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Abstract: The development of robotic applications necessitates the availability of useful, adaptable,
and accessible programming frameworks. Robotic, IoT, and sensor-based systems open up new
possibilities for the development of innovative applications, taking advantage of existing and new
technologies. Despite much progress, the development of these applications remains a complex, time-
consuming, and demanding activity. Development of these applications requires wide utilization of
software components. In this paper, we propose a platform that efficiently searches and recommends
code components for reuse. To locate and rank the source code snippets, our approach uses a machine
learning approach to train the schema. Our platform uses trained schema to rank code snippets in
the top k results. This platform facilitates the process of reuse by recommending suitable components
for a given query. The platform provides a user-friendly interface where developers can enter queries
(specifications) for code search. The evaluation shows that our platform effectively ranks the source
code snippets and outperforms existing baselines. A survey is also conducted to affirm the viability
of the proposed methodology.

Keywords: code reuse; recommendation systems; code recommendation; component-based software
development; intelligent decision support system

1. Introduction

Robots are programmable machines that are now frequently seen and used in many
areas. Therefore, these machines require quick development because they are typically
employed to perform tasks quickly, effectively, and repetitively. The goal of robotic research
has traditionally been to develop tools that can help people perform their tasks more
efficiently. This objective has not changed much over time. However, coding robot-oriented
systems is a very time-consuming and tiresome process if done from scratch. Because
of this, programmers look for shortcuts and tend to reuse the code [1]. Most of the time,
the programming of well-defined problems is carried out via a simple look-up [2]. The
programmer scans the local code repository, follows it by a search in other repositories,
and then diligently copies and pastes the found code. Due to the large collection of codes
available for use, it is more likely that the users will find what they need for their particular
task [3,4]. The practice of the code reuse has become popular after the introduction of
software forges, such as Google Code and GitHub. StackOverflow and other “question and
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answer” (Q & A) sites also made code reuse easier and more widespread. Now users can
readily look up the code they require, find useful ideas, and often put some existing code
to use. The open-source ideology offers more to the users than just reusing existing code, it
allows them to put up their high-quality code that would be available for others to reuse in
web applications, such as Pastebin [5], GitHub Gist [6], and Codeshare [7].

Large-scale code reuse is gaining popularity because of its potential to save the pro-
grammer’s time and effort. Source code that is reused extensively can serve as a guide
to developers because this code has already been implemented and requires less effort to
maintain [8]. The degree to which the source code is used can also help to rank the func-
tionality of relevant candidates [9]. Moreover, extensively reused codes and projects have
distinguishing characteristics that set them apart from low-reuse projects. Some of these
attributes may guide new projects that are striving to develop code that has considerable
reuse potential.

In software development, the imperative task is to provide cost-efficient and high-
quality software at a given time. An important approach to accomplish this goal is “Code
Reuse”, which has been accepted by the majority of software development organiza-
tions [10]. The reused code can be obtained from many different sources such as source
code of open-source software, third-party libraries, and Q&A websites, such as StackOver-
flow [11,12]. In recent years, application development has become very popular [13] and
requires code reuse. However, the major problem with code reuse is that programmers
often use the available code snippets in an ad hoc manner during application development.

A lot of work has been done on the topics of mobile development (e.g., [14,15], code
reuse (e.g., [16,17]), and repositories (e.g., [3,18,19]). Repositories contain source code
components with high-end functionality available for the developers’ use. Instead of
building a new application feature developers tend to reuse the existing functionality
of applications [20] that are already available in repositories. There are a lot of software
component repositories, such as SourceForge and GitHub that contain software components
for the diversified needs of app developers, software engineers, and usability experts [21].
Data in repositories are increasing exponentially and finding the relevant component to
implement the application’s logic is challenging and time-consuming [22]. There is a need
to make the process simple for developers to locate and identify a certain component.
Our proposed platform addresses this issue by facilitating developers in locating desired
components.

1.1. Role of Proposed Framework in the Development of Robotics and Internet of Things
(IoT)-Based Systems

The proposed platform also facilitates the development of robotics, sensors, and IoT-
based systems. The basic difference between IoT and robotic devices is that IoT devices are
programmed to carry out specific tasks whereas robotic devices are trained using machine
learning (ML) approaches to adapt to the new environment. Our proposed framework is
effectively important for each type of system, as both systems require software develop-
ment. The process of identifying and locating relevant software components can include
attributes and properties associated with software components and applications such as
design documents, implementation language, size, documentation, application domain,
and version [23]. A person is capable of memorizing two units of information in working
memory; this limited working memory allows for the comparison and organization of
only two to four elements at any given time [24], so it is not possible for the developer
to memorize everything. To reduce the cognitive burden, we have developed a platform
that facilitates developers in finding their desired code. Robotics, IoT, and sensor-based
systems are being developed rapidly and require building multiple components quickly.
Our platform assists developers to locate the desired software components to accomplish
the development of these systems. Furthermore, our platform can assist during the devel-
opment phase of robotic, IoT, and sensor-based systems. Since these systems are developed
and integrated rapidly and simultaneously; therefore, their codes must be safe and tested.
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IoT systems are in vogue and in demand and one needs to remember that they cannot be
upgraded offline. In addition to this, one also needs to consider the fact that the developers
do not have sufficient time to develop or upgrade the system. IoT systems are prone to
change with each passing day. Thus, these systems are live and need coding support on an
immediate basis. Therefore, to facilitate the development of these systems, our platform
better recommends source code components. This platform not only facilitates the rapid
development of many systems (such as IoT-based systems and robotic systems) but also
allows developers to retrieve the desired component against the given query. The entered
query searches for best-matched components, which are then utilized by developers during
the development of systems. This platform uses ML techniques, for example, RankBoost
algorithm [25] to learn ranking schema and measure context similarity, etc. This also allows
the users to retrieve their desired components using one common platform. This platform
provides a common means to search across various sites for the retrieval of required code
components. Instead of searching across different sites, developers use this platform, which
in turn reduces time and effort.

The most used languages for robotics include C, C++, and python. Software robot
developers always wanted to save time, so instead of coding the robotics system from
scratch, they look for the available code options. Our platform facilitates developers in
this regard and allows them to enter their specifications. After getting the required code
component, they integrate it into their system to check if the code works well with the
existing code. This platform can be effectively utilized in all the areas where developers
want to search code for the purpose of reusing it in their applications.

