
Fine Strip I (FSI) | 5 | 50 | HH + HV/VV + VH | |
Fine Strip II (FSII) | 10 | 100 | HH + HV/VV + VH | |
Standard Strip (SS) | 25 | 130 | HH + HV/VV + VH | |
Quad Polarization Strip I (QPSI) | 8 | 30 | Quad-polarization | |
Quad Polarization Strip II (QPSII) | 25 | 40 | Quad-polarization | |
Scan | Narrow ScanSAR (NSC) | 50 | 300 | HH + HV/VV + VH |
Wide ScanSAR (WSC) | 100 | 500 | HH + HV/VV + VH | |
Global (GLO) | 500 | 650 | HH + HV/VV + VH | |
Wave imaging (WAV) | 8 | 20 | Quad-polarization | |
Expanded incidence angle (EXT) | Low Incidence | 25 | 130 | HH + HV/VV + VH |
High Incidence | 25 | 80 | HH + HV/VV + VH |
Date | 12 May 2022 |
---|---|
Ascending or Descending | Descending |
Look Direction | Right |
Incidence Angle | 28.43–30.57° |
Imaging Mode | UFS |
Polarization Mode | HH |
Range Resolution/m | 3 |
Azimuth Resolution/m | 3 |
Range pixel space/m | 1.124222 |
Azimuth pixel space/m | 1.669818 |
CR Number | SCR/dB | Theoretical Value/dB | Sinc Interpolation of SLC Data/dB | Backscattering Coefficient/dB | |
---|---|---|---|---|---|
Bilinear Interpolation | FFT Interpolation | ||||
CR-1 | 36.903 | 31.332 | 31.128 | 31.046 | 30.951 |
CR-2 | 38.181 | 31.332 | 31.808 | 31.708 | 31.63 |
CR-3 | 38.262 | 31.332 | 31.748 | 31.65 | 31.535 |
CR-4 | 37.398 | 31.332 | 31.704 | 31.606 | 31.492 |
CR-5 | 38.572 | 31.332 | 31.757 | 31.662 | 31.561 |
CR-6 | 37.678 | 31.332 | 31.559 | 31.46 | 31.338 |
CR-7 | 39.905 | 31.332 | 31.877 | 31.791 | 31.672 |
Relative Validation Accuracy/dB | Absolute Validation Accuracy/dB | |
---|---|---|
Sinc interpolation of SLC data | 0.252 | 0.544 |
Bilinear interpolation of backscattering coefficient | 0.23 | 0.459 |
FFT interpolation of backscattering coefficient | 0.228 | 0.381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Zhang, F.; Huang, Q.; Liu, X.; Li, L. Analysis of Interpolation Methods in the Validation of Backscattering Coefficient Products. Sensors 2023, 23, 469. https://doi.org/10.3390/s23010469
Jiao Y, Zhang F, Huang Q, Liu X, Li L. Analysis of Interpolation Methods in the Validation of Backscattering Coefficient Products. Sensors. 2023; 23(1):469. https://doi.org/10.3390/s23010469
Chicago/Turabian StyleJiao, Yanan, Fengli Zhang, Qiqi Huang, Xiaochen Liu, and Lu Li. 2023. "Analysis of Interpolation Methods in the Validation of Backscattering Coefficient Products" Sensors 23, no. 1: 469. https://doi.org/10.3390/s23010469
APA StyleJiao, Y., Zhang, F., Huang, Q., Liu, X., & Li, L. (2023). Analysis of Interpolation Methods in the Validation of Backscattering Coefficient Products. Sensors, 23(1), 469. https://doi.org/10.3390/s23010469