Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Layer Transducer Design and Modeling
2.1.1. Double-Layer Receiver to Distinguish between Incident and Reflected Signal
2.1.2. Design and Modeling of Cymbal Transducer
2.1.3. Design of Stacked Piezo-Electric Transducer
2.2. Analytical Modeling to Calculate Active Reflection Control Effect Using Multi-Layer Transducer
2.2.1. Algorithm of Active Reflection Control Model
2.2.2. BEM Analysis for Omnidirectional Reflection Modeling
3. Results and Discussion
3.1. Characterization of Receiver and Transmitter
3.1.1. Thin Layer Receiver
3.1.2. Validation of Cymbal Transducer and Stacked PZT Transducer Model
3.1.3. Transmitter
3.2. Omnidirectional Reflection Model of Active Reflection Control Feedback System
3.2.1. Active Reflection Control Feedback System
3.2.2. UUV Modeling for Omnidirectional Reflection Feedback System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, G.P.; He, D.P.; Shu, G.J. Underwater sound absorption property of porous aluminum. Colloid Surf. A 2001, 179, 191–194. [Google Scholar]
- Wang, X. Porous metal absorbers for underwater sound. J. Acoust. Soc. Am. 2007, 122, 2626–2635. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiang, C.; Zhang, J. Underwater acoustic absorption of air-saturated open-celled silicon carbide foam. Colloid Surf. A 2015, 471, 153–158. [Google Scholar] [CrossRef]
- Greenspan, M.; Tschiegg, C.E. Effect of Dissolved Air on the Speed of Sound in Water. J. Acoust. Soc. Am. 1956, 28, 501. [Google Scholar] [CrossRef]
- Ivansson, S.M. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. J. Acoust. Soc. Am. 2008, 124, 1974–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Song, Y.; Hou, H.; Gao, N. Underwater metastructure with broadband sound absorption capability in low-frequency range above 20 Hz. Mod. Phys. Lett. B 2021, 35, 2150039. [Google Scholar] [CrossRef]
- Kim, J.; Ko, B.; Lee, J.; Nam, M.H. Optimal design of piezoelectric smart structures for active cabin noise control. P. Soc. Photo-Opt. Ins. 1998, 3323, 228–234. [Google Scholar]
- Lin, J.-Y.; Ke, J.-H. Application of Damped-Oscillation Control Signals for Wide-Band Feedback Active Noise Control in Acoustic Ducts. JSME Int. J. Ser. C 2003, 46, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Cobo, P.; Cuesta, M. Hybrid passive-active absorption of a microperforated panel in free field conditions. J. Acoust. Soc. Am. 2007, 121, EL251–EL255. [Google Scholar] [CrossRef] [PubMed]
- Cobo, P.; Cuesta, M. Measuring hybrid passive-active sound absorption of a microperforated liner at oblique incidence. J. Acoust. Soc. Am. 2009, 125, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Gentry, C.A.; Guigou, C.; Fuller, C.R. Smart foam for applications in passive-act radiation control. J. Acoust. Soc. Am. 1997, 101, 1771–1778. [Google Scholar] [CrossRef] [Green Version]
- Guigou, C.; Fuller, C.R. Adaptive feedforward and feedback methods for active/passive sound radiation control using smart foam. J. Acoust. Soc. Am. 1998, 104, 226–231. [Google Scholar] [CrossRef]
- Chang, W.-S.; Gweon, D.-Y. Study on sound reflection control using an active sound absorber. J. Acoust. Soc. Korea 2009, 28, 806–814. [Google Scholar]
- Loghmani, A.; Danesh, M.; Kwak, M.K.; Keshmiri, M. Active structural acoustic control of a smart cylindrical shell using a virtual microphone. Smart Mater. Struct. 2016, 25, 045020. [Google Scholar] [CrossRef]
- Chang, W. Active sound control on boundary layers. In Smart Structures and Materials 2004: Modeling, Signal Processing, and Control; SPIE: Bellingham, WA, USA, 2004; Volume 5383, pp. 445–456. [Google Scholar]
- Yan, X.; Feng, L.; Xu, X.-R. Theoretical Research on Active Sound Absorption of 1-3 Piezoelectric Composites Based on Equal Strain Model. In Proceedings of the 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (Spawda), Zhengzhou, China, 16–19 April 2021; pp. 469–473. [Google Scholar]
- Wang, W.; Thomas, P. Low-frequency active noise control of an underwater large-scale structure with distributed giant magnetostrictive actuators. Sens. Actuators A Phys. 2017, 263, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Howarth, T.R.; Varadan, V.K.; Bao, X.; Varadan, V.V. Piezocomposite Coating for Active Underwater Sound Reduction. J. Acoust. Soc. Am. 1992, 91, 823–831. [Google Scholar] [CrossRef]
- Wu, Z.; Bao, X.-Q.; Varadan, V.K.; Varadan, V.V. Broadband active acoustic absorbing coating with an adaptive digital controller. Smart Mater. Struct. 1993, 2, 40–46. [Google Scholar] [CrossRef]
- Pyun, J.Y.; Kim, Y.H.; Kwon, S.W.; Choi, W.Y.; Park, K.K. Comparison between Resonance and Non-Resonance Type Piezoelectric Acoustic Absorbers. Sensors 2020, 20, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, H.; Roh, Y. Design and Fabrication of a Wideband Cymbal Transducer for Underwater Sensor Networks. Sensors 2019, 19, 4659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyun, J.Y.; Park, B.H.; Kim, Y.H.; Won, Y.B.; Yi, H.; Lee, J.-M.; Seo, H.-S.; Park, K.K. Design and Analysis of an Active Reflection Controller That Can Reduce Acoustic Signal Refer to the Angle of Incidence. Sensors 2021, 21, 5793. [Google Scholar] [CrossRef] [PubMed]
Cymbal Transducer [21] | |
---|---|
2.55 mm | |
7.3 mm | |
10.0 mm | |
0.5 mm | |
0.72 mm | |
1.0 mm | |
Total thickness | 2.5 mm |
Cymbal Transducer | Stacked PZT Transducer | ||
---|---|---|---|
3.5 mm | Width | 18 mm | |
10 mm | |||
12.5 mm | 12.6 mm | ||
1.5 mm | |||
0.5 mm | Total thickness | 63 mm | |
1.0 mm | |||
Total thickness | 2.5 mm |
Center Frequency | Control Frequency | Passive Control | Passive and Active Control | |
---|---|---|---|---|
Cymbal Transducer | 15.4 dB | 28.6 dB | ||
Stacked PZT Transducer | 15.4 dB | 26.0 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.H.; Choi, H.B.; Seo, H.-S.; Je, Y.; Yi, H.; Park, K.K. Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control. Sensors 2023, 23, 521. https://doi.org/10.3390/s23010521
Park BH, Choi HB, Seo H-S, Je Y, Yi H, Park KK. Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control. Sensors. 2023; 23(1):521. https://doi.org/10.3390/s23010521
Chicago/Turabian StylePark, Beom Hoon, Han Bin Choi, Hee-Seon Seo, Yub Je, Hak Yi, and Kwan Kyu Park. 2023. "Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control" Sensors 23, no. 1: 521. https://doi.org/10.3390/s23010521
APA StylePark, B. H., Choi, H. B., Seo, H. -S., Je, Y., Yi, H., & Park, K. K. (2023). Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control. Sensors, 23(1), 521. https://doi.org/10.3390/s23010521