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Abstract: Examination of gait patterns has been used to determine severity, intervention triage and
prognostic measures for many health conditions. Methods that generate detailed gait data for clinical
use are typically logistically constrained to a formal gait laboratory setting. This has led to an interest
in portable analysis systems for near clinical or community-based assessments. The following study
assessed with the wearable accelerometer/gyroscopic, gait analysis system (LEGSYS+TM) and the
standard of static motion capture camera (MOCAP) analysis during a treadmill walk at three different
walking speeds in healthy participants (n = 15). To compare each speed, 20 strides were selected from
the MOCAP data and compared with the LEGSYS+ strides at the same time point. Both scatter and
bland-Altman plots with accompanying linear regression analysis for each of the parameters. Each
stride parameter showed minimal or a consistent difference between the LEGSYS+ and MOCAP,
with the phase parameters showing inconsistencies between the systems. Overall, LEGSYS+ stride
parameters can be used in the clinical setting, with the utility of phase parameters needing to be
taken with caution.

Keywords: walking; gait; motion capture; LEGSYS+TM; phase parameters

1. Introduction

In the clinical setting, gait patterns have been extensively studied in relation to a
diverse range of health conditions. Assessment of walking speed is the most commonly
used gait test and has good reliability [1,2] and clinical validity [3,4] across multiple
diseases. Walking speed tests are often used as prognostic measures for health conditions
such as chronic obstructive pulmonary disease [5–7] or pulmonary hypertension [8–10].
Furthermore, decreased walking speed was highlighted by Fried (2001) as an important
functional feature of the frailty phenotype [11–13]. For example, elderly or frail individuals
who walk slow (<1 m/s) are at a higher relative risk to be in institutionalized care or
hospitalized [14,15]. Speed tests are simple and easy to perform in the clinical or community
setting without the requirement of a laboratory based detailed gait assessment system.
However, other potentially important elements of gait are ignored. More detailed gait.

Parameters may give mechanistic insights and earlier indications of functional deficits
that may help target early interventions [16–19].

A recent systematic review and metanalysis concluded that certain gait parameters
are the critical gait metrics most associated with a propensity to developing a physical
disability, suffering from falls, becoming dependent and institutionalised, and mortality.
These are commonly referred to as ‘major adverse events’ within the literature [20,21]. The
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gait cycle can consist of parameters related to a stride and parameters related to phases
within a stride. Stride measures include velocity [22–24], stride length [22–25] and cadence
(steps/minute) [24–26] (Figure 1). Phase measures include leg swing, leg stance and single
or double limb support [27]. Taken together, stride and phase gait parameters could aid
in early identification and monitoring of the degree of frailty. This is important as the
prevalence of frailty is increasing, and is expected to reach 26–28% of the total Australian
population by 2051 [28].
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weight with sensors located at the ankles, thighs and waist, to track movements [35,36]. 

Figure 1. Example of a typical gait cycle (emphasis right leg) with phases, percentages, and func-
tional periods.

The gait cycle (Figure 1) is divided into stance (approximately 60% of cycle time)
and swing (approximately 40% of cycle time) phases for each limb [29]. Each swing and
stance phase coincides with 8 functional periods along with periods of double-limb support
(DLS) [30,31]. Right leg is black, and left leg is white. From left to right, the first stage in
the cycle starts with the initial contact of the foot (in this case the right), striking the ground
and moving into a loading response (yellow boxes). This period constitutes the start of
the stance phase (60%) and the first period of double limb support (DLS: 10–12%). This
is followed by a transition into the mid and terminal stance phase, leading into the right
foot starting the swing phase (dark blue boxes). This pre-swing period aligns with the
second instance of DLS. After the conclusion of the DLS the initial, mid and terminal swing
phases of the right foot begin, which align with the right swing phase (40%). The image is
adapted from [28,29]. Stride length is determined from one heel strike to a consecutive heel
strike on the same side, stride time is the duration in between these heel strikes velocity is
determined as stride length/time from one heel strike to a consecutive heel strike on the
same side.