Source code is recommended using content-based filtering methods, where a descrip-
tion (query or requirement) for a specific software component is entered in the form of a
query. This method uses keywords of the query which are matched with the corpus of
source code components. We have employed a “RankBoost”, which is based on ML and has
the ability to return the correct results because it is trained on the corpus. The RankBoost
algorithms try to recommend the best fit component which is similar to the ones which the
developer mentioned in the query. The evaluation results demonstrate that our approach
returns accurate results with high precision.

Our platform recommends code components upon the query. Before using the re-
trieved code component the developer performs “Component Testing”. This testing checks
each code component separately for its integration into the existing application. After the
code component is successfully integrated, the developer performs “Integration Testing”.
This testing determines whether or not the new integrated component with the existing ap-
plication provides the desired functionality. If the search code does not work properly, then
the developer looks for other code components in the ranked list to find the best match. In
this research, our aim is to improve the retrieval of the code from existing resources. If there
is any existing code for any specification (query) for which different pipelines are present,
then our system can represent it as a code. However, two different recommendations can
not be connected. In the future, one requirement specification can be converted into two
sub-specifications for retrieval of source code. Regression testing is performed to ensure
that the application’s current functionality is not affected by the change in any component.
This testing confirms the product is compatible with any added features, problem repairs,
or modifications to current features. Moreover, our platform uses a ranking schema. The
ranking schema requires various performance features, also called ranking features (as men-
tioned in Table 1). These ranking features are utilized to compute the similarity between
query and code snippets. For example, the idea behind including the popularity feature
is that it recommends frequently used code components. Frequency of use depicts that
these source components work as desired because these are tested whereas low popularity
implies that code components fail to produce the desired results (i.e., fail during testing).
The role of ranking schema is to place the pertinent code components in top-k results.
However, it is challenging to ascertain the subjective construction (or configurations) of
the ranking schema. Robotic systems may require different source code components in
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building a complete working system. For instance, it requires vision enhancement and filter
code components which our platform recommends upon the entered specification (query).
Our code is available at https://github.com/nazia-phd/implementation (accessed on 21
November 2022), this code can be utilized for study and further extension.

Table 1. Component’s Features.

Category/Class Feature Description Query Dependency

Similarity Textual Similarity
Candidate code example and
query likeness is measured using
cosine similarity.

Yes

Popularity Frequency
Code example method frequent
occurrence of a specific in the cor-
pus No

Probability The frequency at which a method
calls a code fragment. method

Code Metrics

Line length The candidate code length in
terms of lines.

No
Number of identifiers

The average amount of identifiers
associated with each LOC of a can-
didate fragment

Length of call sequence Number of times a candidate code
component method is called

Code Comment ratio The number of comments associ-
ated with candidates LOC

Page Ranking A metric to compute significance
of code snippets

Fan-in
The number of times a specific
code snippet calls other unique
code snippets

Fan-out
The number of times a specific
code snippet is called by other
code fragments

Cyclomatic complexity Occurrences of decisions in a code
component (for, while, etc.)

Context Context similarity

The Jaccard similarity measure is
computed when a query is raised;
it calculates the likeness between
the method’s body and code ex-
ample signature

Yes

1.2. Research Contribution

This research paper has the following contributions:

• Proposed a framework that uses ML techniques to automatically recommend source
code examples.

• We evaluated our framework using a dataset of 2500 code examples related to 50
queries. The evaluation results show that our proposed framework works effectively
for source code components as it recommends relevant code examples for developers
from existing schemas or online engines.

• A small prototype of the proposed framework is implemented and is qualitatively
assessed using two experimental stages.

The rest of this paper is divided into sections, the detail of which is as follows: Section 2
consists of a literature review to elaborate on previous research. Section 3 includes the
proposed methodology. Experimental evaluation is described in Section 4. Section 5
presented the conclusion of the study.

https://github.com/nazia-phd/implementation
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2. Related Work

Retrieval of the relevant component from the repository is one of the most difficult
tasks. The software component assessment and evaluation depend on various criteria
because of varying technical requirements, objectives, and business needs [26]. In many
cases, component selection criteria might conflict with each other, and because of this,
making the correct decision is quite difficult. Major problem during the component selection
process include the varying component dependencies. It is possible that the match of
a suitable component might not be found with available components in the software
repositories. “Component-Based Software Engineering” (CBSE) facilities the construction
of the system with the help of pre-existing software components [27]. This idea of CBSE is
not new. It was visualized more than four decades ago by McIlroy [28]. McIlroy proposed
the idea of commercial component production in line with the one that was found in other
engineering fields. This section focuses on the literature review of the relevant material
including various publications on matching properties and components. Most of the work
in this domain is related to “Commercial-off-the-shelf” (COTS) and Quality of Service (QoS)
but when it comes to component matching then QoS is mostly used.

The CBSE process also uses ontologies for the feature descriptions of software com-
ponents, this eventually helps in the matching process. Numerous approaches have been
proposed for component retrievals (e.g., [29,30]) that work on the modified forms of
keyword-based and signature-matching techniques for component retrieval. In the light of
research, besides our tool, other tools have been developed (e.g., [31]) to model software
development. However, the drawback of these tools is that it employs few component
features as shown in Table 2. For example, CodeBroker tool [31] utilizes both signature
matching and free text techniques. Based on user comments that explain the intended
functionality, this tool finds the relevant match. If the expected results are not obtained,
the system considers the method signature following the comments. The contemporary
open source code search engine, such as sourcerer [32] provides access to the source code
but they normally fail to address the issue of the code’s structural information which
can end in distracting the concern of stakeholders. A prototype named Ichi Tracker is
developed by Inoue et al. [10] to give insight into code fragments. It provides an online
search facility to detect code clones. This approach is effective as it takes code fragments as
input and tracks the source code modified version and their origin, not only that potential
violations of license are been traced. German et al. [33] inspected source code migration
by keeping track of three different systems (Linux, FreeBSD, and OpenBSD). Their work
also covered the legal implications of such migration of source code. They tracked the
origin of reused code fragments using clone detection techniques. Their work revealed
that migration of the code did occur between these systems. Moreover, the license terms
were not violated during the code copying. Davies et al. [34] played a significant role in
proposing a signature-based technique to find out the code entities’ origin. Furthermore,
they discovered that their proposed technique can be employed in the reused libraries to
identify security bugs. Kawamitsu et al. [35] further refined this work by proposing a
technique that compares two repositories and automatically identifies the reuse of source
code at the file level. His approach measures the resemblance between two source files in
order to trace the original source file version.

Hang et al. [36] came up with framework-based applications. These applications use
XML configuration files. The best thing about these files is their popularity in contemporary
commercial applications. Unfortunately, the majority of the frameworks are either not
documented well or are complicated, thus posing a massive challenge and complexity for
developers regarding the correct use of a framework. To address this issue, another tool [36]
is proposed that automatically suggests XML configuration codes by mining association
rules and tree patterns. In order to accomplish this objective application repositories
support developers in properly generating XML configurations during the production
phase of software development. This tool recommends reusable XML snippets to help
programmers to configure XML files [36].
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Various systems have been proposed to automate the procedure of ranking source
code snippets but unfortunately, the source code features (as mentioned in Table 1) are
overlooked and are not measured properly by these systems. To address the said issue,
Diamantopoulos et al. [37] proposed a code recommendation system called QualBoa that
includes non-functional (quality attributes) and functional aspects of the code snippets.
QualBoa provides a ranking of the retrieved code components not only on the basis of
functional parameters of query but code reusability scores are also computed on the set
threshold values of code metrics. The QualBoa evaluation shows that it is efficient to
search and it recommends reusable code components [37]. Source code recommendation
tools and approaches, as shown in Table 2, facilitate locating the desired code component
that developers can integrate into their current systems. However, unfortunately, these
recommendation systems do not properly employ the offered and desired properties of
source code components. Our proposed approach considers various features of source
code for ranking. It can be observed in Table 2, many strategies used a single feature or
used heuristics to integrate features for the ranking of results. Second, the learning-to-
rank approach is used for many software tasks, such as bug identification [38], source
code fault detection [39], feature location, and traceability [40]. We implemented this
approach because this can be robust and applied to source code snippets as well. Section 3
demonstrates the complete methodology of our proposed approach.

Table 2. Ranking approaches for source code.

Tool/ Approach Strength Weakness

Google Code Search and
Ohloh [41,42]

Results are ranked based on tex-
tual similarity.

Uses only one feature which
is textual similarity.

Sourcerer [29] Uses the basic notation of CodeR-
ank, which only extracts struc-
tural information.

Only focus on structural in-
formation of source code.

PARSEWeb [4] Uses the frequency and length
of MIS (method-invocation se-
quences) to rank the final result.

Uses MIS feature during the
ranking phase.

Exemplar [43] Uses three ranking schemes
WOS (word occurrences
schema), DCS (dataflow connec-
tion schema), and RAS (relevant
API calls schema) to rank the
application.

This tool ranks the applica-
tions, not the source code
snippets.

Semantic Code Search
[44]

The comparable code snippets
that follow the call sequences ex-
trapolated from code snippets
determine the ranking.

Uses a call sequence, which is
the only feature used for the
ranking code snippets.

Pattern-based Approach
[45]

This approach considers popu-
larity to rank the working code
examples.

Popularity is the only feature
that contributed to the final
ranking.

QualBoa [37] This tool incorporates functional
and quality attributes

Ranking components based
on the functional score

3. Research Methodology

The general method of our approach is detailed in this section. Figure 1 depicts the
approach for the proposed solution. The fundamental concept is to develop a coding
system for efficient component retrieval. The proposed methodology is described in full
below:
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Figure 1. Proposed System Architecture.

3.1. Process Description

The overall process is divided into four stages: (1) selecting the language for code
extraction; (2) crawling code components; (3) extracting features; (4) identifying reusable
components; (5) raking schema learning; and (6) candidate code ranking for new queries.
The ranking process takes place at run-time when a developer enters a query. The query is
formulated when a user selects options from GUIs. The requested code snippets are then
retrieved from the corpus. The retrieval process requires class or method names. The cosine
similarity is computed among the source code and a query. Ultimately, the system chooses
the code snippets as candidates on the basis of similarity and then the system displays the
ranked list of selected candidates.

Selecting language: To retrieve code examples for queries the system provides the
user interface to select the desired language to crawl the code.

Crawling Software Repositories/Projects: Reusable source code corpus is built to
retrieve appropriate code examples for queries. The crawler looks for the project titles
“Asp.net”, “PHP”, “C#”, “JavaScript”, “HTML” and “Python”. The crawled code snippets
are downloaded to build the source code corpus. Eclipse JDT Java syntax parser is employed
for extracting code snippets for all methods described in the source code file with the “java”
extension.

Earlier work on extracting code snippets [44,45] recommends Java source code. Differ-
ent parsers for “Asp.net”, “PHP”, “C#”, “HTML”, and “Python” can also be used to extract
source codes of various languages. Table 3 shows the summary of the corpus that is used
in our research. Our repository/corpus contains 585 projects in total. It contains 65,491 java
files, 360,162 example codes, and 3,866,351 LOC of the code snippets.

Table 3. Corpus Summary.

Item # Amount

Projects 585
Java Files 65,491

Code components 360,162
Code snippets LOC 3,866,351

Extracting Features: Each candidate source code is represented as a vector (Vs)
and feature values are included in this vector which is obtained from code examples.
Vs = ( f1, ..., fi, ..., fn) is the set of features where fi denotes the ith feature value whereas n
represents the total number of features.

Ranking Schema Learning Process: The proposed approach systematically uses the
training data for the training of ranking schema. Queries and their given candidates’ results
are included in the training set. We represent training data in the form of a set of triplets
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(q, r, Vs). The query is denoted by q and r is the relationship between a code example and a
query (r). RankBoost [25] algorithm is used to train the schema for ranking code snippets.

Code Ranking: A search query is entered and the ranking algorithm computes the
candidates’ code fragment score. The computed score depicts the percentage of similarity
among code candidates and a query. The ranking of source codes is performed on the basis
of computed scores in descending order. Source code snippets that are ranked higher are
considered more pertinent to the query which denotes that these source code examples are
considered more useful than the ones that are ranked lower.