A variety of laboratory-based methods can be used to collect reliable and reproduce-
able gait data but have limited usability outside of the laboratory. Measurement of gait
outside a laboratory or clinical environment is important as changes in gait pattern have
been shown when an examination is performed within a gait laboratory compared to a
familiar environment [32]. The wearable solution addresses this important issue, allowing
collection of data in a real-world setting, in an environment in which the subject will be
functioning. Ninety-eight percent of elderly people in Australia live in a community setting.
In order to allow frail individuals to remain living in their homes rather than entering resi-
dential aged care (the ‘ageing in place’ scheme) in Australia, there needs to be consideration
of clinical evaluations performed local in individuals’ homes [28,33,34]. As a result, gait
analysis systems that are both cost-effective and useable outside the laboratory, have been
developed [35]. This includes wearable systems, that are small in size and lightweight with
sensors located at the ankles, thighs and waist, to track movements [35,36]. These systems
have been employed in assessing gait abnormalities in osteoarthritis [37–39], vestibular
function degradation [40] and Parkinson’s disease [41,42] but their comparison to static
motion capture camera analysis (MOCAP) is not well documented.
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The objective of this study was to assess the validity of several stride and phase
gait parameters derived from a portable gait analysis system (LEGSYS+TM, Locomotion
Evaluation and Gait System) against MOCAP at different walking speeds, before utilising
the LEGSYS+TM (Biosensors, Cambridge, MA, USA) in future clinical use (e.g., outpatient
clinics and GP surgeries) and community-based studies.

2. Materials and Methods
2.1. Participants

Fifteen participants aged between 18–59 years (median = 24.5, IQR = 21–29, height:
173.7 ± 10.2, weight: 79.5 ± 19.8, 6 male, 9 female) volunteered for this study. Participants
were excluded if they: were <18 years of age, experienced mobility limiting injuries or
diseases in the last use of mobility aids (e.g., walking stick or walking frame), unintentional
weight loss of 4.5 kg in the last 12 months, and/or reported a history of health condi-
tions that may affect walking (such as chronic fatigue, osteoporosis, muscular dystrophy,
neuromuscular disease, malignancy, previous surgery or extensive damage to the leg or
foot). Assessments were conducted in accordance with a protocol and consent processes
approved by The University of Queensland Human Ethics Committee (201900959).

2.2. Experimental Setup

Phase gait parameters were simultaneously collected by the LEGSYS+TM and MOCAP
at varying walking speeds while walking on a treadmill (Trimline T345). Four reflective
non-collinear marker clusters were placed on the heels of the left and right shoes of standard
testing plimsoll (volleys) type (Figure 2). A 12-camera (motion capture) 3D optical move-
ment registration system (OptiTrack Flex 13) was used to record movements of participant’s
feet, using Motive software (Natural Point, OR, USA), sampled at 120 samples/s. The
LEGSYS+TM, consisting of five Bluetooth-enabled inertial measurement units (consisting
of 3D gyroscopes and 3D accelerometers, sampled at 100 samples/s), was paired to the
LEGsys software program before placing the sensors on the participant. The LEGSYS+TM

was then fitted to the participant in standardised positions as follows (Figure 3); first,
leg length (distance between the lateral femur epicondyle to the floor), and thigh length
(distance between lateral femur epicondyle and the anterior superior iliac spine) were
measured, whilst the participant was standing upright in plimsoll shoes. Then, the leg
motion sensors were secured with adjustable straps, placed at 30% of the leg length, distally
from the lateral femoral epicondyle (i.e., on the lower leg). The thigh sensor was placed
30% of the thigh length, proximally from the lateral femoral epicondyle (i.e., on the upper
leg), and the waist sensor was placed in the midline posteriorly, at the level of the umbili-
cus. Participants faced positive Z-axis (anterior-posterior, forward and backward) positive
X-axis was to the left (medial-lateral, side to side movement), and positive Y-axis was
upwards (superior-inferior, up and down). A continuous recording was then performed on
the treadmill at walking speeds of 2, 3 and 4 km/h, while simultaneous collected by both
systems. Walking speed was increased at one-minute intervals [43–45].
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Figure 2. Reflective passive clusters on shoes and representation in the Motive program. Left: A 
reflective marker cluster was taped to the back of each plimsoll shoe for testing. Right: Marker rep-
resentation in Motive, with the blue, red and green lines indicating the X, Y, Z axes of the clusters, 
respectively. 
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Figure 2. Reflective passive clusters on shoes and representation in the Motive program. (Left): A
reflective marker cluster was taped to the back of each plimsoll shoe for testing. (Right): Marker
representation in Motive, with the blue, red and green lines indicating the X, Y, Z axes of the
clusters, respectively.
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Figure 3. The LEGSYS+ system. (A,B) show the LEGSYS+ system on a participant, with blue (leg),
green (thigh) and orange (waist) being the standardised positions of each sensor. (C) Placement of
the treadmill with the MOCAP system. (D) Storage box of the LEGSYS+ system with each of the
5 Bluetooth motion sensors on display.
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2.3. Stride Comparison between Systems