Extracting Features: For training the ranking schema, various features of code exam-
ples are required in our process. Twelve features are selected that have already been used
in previous research [4,43,45]. Features are divided into 4 categories: context, popularity,
similarity, and code metrics. Moreover, features are classified into two categories which
are query-independent and query-dependent features [46]. Features that are relevant with
respect to the queries are termed as query-dependent features whereas traits of source code
examples, irrespective of the queries, are termed as query-independent features.

3.1.1. Similarity Measure for Textual Information

The similarity of textual information is an essential feature for establishing the rele-
vancy between query and candidate examples [4,47,48]. The vector space model (VSM) [49]
is used to calculate the relevancy between candidate examples and queries. Relevancy
between code components and queries is represented by weights that are stored in a vector.
Later, the weight of each term is computed with the help of inverse document frequency
(t f (term f requency)− id f (inversedocument f requency)) and a weighting schema is gener-
ated for each term [50]. Weighting schema is used to depict the significance of the term in a
particular collection of documents. The weights are computed using Equation (1).

Wt,d = n f t,d × id f t, (1)

where n f t,d = 0.5 +
0.5×t f t,d

maxt∈dt ft,d
, id f t =

N
d f t

.
Manning et al. [50] explain the process of similarity computation for text. He describes

different terminologies used in Equation (1). t f is the term frequency and t ft,d is the
frequency of terms (t) that appears in document (d). Document (d) in our case refers to a
query or code snippet. d f is the document frequency and d ft defines the number of times a
term appears in several documents. id ft is the inverse document frequency obtained when
dividing N (the total number of documents) by the d ft (represents the number of documents
in which term (t) occurs). Later, the textual similarity is measured using Equation (2).

textualSim(Vq, Vc) =
VT

q Vc

|Vq||Vc|
. (2)

In Equation (2), T represents the transpose operator. The candidate code vector is
denoted by Vc and Vq is referred to as a query vector.

The time complexity is O(n), which means that it increases linearly as the number of
input queries increases whereas the space complexity can vary depending on input size
and therefore it cannot be less than O(n) for the size n.

3.1.2. Popularity

The latest research on code recommendation [4,51] uses an acceptance rate that dis-
tinguishes the candidate’s answers with the popularity rate [52]. Popularity shows the
proximity of a source code with the frequent patterns that are appeared in a corpus of the
code snippets. The fundamental basis of selecting a source code snippet is to ensure its
relevancy to the frequent pattern in the corpus. Pattern popularity of the code example
is independent of the query and is computed by making use of the frequency [4] or the
feature of probability [53].
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Popularity is measured using frequency and for this, we have employed the same
procedure as given by Keivanloo et al.’s study [45]. The method call sequences are termed
as usage patterns that are mostly used for applying rational functionality. The usage of
pattern frequency depicts how many times a method calls work. A usage pattern occurrence
of a code example is considered the popularity measure.

The code example’s usage pattern identification is done by extracting the sequence
of method calls for each source code snippet available in the corpus and then mining
techniques of frequent items are applied to analyze the number of method calls for the
usage of patterns [54]. We determine the similar usage pattern of the method calls by
calculating the cosine similarity. The popularity is measured by using the frequency; it can
be computed by employing a probability-based process given by [53].

Extracted call sequences from the corpus are separated into two successive sets of method
calls. For instance, method call order in a source code is labeled as Sm = m1, m2, . . . , mn,
m denoted the method and n shows the frequency of method calls in the source code
snippets. Later, the ordered sequence calls are separated into the pairs of method calls
P = p1, p2, pi. . . , p(n−1), where pi signifies the method called pair (mi, mi+1); (mi, mi+1); the
mi method is called prior to mi+1. In the corpus, all sequenced method calls are arranged
in pair structures, we calculate the probability of the method-called pair pi as P(pi) = 1/N,
where N counts the frequency of calls for method pairs and mi is the method called prior
to another method in the corpus. Hence, the frequency of feature occurrences for code
snippets is computed using Equation (3) [53].

probability = Πn−1
i=1 P(pi). (3)

Invocation of the method in the code example is represented by n and the method call
pair probability is denoted by P(pi).

The time complexity is O(n), which means that it increases linearly as the input
queries increase, whereas the space complexity can vary depending on the input size and,
therefore, it cannot be less than O(n) for the size n.

3.1.3. Code Metrics

Previous studies employed four code metrics for code search and code quality esti-
mation [51]. Query-independent features are grouped into a set, which is termed as code
metrics. Table 1 abridges the metrics that we used throughout the approach. Buse et al. [51]
specified that the total number of LOC (line of codes) and the average number of associated
identifiers with each LOC are used to determine the reliability of the code. Code reliability
is the quality metric that is measured using the average number of identifiers on each line
of the code. The call sequence length depicts the total number of method calls in a source
code’s example call sequence. The involvement of the code comments can be judged by the
comment code ratio in the code examples. The complexity of source codes can be measured
by the page ranking, and fan-in and fan-out.

Fan-in is referred to as the total number of calls for a particular source code. The
number of times a source code is called by other codes is termed fan-out. The algorithm for
page rank works to determine the importance of the source code snippets by calculating
the total number of links of a specific code example. The fundamental idea is that more
important source codes gain more links from other source codes. Page rank is an important
metric and it can be for code search [48], code snippets graph is built on the basis of the
number of times a particular code is called. In the graphic representation, if code fragments
A call code fragment B, then a link relation is formed between both of them. Later, the
value of page rank is computed for each code fragment separately by using the graph R
package (“igraph”). Assume, code fragments C1, C2, . . . , Cn, call code fragment C, and N(E)
depict the total code fragments that are called by code fragment E. Later, the page rank is
computed for each code snippet (E) using Equation (4) [55].

PR(E) = (1− d) + d(PR(E1)/N(E1) + ... + (PR(En)/N(En))). (4)
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The damping factor is denoted by d and we take its value equal to 0.85. [55].