The following gait parameters were extracted from the MOCAP data for comparison
against LEGSYS as described in the LEGSys User Manual (stride time, stride length, stride
velocity, cadence, left/right swing, left/right stance and left/right double support phase).
All gait parameters were based on heel strike and toe off times. Using the MOCAP data,
strides were determined using definitions for Heel strikes (HS) and toe-off (TO) using
previously stated methods [46]. Briefly, left and right heel strikes were determined from
the local minima of the respective mean heel cluster vertical axis position. Toe off was
determined as the peak of the vertical velocity determined as the time differentiated mean
vertical position of the respective cluster after heel strike. Then, left and right stride time
was determined as the time in between consecutive heel strikes on the same side. Stride
length was determined by multiplying stride time by the ‘actual’ treadmill speed. The
remaining parameters (cadence, stride velocity, stance, swing and double support) were
generated using the calculated stride time and length. At each treadmill speed, the last
20 complete stride cycles before the speed change were used (Figure 1).

There might be a discrepancy between set and actual treadmill speed. To measure the
actual treadmill speed, the average forward-backward position of the right heel cluster
was filtered using a low-pass second order bi-directional Butterworth filter with a cut-off
frequency at 5 Hz (bi-directional filter design reported) [47,48]. Then, mean position of
the cluster was differentiated over time to determine velocity. A short time period of
the forward backward cluster velocity from 0.25–0.42 s after each of the 20 included heel
strikes was extracted. This time period coincided with the small part of the stance phase
approximately in between the heel strike and consecutive toe-off. In this period the foot
travels at the speed of the treadmill belt. Actual treadmill speed was then determined as
the mean across all save time points.

To ensure that the same 20 strides were compared between the LEGSYS+ and MOCAP
system, cross correlation between the calculated stride time from MOCCAP and LEGSYS+
was performed (see a participant example in Figure 4).
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Figure 4. Synchronisation example between the LEGSYS+ and MOCAP for stride time. Plot of stride
time against stride number for LEGSYS+ (blue line) and MOCAP (orange dotted line) for a single
individual. The single head arrows show treadmill speed changes (2, 3, 4 km/h). The twenty strides
prior to treadmill speed change (doubled head arrow) were selected for comparison.

2.4. Statistical Analysis

Matlab (v. R2020b, Mathworks, Natick, MA, USA) was used for the statistical analysis,
with a significance threshold was set at p < 0.05. A linear mixed model was used to deter-
mine the relationship between the LEGSYS+ and MOCAP for the extracted 60 complete
gait parameters (20 extracted from each of the 1, 2, and 3 km/h walking speeds). For the
model, the point estimate and its 95% confidence intervals were determined using the max-
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imum likelihood function. Adjusted R2 of models were determined. As the statistics were
performed with MATLAB built-in function “fitlme”, the linear regression was determined
using Wilkinson notation [49].

MOCAP ∼ LEGSYS + (1|participant)

Agreement between systems was described using Bland–Altman analysis [50]. The
standard error of the measurement (SEM) was assessed as the SD of the pooled SD-s within
each participant of the difference between the measurement systems (MOCAP—LEGSYS+)
divided by the

√
2 [51]. This represents the variation across strides of the difference between

the measurement systems. From the SEM, the smallest detectable change can be determined
(SDC) [51]; SDC = 1.96×

√
2× SEM, and represents the 95% confidence interval; SDC95.

This represents the value above which a change in LEGSYS+ is beyond potential measure-
ment error [51]. It should be noted that the above agreement determination assumes that
the difference between the measurement systems follows a normal distribution. To test if
these assumptions were met, the difference between the two measurement systems was
modelled using a linear mixed method fitted to the Bland–Altman plots.

Delta ∼ MOCAP + (1|participant)

Were Delta = MOCAP − LEGSYS+
Correlation coefficient interpretations are as follows: negligible (0–0.1), weak (0.1–0.4),

moderate (0.4–0.69), strong (0.7–0.9) and very strong (0.9–1) [52].

3. Results
3.1. Stride Gait Parameters

Each individual extracted gait parameter was explored graphically using data from
all treadmill speeds using scatter and Bland–Altman plots (Figures 5 and A1). Limits
of agreement and bias (Table 1), of the bland-Altman plots showed a positive bias for
stride time and cadence, and a negative bias for stride time and stride velocity. Excellent
correlation between the LEGSYS+ and MOCAP for the stride parameters (stride length,
stride velocity, cadence, and stride time) is shown (Table 2). In other words, LEGSYS+
was able to predict the MOCAP derived gait parameters very well. The r2 values indicate
96–99% of the variation can be explained by the linear relationship, and the slope of the
model was very close to 1 (Table 2). However, the upper and lower confidence interval of
both stride length and stride velocity were all just below one. This indicates with increase
in stride length and stride velocity the LEGSYS slightly (very minor) over-estimates the
values (Table 2). A Bland–Altman linear model (Table 3) indicated the error was slightly
greater (more positive) at higher values for stride velocity, but lower for stride length.

Table 1. Bland altman limits of agreement and bias.

Limits of
Agreement (Low)

Limits of
Agreement (High) Bias

Stride Measures
Stride Time (s) −0.04 0.04 0.001

Stride Length (m) −0.22 −0.02 −0.12
Stride Velocity (m/s) −0.16 −0.01 −0.09
Cadence (steps/min) −2.43 2.55 0.06

Phase Measures
Left Swing Phase −7.39 7.49 0.05

Right Swing Phase −7.14 5.19 −0.97
Left Stance Phase −7.49 7.39 −0.05

Right Stance Phase −5.19 7.14 0.97
Left Double Stance Phase −8.43 7.18 −0.63

Right Double Stance Phase −5.29 8.43 1.57
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Figure 5. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for stride time (sec) and cadence
(steps/min). Part (A,B) shows the scatter plot and bland-Altman plot on the left and right, respectfully
for each parameter. For the scatter plot, the blue dots show stride length or stride velocity for each
system. The bland-Altman plots show the difference between the MOCAP and LEGSYS parameters
on the Y axis and MOCAP stride length or velocity. Blue line and dotted blue line show the bias and
limits of agreement respectfully. The orange line on all 4 plots shows the least squares regression
lines with orange dots being the 95% confidence interval.

Table 2. Mocap gait parameters prediction models.

Intercept
(Upper CI, Lower CI) Intercept p-Value LEGSYS+ Slope

(Upper CI, Lower CI)
LEGSYS+ Slope

p-Value R2

Stride Measures
Stride Time (s) 0.005 (−0.003, 0.01) 0.24 0.99 (0.99, 1) p < 0.001 0.99

Stride Length (m) −0.08 (−0.1, −0.05) 4.70 × 10−11 0.96 (0.95, 0.97) p < 0.001 0.96
Stride Velocity (m/s) −0.04 (−0.05, −0.02) 3.65 × 10−9 0.94 (0.93, 0.95) p < 0.001 0.98
Cadence (steps/min) 0.31 (−0.25, 0.88) 0.28 0.99 (0.99, 1) p < 0.001 0.99

Phase Measures
Left Swing Phase 23.77 (22.07, 25.44) 3.33 × 10−123 0.37 (0.33, 0.41) 1.20 × 10−58 0.40