3.1.4. Measure Context Similarity

Context similarity is used to measure the commonalities among query contexts and
source code snippets [56]. Previous studies [57] observed that the success of the code search
is accelerated by employing contextual features. The method signature of the code and a
method body’s signature are used when a query is raised, these two types of signature help
in predicting the query and source code context. The signature of the method is tokenized
when a query (q) is raised using camelCase splitting and tokenized set is denoted as Sq.
Likewise, code snippets’ method signatures are tokenized to formulate tokenized term set
which is represented as Sc. Later, similarity can be calculated among code examples and a
query with the help of the Jaccard index [58] which can be determined using Equation (5),

contextSim(Sq, Sc) =
(Sq ∩ Sc)

(Sq ∪ Sc)
, (5)

where Sq is the set involving the tokenized terms from the query and Sc is the set involving
the tokenized terms of the code example.

For example, consider Figure 2 which shows the user query and its corresponding code
snippets. The user enters a query, “window size, window height and width, window Di-
mension”. The class “WindowBuilder” invokes the “withsize” method which computes the
window dimension. The tokenized form of the code snippet (Sc) is: {“Window”, “Builder”,
“with”, “size”, “width”, “height”} and the tokenized form of the user query (Sq) is: {“Win-
dow”, “size”, “width”, “height”, “dimension”}. (Sq ∩ Sc) = {4} and (Sq ∪ Sc) = {7}. So,
according to Equation(5) the contextual similarity between the user query and code snippet
is = 5/6 = 0.83.

Figure 2. Component Retrieval Evaluation.

The time complexity, in this case, is O(n), which means that it increases linearly as the
context similarity is computed for several input queries whereas the space complexity can
vary depending on the size of the query for context similarity and, therefore, it cannot be
less than O(n) for size n.

Figure 3 summarizes the results of accuracy achieved by using each feature as listed
in Table 1. As we can observe the resultant values for each measure is satisfactory which
means the error ratio is not too high. Therefore, we can conclude that the selected features
can be used for ranking.
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Figure 3. Component retrieval evaluation.

3.2. Training of a Ranking Schema

Freund et al. [25] proposed a RankBoost algorithm for ranking. This algorithm is
used to train the schema, which is then used to rank candidate components. This ranking
algorithm only takes a few minutes to train the schema because of its efficiency in training
data. A brief description of the RankBoost algorithm is explained in this section.

Training data served as input to the ranking algorithm. The training set involves the
code examples that are relevant to a particular set of queries. A vector (q, r, Vc) represents
each code example. q represents the id of the query whereas r represents the relevancy of
the code and Vc is the code snippets feature vector. φ is the feedback function that uses
information on code examples and information on the training phase. (c0, c1) represents the
pairs of the code snippets, φ(c0, c1) in the training phase signify the difference between the
tag relevancy of c0 and c1. If φ(c0, c1) > 0 then the code example c1 is tagged with higher
relevance than c0 and φ(c0, c1) < 0 implies the reverse. If φ(c0, c1) = 0 then it signifies that
there exists no relevancy between c0 and c1.

RankBoost algorithm objective is to determine the decisive raking H which is akin to
the feedback function φ. The purpose is to increase the similarity rate and for this more
attention is towards decreasing the frequency of unordered instances of code pairs during
the final ranking. Suppose a function D(c0, c1) = x ∗max0, φ(c0, c1).This function sets all
negative feature’s value of φ to zero. x denotes the positive constant whose value is set
such that ∑(c0,c1)

D(c0, c1) = 1. The code pair is considered important if (c0, c1) > 0. Final
raking (H) is determined by altering the RankBoost algorithm, which basically computes
the weights in a way that minimizes the unordered pairs of code fragments, which is
termed as the ranking loss [25] and is computed using Equation (6),

loss = ∑
(c0,c1)

D(c0, c1)|H(c1) ≤ H(c0)|, (6)

where |H(c1) ≤ H(c0)| is 1, if H(c1) ≤ H(c0) and 0 otherwise.
The learning process details of the RankBoot algorithm for approaching the final

ranking H is shown in Algorithm 1 [25]. RankBoost works in rounds. The ranking function
ft in each round is produced based on the raking feature list as provided in Table 1.
Meanwhile, the values of Dt(c0, c1) are maintained for all pairs of code examples, and these
values highlight different sections of training data. The ranking function ft is utilized by
the ranking algorithm to modify the Dt value in each round as shown in Equation (7),

Dt+1(c0, c1) = Dt(c0, c1)exp(αt( ft(c0)− ft(c1))), (7)

where the Dt(c0, c1) value is maintained for every code fragment pair in each iteration
t. The ranking function is denoted by ft, which is produced at iteration t, and αt is the
standard factor for ft, and αt > 0 [25]. Based on Equation (7), the algorithm assigns c0
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with the highest rank value than c1. Dt+1(c0, c1) will minimize if the ranking function
ft gives an accurate ranking ( ft(c1) > ft(c0)) and maximize otherwise. Therefore, Dt+1
tends to emphasize the disordered code examples. The loss of the final ranking loss (H) is
calculated [25] using (H) ≤ ΠT

(t=1)D(t+1). For ranking schema (H), we have to decrease
Dt+1 in order to decrease the loss function. Freund et al. [25] work shows that D(t+1) is
decreased when

αt =
1
2

ln((1 + lt)/(1− lt)), lt = ∑
(c0,c1)

[D(c0, c1)

( ft(c0)− ft(c1)))].

(8)

In each round t, Dt(c0, c1)) denotes the sustained value of the code fragment; ft repre-
sents the ranking function, which is computed at each iteration t; and αt is an important
factor for ft, and αt > 0 [25].

During this approach, the aim is to reduce the rate of loss function for the ranking (H).
Equation (8) achieves the value of variable αt for the ranking function ft. H(c) = ∑T

(t=1)[αt ft(c)]
denotes the weighted sum of ranked features during the final raking process. The H(c)
obtained the optimal results with respect to the ranking loss function.

Algorithm 1: The learning process details of the RankBoot algorithm for ap-
proaching the final ranking H.

Require: Initial values of ( D c0 , c1 ) over each code example pair in the training
data.