Right Swing Phase 20.49 (18.85, 22.14) 3.62 × 10−102 0.44 (0.40, 0.48) 1.40 × 10−80 0.46
Left Stance Phase 39.52 (36.84, 42.20) 7.30 × 10−132 0.37 (0.33, 0.41) 1.20 × 10−58 0.40

Right Stance Phase 35.74 (33.16, 38.31) 4.37 × 10−120 0.44 (0.40, 0.48) 1.40 × 10−80 0.46
Left Double Stance

Left Phase 8.25 (7.43, 9.07) 5.43 × 10−73 0.30 (0.26, 0.34) 1.75 × 10−47 0.39

Right Double
Stance Phase 9.24 (8.4, 10.07) 1.27 × 10−84 0.34 (0.29, 0.39) 1.33 × 10−37 0.33
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Table 3. Bland altman linear regression data.

Intercept
(Upper CI, Lower CI)

Intercept
p-Value

LEGSYS+ Slope
(Upper CI,
Lower CI)

LEGSYS+
Slope

p-Value
R2

Standard
Error of

Mean (SEM)
SDC

Stride Measures
Stride Time (s) −0.007 (−0.016, 0.001) 0.095 0.006 (−0.0003, 0.01) 0.06 0.003 0.02 0.06

Stride Length (m) −0.14 (−0.16, −0.12) 1.70 × 10−30 0.02 (0.003, 0.03) 0.02 0.37 0.04 0.11
Stride Velocity (m/s) −0.05 (−0.07, −0.04) 3.82 × 10−16 −0.04 (−0.05, −0.03) 2.15 × 10−20 0.36 0.03 0.09
Cadence (steps/min) −0.53 (−1.09, 0.03) 0.066 0.007 (0.0003, 0.01) 0.04 0.003 1.27 3.52

Phase Measures
Left Swing Phase −12.32 (−15.37, −9.27) 6.06 × 10−15 0.33 (0.25, 0.41) 4.21 × 10−17 0.41 3.00 8.33

Right Swing Phase −10.70 (−13.41, −7.99) 2.46 × 10−14 0.26 (0.19, 0.33) 2.16 × 10−13 0.33 2.61 7.25
Left Stance Phase −20.66 (−25.51, −15.80) 2.30 × 10−16 0.33 (0.25, 0.41) 4.21 × 10−17 0.41 3.00 8.33

Right Stance Phase −15.44 (−19.85, −11.03) 1.21 × 10−11 0.26 (0.19, 0.33) 2.16 × 10−13 0.33 2.61 7.25
Left Double
Stance Phase −4.62 (−6.18, −3.06) 8.09 × 10−9 0.33 (0.23, 0.42) 9.23 × 10−14 0.38 3.18 8.82

Right Double
Stance Phase −5.32 (−6.63, −4.01) 5.83 × 10−15 0.52 (0.45, 0.59) 9.51 × 10−44 0.41 2.94 8.14

3.2. Phase Gait Parameters

The phase parameters (right and left stride and stance, left and right double support)
show a poor relationship between the systems (Table 2), with 33–46% of the variation
being explained by the linear relationship (Figures A2–A4). The upper and lower con-
fidence intervals of all phase parameters were positive, indicating an underestimation.
Bland–Altman linear models (Table 3) show a significant positive slope, indicating that
there is no consistent overestimation or underestimation between the systems

4. Discussion

The following study investigated the agreement between stride and phase gait param-
eters, obtained using the LEGSYS+ and MOCAP. This work was conducted across three
different walking speeds to include participants that are said to reflect frail (2 km/h) and
healthy (3–4 km/h) individuals [43–45,53,54]. At each speed, 20 strides were taken from
MOCAP and compared with the LEGSYS+ at the same time points.

The relationship between LEGSYS+ and MOCAP was determined using scatter plots
with linear regression. The linear model and slopes indicated that stride time and cadence
calculated by the LEGSYS+ have a very strong agreement with the MOCAP data (Figure 5).
Similar results have been obtained in another study investigating the differences between
an accelerometer-based system with MOCAP [55]. While using a linear model to investigate
the difference between the systems, a strong relationship was found for stride time (r = 0.97,
p < 0.01). The results indicate that the LEGSYS+ has near-perfect heel contact detection and
therefore can be a useful system to determine a person’s stride time and cadence.

In terms of the LEGSYS+, a positive slope was observed for stride length and velocity
indicating a relative overestimation compared to MOCAP. Differences between stride
gait parameters within similar systems are also well documented in the literature. For
example, the measurement of stride length by an accelerometry system (IDEEA) when
compared with a force plate, demonstrated a 7% relative underestimation of stride length
(10.8 cm) [56]. Similarly, a study comparing an inertial measurement unit with a developed
gyroscope-based algorithm and MOCAP, underestimated stride length by 3 cm, which is
much smaller than that of the current study [57]. However, this investigation eliminated
strides that were outside of the duration of 1.25 times the median, thus reducing the
variability in the strides considered. These are contrasting with the current investigation,
with an overestimation of stride length and velocity shown. Similar to the current study,
a previous investigation showed when using inertial measurement unit (IMU) methods,
that an increase in gait speed saw an increase in anterior-posterior axis velocity of leg
sensors, causing an overestimation of stride lengths [58]. Often algorithms for these types
of sensors assume the foot and leg have a zero velocity at the time during stance [57]. This is
difficult as leg and foot sensors are moving continuously. As the heel strike saw near perfect
alignment, differentiating values for the velocity of the leg may be the cause of the stride
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length and velocity overestimation was seen in the current study. When using LEGSYS+ for
absolute measures, this consistent overestimation needs consideration. However, because
of the consistent difference, the LEGSYS+ can be considered whilst comparing the absolute
difference between populations. In terms of LEGSYS+’s clinical application, the differences
observed may not affect its applicability. Despite the differences observed these are not
considered clinically problematic as previous studies investigating, for example, major
adverse events, indicate a decrease of 0.15 m in stride length as clinically significant [21].

Inconsistent differences between the LEGSYS+ and MOCAP were observed for phase
parameters with an increase in discordance shown to be dependent on the absolute mag-
nitude of the measurement. It is well documented that gyroscope and accelerometer
systems have a much weaker validity and reliability in comparison to other measures
in the swing and stance phases [57]. An incongruency between swing duration results
(ICC 95% CI: 0.43 (0.07 to 0.69) has also been seen in a study implementing a gyroscopic
system (as used in the LEGSYS+) [57]. As explained previously, the algorithm assuming
leg velocity as zero causes an overestimation of stride parameters, it concurrently causes
an underestimation of the phase parameters such as stance [57]. Accurate toe-off tim-
ing is required to determine both stance and double support duration. Methods used to
determine motion capture phase parameters use an estimation that is highly correlated
with toe-off detection [46] which indicates that the LEGSYS+ toe-off detection is erroneous.
Therefore, the findings of this study in conjunction with the preexisting literature suggest
that gyroscopic algorithm-based systems require further research if implemented into the
community as opposed to laboratory-based MOCAP systems.

The current investigation has the following limitations that require consideration. It
has been described that in some instances, extended gait samples of more than 100 strides
of testing are required to characterise reliable variability [59,60]. Therefore, future studies
investigating higher walking speeds using the LEGSYS+TM may need longer testing periods
than 30 s to allow the analysis of more strides. The fact that the current study was performed
on the treadmill which has the potential to alter a gait pattern also requires consideration.
Therefore, further research characterising the difference between systems on flat ground
(mimicking the natural walking environment) and treadmill devices, may require further
investigation. Furthermore, the study population included a younger cohort of healthy
community-dwelling individuals, which may not be applicable to other cohorts such as
individuals with preexisting clinical conditions. Future investigations may consider looking
at different placings of the sensors, performing the study on multiple days and including
more speeds.