1: Initialize: D1(c0, c1) = D(c0, c1)
2: for t = 1, ..., T (T = 12) do
3: Build ranking function f t (c) based on the ranking feature.
4: Choose αt using Equation (8).
5: Update: Dt+1(c0, c1) = Dt(c0, c1)exp(t( ft(c0)− ft(c1)))
6: end for
7: Output the final ranking H(c) = ∑T

t=1 αt ft(c)

4. Experimental Evaluations

The experiments were conducted to measure and evaluate the applicability, efficiency,
effectiveness, and usefulness of the proposed approach. We have divided the experiments
into two stages. Stage A entails searching for and obtaining various components based
on a set of characteristics, whereas Stage B entails investigating certain reusable activities.
Stage B is critical as it is an elaboration of our approach because it provides an in-depth and
extended version and involves reuse development activities facilitated by our tool. The
feedback from both experimental stages is considered to improve the proposed approach.
Evaluation metrics and comparable baselines are utilized in Experimental Stage C to assess
the correctness of the proposed strategy.

4.1. Experimental Stage A

The first step is to train the ranking schema and for this, we used the RankBoost
algorithm proposed by Freund et al. [25]. The algorithm is effective as it accelerates the
training process and requires a short time based on our proposed reuse CBSE framework.
The proposed approach used semi-formal natural language structures and also concen-
trates on the ranking schema. The main aim is to evaluate the effectiveness, efficiency,
usefulness, and applicability of the framework. Hence, the experiment was conducted
to answer the following research questions related to our proposed framework. (Q1) Is
the process convenient and simple to find suitable components? The stated question ba-
sically concentrates on the level of understandability, efficiency, and better applicability
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of reusability, functional, and non-functional properties to find and target the candidate
components. (Q2) Is the process of locating a suitable component complete or not? This
question defines the availability of information and whether the information is enough to
facilitate the framework or provide complete information to the user. Completeness is a
characteristic that cannot be easily quantified. However, for the sake of this evaluation, we
consider that the completeness shows the extent to which the suggested process facilitates
the profiling of all the areas producing information regarding the components. (Q3) How
accurately does the system recommend the components? The accuracies of the returned
results are computed using evaluation metrics (recall and precision). Recall and precision
measures are applied to rectify the correctness of the results. We have used 50 benchmarked
queries [59] for the evaluation of our approach. We randomly selected five queries and
calculate precision and recall. The average recall and precision of five queries are 0.878 and
0.896, respectively, as presented in Figure 4.

Figure 4. Precision and recall.

(Q4) What is the process effectiveness in terms of time/effort when the user is trying to
search and locate the desired component? This question pertains to the quality of the result
in terms of efficiency and effort that is required. It also refers to the satisfaction level of
the user. We randomly crawled around 100 synthetic components and then these product
components were examined by the practitioners to propose corrections so that realistic cases
can be handled. We divided the created components into seven categories; GUI Widgets
(Wallworks (15), Login (10), Address Book (10), Calendar (10), Calculator (10), Clock
(10), Background/Fonts Style (10)), Window Style (15), and Task Manage (10). Synthetic
components have multiple instances for each category to distinguish the attributes, such as
OS, protocols/standards, programming language, openness, documentation, and also the
indicators of the performance.

The EBNF (Extended Backus–Naur Form) identity of each component was generated,
which was followed by its transformation into the instance of the ontology of the component
tree. The language was chosen by the user and the chosen language was made to function
10 various searches with the help of a simple form. In EBNF, we also transformed the query
information and then moved to the ontology tree instance, which was also generated Each
instance of the search tree was then checked against the component instances available
in the repository. Two classic metrics recall and precision is computed for the evaluation
of retrieved components. The retrieved components satisfy the functional constraint and
other features. Candidate components similarity is calculated and the system ranks the
candidate components that fulfill the requirements.

Table 4 gives a detailed view of the experimental procedure. The components’ func-
tionality is shown in the first column while the component properties are in the column
on the right side and the five candidates (retrieved component) are enlisted in the middle.
The precision and recall of five queries are shown in the lower part of Table 4. Query 5
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retrieved the desired candidate because it assures the coverage of maximum search cri-
teria as compared with other components with high precision and recall. We executed
the procedure 10 times for every component category and then results are calculated and
assessed qualitatively. Four questions are formulated for the qualitative assessment of the
approach. In the end, the participants were requested to evaluate the approach and for this,
a five-point scale is used where 1 represents the lowest rating and 5 represents the highest
rating.

Table 4. Candidates’ component evaluations.

Task Query 1 Query 2 Query 3 Query 4 Query 5

Primary
Input 1

Select
Language

Select
Language

Select
Language

Select
Language

Select
Language

Primary
Input 2

Select
function to
be retrieved

Select
function to
be retrieved

Select
function to
be retrieved

Select
function to
be retrieved

Select
function to
be retrieved

Response
Time (sec) 10 12 8 8 9

Download
history

time(sec)
6 8 22 4 20

Memory uti-
lization(KB) 2 3 4 1 2

Reliability
(max) 90 95 92 93 90

Application
domain ANY ANY ANY ANY ANY

Operating
systems Windows Windows Windows Windows Windows

Precision 0.75 0.83 0.89 0.90 0.91
Recall 0.81 0.91 0.91 0.92 0.93

The experimental results are summed up in the respective questions given below:
(Q1) Is the process convenient and simple to find suitable components? The audience

agreed that the approach is easy if trained once. As we can see in Figure 5, the majority of
the respondents rate it 4 (high). The training process is not too intricate to follow and the
effort it requires is acceptable. Searching for desired code fragments is much easier and
facilitated by our tool. After searching a few times, they felt comfortable and barely faced
any issues throughout the process.

Figure 5. Process suitability to retrieve components.
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(Q2) Is the process of locating a suitable component complete or not? Completeness
is the characteristic that arouses some questions. As can be observed in Figure 6, initially,
the developers rate this as 4, which is considerably high, whereas practitioners rate it 2,
which is considered low. Practitioners are more experienced and they suggest that the
proposed approach can be improved more. We conducted a series of discussions to explain
the process and nature of the profiling scheme to practitioners. Apart from that, great
emphasis was placed on how new properties may be added to fulfill other requirements and
practitioners were told to rank the question once again. After that, practitioners realized
that the present profile design can be improved. Our approach is extended by incorporating
new features and source code components in the corpus. Hence, the practitioners reached
the point that the method was quite flexible for an extension. Therefore, it was ranked with
a median value of 4, which is considered High.

Figure 6. Process completion for retrieving components.

(Q3) How accurately does the system recommend the components? The system
recommends components that are deemed useful and are considered to be candidates. As
can be seen in Figure 7, the majority of respondents rated the system’s accuracy as high (5).
The system ranked the candidates’ code components on the basis of the selected options. It
is observed that the systems recommend the best candidates because the returned results
satisfy the threshold values of certain properties. The recommended component exhibits a
satisfactory balance between the statistical characteristics and the rating. The user chooses
the best component based on the ranked results and matched properties. Table 4 shows the
optimal results for the most suitable component. The optimal results are highlighted in
bold and italics. It can be seen that component 4 is considered the best candidate because it
has the maximum optimal value. The retrieved components are accurate in relation to the
given query (precision). High precision shows that most of the retrieved components are
pertinent. High recall shows that some of the relevant components are left, i.e., they are
not retrieved.
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Figure 7. Accuracy of recommended components.

(Q4) What is the process effectiveness in terms of time/effort when a user is trying
to search and locate the desired component? As shown in Figure 8, effort and the amount
of time put to determine the suitable components was limited; hence, it was ranked 2, i.e.,
low. For the sake of giving back the right components to the user, automation is considered
in order to return the most suitable component and acknowledge a user within acceptable
time limits.

Figure 8. Component retrieval process effectiveness.

Experimental outcomes, specifically question 3, clear the fact that a limited amount of
alterations/modifications can be made to achieve better performance. Our approach helps
users to retrieve the candidate components depending on their requirements.

4.2. Experimental Stage B

The second stage of the experiment was conducted which was similar to the first stage
of experimental design. In order to evaluate the scalability of the proposed approach users
were asked to develop a small application by searching code components using our tool.
Experimental stage 2 mainly aims to achieve two objectives.

Objective 1 is to extend and enhance the use of the proposed approach. In order
to achieve this objective, we have prepared an experimental setup for the user. The
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experimental setup is easy as it involves the development of complex tasks. The developer
searches for the required code component and uses it in the application. During the
development of the application, the developer has to check the compatibility of software
components.

Objective 2 is to inspect the efficiency and scalability of the approach. The approach
was extended at the recommendation level by adding a module that identifies the com-
patibilities issues (i.e., operating system and programming language); afterward, the
system recommends the most suitable ranked components that provide developers with
cost-effective solutions in terms of time and effort. The system gives such types of rec-
ommendations only in case of incompatibilities that are related to the characteristics of
the code snippets. The second objective can be attained by extending the functionality
of the approach that offers users a mechanism to define the desired properties of code
components with varying degrees of importance. A weighted scheme method is utilized to
assign the value to each attribute of the code component; for this, we are using a triplet
scale whose values range from 1 to 3, which represent low, medium, and high, respectively.

A component corpus was created and 12 features were studied during the generation
of components with varying properties as defined in Table 1. The user was given a randomly
selected list of various features that guided the user to select the suitable components for
each scenario. The system provides a user-friendly interface where users can easily set the
component feature priorities and then retrieve the final component that is considered most
appropriate, as shown in Figures 9–11, where each user is allowed to access the server’s
corpus with the help of simple GUIs to find and retrieve the components. Search attributes
are provided in the form of pull-down menus and drop-down lists. Later, the definitions of
these properties were transformed automatically into ontologies and corresponding EBNF
forms with minimal effort at the user end.

Figure 9. Select Language.

Figure 10. Select component/function for Search.
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Figure 11. Crawled Results.

The experiments of stage B spanned a time of one week. In the end, the experiences
gained from the experiment were shared with the audience and the framework parameters
were rated again. Experimental result examinations were performed in a similar way as
presented in the previous stage: (Q1) Is the process convenient and simple enough to find
suitable components? The received responses depict that the approach is straightforward
and easy. The respondents rated this question considerably high (i.e., 4). The authenticity
of the results was challenged when it was realized that, initially, the developer was unable
to work with the tool. However, the larger application size and wide scope of the approach
decreased this challenge. (Q2) Is the process of locating the suitable component complete
or not? The extension of the proposed approach to accommodate new measures that
define component properties was positively evaluated by the participants involved in the
experiment. The process completeness is rated as 4, which is quite high. During participant
interaction with our tool, a comment was received, which stated that the experimental stage
2 provides a more realistic working environment in terms of complexity. The reason is the
extended version of the system incorporates more properties, which is why the complete-
ness level is enhanced. (Q3) How accurately does the system recommended components?
Code component accuracy is quite low as it is rated 2 and this is because the nature of the
code snippets is different and the list of attributes that each participant provides also varies.
For instance, in a few scenarios, the component properties were not aligned appropriately.
For example, the application component that shows the list of products requires less time
to respond as compared with the shopping cart component, which requires more response
time. Hence, the audience under study talks about the components’ properties and realistic
production within the underlying framework. However, the response was positive and
everyone agreed that this glitch does not affect the experimental results because examining
the applicability of the method was more complex. Moreover, our tool utilizes the weighted
ranking scheme to achieve results with better accuracy. The weighted ranking scheme
allows the users to minimize the number of matches, specifically when components are
very close to each other in terms of set properties. Furthermore, the working of the ranking
scheme was effective in most of the scenarios and only a few participants indicated that
this weighted ranking scheme is not beneficial. In a few scenarios, the incompatibility
of the programming platforms hinders the components’ composition (the recommended
component not always being integrated into the set environment) but a blend of the above-
stated scenarios was considered better to make the approach more compatible. A wrapper
is developed easily to manage the incompatibility issues, which recommends better re-
sults. However, the limitation of our tool is how its applicability in terms of increasing
the component selection support for users. (Q4) Is the process effective in terms of time
and effort when the user is searching for and locating the desired component? Overall, the
efficiency is rated high, which is 4. The rating is quite high because the search procedure is
versatile. Hence, from the results, it can be observed that the complexity of the approach is
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not affected by the size of the application being developed. The development time taken to
target all component instances for each case may vary.

4.3. Experimental Stage C

Stage C discusses the evaluation procedure to measure the accuracy of the proposed
approach. In Section 4.4, different evaluation metrics are explained whereas in Section 4.5,
we have different baselines.