In summary, across both systems, excellent congruency was seen amongst stride
time and cadence within a healthy adult community population. Consistent systematic
differences in stride length and velocity values were also observed. In terms of stride
length and velocity, the findings of this investigation demonstrate that the difference in
results must be considered when using parameters for absolute values, but not whilst
comparing cohorts using analogous methods. Furthermore, inconsistent differences in
phase parameters were detected amongst the LEGSYS+ and MOCAP systems, highlighting
a need for further investigation. Despite these limitations, the results of this study indicate
that within a community setting for conditions involving gait alterations (i.e., frailty) the
LEGSYS+TM is a suitable portable assessment system. However, the results obtained are
not directly comparable to those of MOCAP found in a dedicated gait laboratory.
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Figure A1. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for stride length (m) and stride 
velocity (m/s). Part A and B shows the scatter plot and bland-Altman plot on the left and right, 
respectfully for each parameter. For the scatter plot, the blue dots show stride length or stride ve-
locity for each system. The bland-Altman plots show the difference between the MOCAP and 
LEGSYS parameters on the Y axis and MOCAP stride length or velocity. Blue line and dotted blue 
line show the bias and limits of agreement respectfully. The orange line on all 4 plots shows the least 
squares regression lines with orange dots being the 95% confidence interval. 

 
Figure A2. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for double support phase (%). 
Part A and B shows the scatter plot and bland-Altman plot on the left and right. For the scatter plot, 
the blue dots show double support for each system. The bland-Altman plots show the difference 
between the MOCAP and LEGSYS parameters on the Y axis and MOCAP double support. Blue line 
and dotted blue line show the bias and limits of agreement respectfully. The orange line on all 4 
plots shows the least squares regression lines with orange dots being the 95% confidence interval. 

Figure A1. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for stride length (m) and stride
velocity (m/s). Part (A,B) shows the scatter plot and bland-Altman plot on the left and right,
respectfully for each parameter. For the scatter plot, the blue dots show stride length or stride velocity
for each system. The bland-Altman plots show the difference between the MOCAP and LEGSYS
parameters on the Y axis and MOCAP stride length or velocity. Blue line and dotted blue line show
the bias and limits of agreement respectfully. The orange line on all 4 plots shows the least squares
regression lines with orange dots being the 95% confidence interval.
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Part A and B shows the scatter plot and bland-Altman plot on the left and right. For the scatter plot, 
the blue dots show double support for each system. The bland-Altman plots show the difference 
between the MOCAP and LEGSYS parameters on the Y axis and MOCAP double support. Blue line 
and dotted blue line show the bias and limits of agreement respectfully. The orange line on all 4 
plots shows the least squares regression lines with orange dots being the 95% confidence interval. 

Figure A2. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for double support phase (%). Part
(A,B) shows the scatter plot and bland-Altman plot on the left and right. For the scatter plot, the blue
dots show double support for each system. The bland-Altman plots show the difference between the
MOCAP and LEGSYS parameters on the Y axis and MOCAP double support. Blue line and dotted
blue line show the bias and limits of agreement respectfully. The orange line on all 4 plots shows the
least squares regression lines with orange dots being the 95% confidence interval.
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Figure A4. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for right and left swing phase 
(%). Part A and B shows the scatter plot and bland-Altman plot on the left and right, respectfully 
for each parameter. For the scatter plot, the blue dots show right and left swing for each system. The 
bland-Altman plots show the difference between the MOCAP and LEGSYS parameters on the Y axis 
and MOCAP right and left swing. Blue line and dotted blue line show the bias and limits of agree-
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Figure A3. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for right and left stance phase (%).
Part (A,B) shows the scatter plot and bland-Altman plot on the left and right, respectfully for each
parameter. For the scatter plot, the blue dots show right and left stance for each system. The bland-
Altman plots show the difference between the MOCAP and LEGSYS parameters on the Y axis and
MOCAP right and left stance. Blue line and dotted blue line show the bias and limits of agreement
respectfully. The orange line on all 4 plots shows the least squares regression lines with orange dots
being the 95% confidence interval.
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Figure A4. Scatter and bland-Altman plot of MOCAP vs. LEGSYS for right and left swing phase (%).
Part (A,B) shows the scatter plot and bland-Altman plot on the left and right, respectfully for each
parameter. For the scatter plot, the blue dots show right and left swing for each system. The bland-
Altman plots show the difference between the MOCAP and LEGSYS parameters on the Y axis and
MOCAP right and left swing. Blue line and dotted blue line show the bias and limits of agreement
respectfully. The orange line on all 4 plots shows the least squares regression lines with orange dots
being the 95% confidence interval.
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