4.4. Automatic Evaluation Metrics

Many application domains and previous studies [60–63] used various evaluation met-
rics depending on the recommender systems. To determine how effectively a recommender
system performs, we used the following evaluation measures.

� R@k: This metric is commonly used to evaluate whether the proposed approach can
retrieve the correct code component in the top-k returned results. Equation (9) is used
to calculate the value of this metric.

R@k =
1
|Q|

|Q|

∑
q=1

δ(Frankq ≤ k), (9)

where δ(.) represents the ranking of correct code components against a given specifi-
cation (query(q)) and Q represents the set containing all queries. If the relevant code
component cannot be found in the top-k results, the frank function (δ(Frankq ≤ k))
returns 0, otherwise, it returns 1. The better code retrieval performance is shown by a
higher rank (R@k) value.

� MRR: “Mean Reciprocal Rank” is represented by MRR. This metric is frequently used
for the code component retrieval task. It computes the mean reciprocal ranks of the
correct code components of query set Q. Equation (10) is used to measure the MRR.

MRR =
1
|Q|

|Q|

∑
q=1

1
Frankq

. (10)

� NDCG: It is the “Normalized Discounted Cumulative Gain” denoted by NDCG.
This approach is frequently used to assess the value of a set of search results. This
is computed by dividing “discounted cumulative gain” (DCG) and “deal deduct
cumulative gain” (IDCG). Equations (11) and (12) are used to compute NDCG.

DCG =
p

∑
i=1

2reli − 1
log2(i + 1)

, (11)

IDCGp =
|REL|

∑
i=1

2reli − 1
log2, (i + 1)

(12)

where p is the rank position, reli is the graded relevance of the result at position i,
and |REL|p is the list of relevant results up to position p. We set p equal to 10 for all
experiments.

To summarize, the higher the values for the above automatic metrics, the better
performance the approach achieves.

4.5. Comparison Baselines

To illustrate the effectiveness of our methodology, we chose seven baselines and
contrasted them with our strategy. Below is a detailed summary of the baselines.
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� Google Code Search and Ohloh [41,42]: Ohloh and Code Search, similar to other
search engines, retrieves code snippets and ranks them based on the query’s textual
similarity.

� Sourcerer [29]: It is an open-source search engine that implements the fundamental
idea of CodeRank. Instead of using conventional keyword-based search, this engine
extracts source code structural to perform the search.

� PARSEWeb [4]: The PARSEWeb tool scans the local source code repository to extract
different “method-invocation sequences” (MIS) and groups comparable MISs using
a sequence post-processor. The retrieved MISs can be used to answer the supplied
query. Results ranking is based on the frequency and length of MIS.

� Exemplar [43]: This is a search engine that searches the relevant software projects
based on the query. Three ranking techniques employed by Exemplar are WOS, DCS,
and RAS. These raking schemes perform ranking to sort retrieved application list.

� Semantic Code Search [44]: This “Semantic Code Search” approach retrieves similar
code snippets that are ranked based on the call sequence extracted from code snippets.

� Pattern-based Approach [45]: This approach uses three features—similarity, popular-
ity, and line length—to identify working code examples.

� QualBoa [37]: This is a recommendation system that retrieves source code components
by considering both the functional and non-functional (quality aspect) requirements
of the source code snippet. The ranking of source code snippets is performed based
on reusability score and functional matching.

Table 5 summarizes the proposed approach’s consequences in line with baseline
methods. Specifically, the first column indicates MRR. We can observe that the performance
of various approaches varies depending on the type of features and ranking scheme. For
example, our approach and QualBoa’s performance are best in terms of MRR, while the
performances of the pattern-based approach and sourcerer are comparatively low. As the
mentioned approaches do not employ the “Learning-to-Rank” approach, they may result
in low MRR, R@10, and NDCG.

Table 5. Comparison baselines.

Tool/Approach MRR R@10 NDCG

Google Code Search and Ohloh [41,42] 57.81 66.10 69.01
Sourcerer [29] 66.01 69.02 68.01
PARSEWeb [4] 66.01 69.02 68.01
Exemplar [43] 62.05 71.02 69.50
Semantic Code Search [44] 67.40 79.02 70.08
Pattern-based Approach [45] 52.10 64.65 71.09
QualBoa [37] 67.00 81.50 75.09

Our approach 73.90 84.31 77.30

The results of our approach are presented in the last row. Our approach outperforms
by a remarkable edge, specifying that our approach can return more relevant source code
snippets. It is evident from Table 2 that the baseline approach mostly used a single feature
with no “Learning-to-Rank” approach. Our approach incorporates various code snippet
features along with “Learning-to-Rank”, which makes our approach more productive and
precise in the code search. Finally, we can see that our approach outperforms in terms of
overall performance measures (MRR, R@10, and NDCG).

5. Conclusions and Future Work

This research focuses explicitly on the topic of CBSE, particularly on the matching of a
software component; its automatic search and retrieval issues are specifically addressed
for the development of robotics, sensors, and IoT-based systems. The proposed approach
facilitates and reduces the developer’s effort in code search by analyzing, assessing, and
locating the most relevant available components. Our approach creates a ranking schema
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by employing the ranking algorithm. Twelve features of code components are considered
for the training and testing phase. The training dataset is used to train the ranking schema.
Source code components for new queries are ranked by the ranking schema. In light of the
experimental results, we can conclude that our proposed approach is quite pragmatic and
accurate. Apart from this, our approach is efficient and complete; it is handy to practice
software reuse. The proposed approach is promising for a component recommendation but
there exists ample room for enhancement and improvement.

Future work can be extended in many directions. First, the efficiency and applicability
of the proposed framework can be validated through more detailed experimentation.
Second, the component retrieval can be improved by employing evolutionary algorithms
(optimization techniques) to automate the component search and retrieval process. Third,
we used the rank-boost algorithm for ranking the retrieved candidate’s components, other
ranking algorithms can be used to achieve better ranking results. Finally, a software tool is
developed to support the proposed framework. The tool performance can be improved
by employing additional capabilities of optimization techniques, EBNF editing, and the
parsing process during the construction of the component profile. Further, the graphical
and visual aspects of our prototype can be enhanced.
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