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Abstract: Weather radars are commonly used to track the development of convective storms due
to their high resolution and accuracy. However, the coverage of existing weather radar is very
limited, especially in mountainous and ocean areas. Geostationary meteorological satellites can
provide near global coverage and near real-time observations, which can compensate for the lack of
radar observations. In this paper, a deep learning method was used to estimate the radar composite
reflectivity from observations of China’s new-generation geostationary meteorological satellite FY-4A
and topographic data. The derived radar reflectivity products from satellite observations can be used
over regions without radar coverage. In general, the deep learning model can reproduce the overall
position, shape, and intensity of the radar echoes. In addition, evaluation of the reconstruction radar
observations indicates that a modified model based on the attention mechanism (Attention U-Net
model) has better performance than the traditional U-Net model in terms of all statistics such as the
probability of detection (POD), critical success index (CSI), and root-mean-square error (RMSE), and
the modified model has stronger capability on reconstructing details and strong echoes.

Keywords: FY-4A geostationary meteorological satellite; deep learning; radar composite reflectivity

1. Introduction

Heavy rain, hail, lightning, and other strong convective weather events usually have
the characteristics of strong intensity, rapid development, and wide distribution, thus
causing high impacts on people’s lives and economic development [1–3]. Warning and
responding to severe convective weather events require accurate and timely observations
with high spatial and temporal resolutions. Weather radar detects strong convective
weather characteristics using the echo signals from the emitted pulse waves reflected back
by cloud and rain particles [4–6]. With high accuracy and spatio-temporal resolution,
weather radar has always been one of the most powerful tools for monitoring severe
convective weather and is widely used in operational systems. Radar reflectivity reflects the
size and density distribution of precipitation particles, and thus is often used to represent
the intensity of weather targets. In general, the larger the reflectivity intensity, the higher
probability of strong convective weather. Studies have shown that radar reflectivity greater
than 35 dBZ (dBZ: a physical quantity that represents the intensity of radar echoes) tends to
indicate the occurrence of severe convective weather [7]. The radar echo images generated
based on the radar reflectivity factor provide a more intuitive indication of the occurrence
and development of convective systems [8]. Furthermore, the radar reflectivity factor is
widely used in numerical weather prediction (NWP) models and data assimilation systems
to further improve the forecasts of clouds and precipitation [9,10].
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However, complicated topography (especially hills and mountains) often brings un-
certainties into radar measurements [11]. Moreover, radars are mainly deployed in densely
populated areas, for example, radars are deployed over east China, while southwest China
still lacks radar observations due to the complex topography and large uninhabited ar-
eas. Therefore, it is more difficult to monitor and forecast severe convective weather in
southwest China.

In contrast, an advanced imager onboard the geostationary (GEO) meteorological
satellite, as a space-based remote sensing instrument, is not restricted by complex topog-
raphy and natural conditions [12]. Observations from the visible (VIS) and infrared (IR)
bands involve information on the development of cloud tops. Generally, the stronger the
convections that develop, the higher their cloud top will be. Moreover, the thicker the cloud,
the stronger the precipitation and the lower the brightness temperature (BT) observed by
the satellite IR bands [13]. Therefore, GEO meteorological satellites can monitor the de-
velopment of convective cloud systems [14,15]. In particular, the new generation of GEO
satellites has much improved spatio-temporal resolution and enhanced capabilities for
monitoring the rapid development of severe convective weather processes when compared
with the last generation of GEO weather satellites. Launched in 2016, Fengyun-4A (FY-4A)
is the first satellite of the Chinese new-generation GEO meteorological satellite (FengYun-4
series). It carries a radiation imager named the Advanced Geosynchronous Radiation
Imager (AGRI), the performance of which has significantly improved compared with the
previous one onboard Fengyun 2 satellites [16]. The AGRI has been upgraded from 5 to
14 spectral bands, with the spatial resolution ranging from 0.5 km (for VIS bands) to 4 km
(for IR bands). The observation time for full-disk scan mode is reduced from 0.5 h to 15 min,
and the Chinese domain can be scanned every 5 min [17] which is close to the 6 min scan
of weather radars. Therefore, it is physically feasible to reconstruct radar reflectivity using
geostationary satellite imager observations with a much wider geographical coverage,
which can provide observations without radar and fulfill the missing data in the blind areas
of radar screening. It can also be blended with real radar observations in areas within radar
coverage to provide higher frequency observations for monitoring rapidly developing
strong convective systems.

Satellite IR band observations mainly contain cloud top radiation information and
the radiances holds limited information for cloud structure and precipitating since the IR
bands have limited capability to penetrate the clouds, this limits the physical retrieval of
clouds’ optical, microphysical, and precipitation characteristics. VIS bands can provide
more insight cloud information but are limited to the observations during daytime. Studies
have shown that the maximum cloud optical thickness (COT) generated by physical-based
retrieval algorithms is about 160, which roughly corresponds to only 20–25 dBZ of the
radar reflectivity factor [18]. In contrast, the convolutional neural network (CNN) machine
learning (ML) technique has the ability to capture the image gradient features and is able
to reconstruct radar echoes exceeding 50 dBZ [19]. Therefore, the ML technique is able to
compensate for the limitation of physical retrieval algorithms to some extent. In recent
years, deep learning (DL) technology has been widely used in meteorological studies.
For example, a CNN was used to classify and predict strong convective weather and
precipitation with satellite and radar-based observations [20–22]. A generative adversarial
network (GAN) was used for the extrapolation of satellite cloud and radar echo maps [23,24]
and some studies have been conducted on reconstructing the high-resolution data with
ML algorithms, etc. [25]. Compared with traditional ML algorithms, DL algorithms
contain deep CNNs with more hidden layers [26]. Therefore, they have better high-
dimensional nonlinear modeling performance. Deep neural networks can not only learn
spatial information but also the time-varying information contained in data with time-series
characteristics, and further, make predictions based on the captured features.

Recently, several studies have been presented using DL techniques to reconstruct radar
composite reflectivity (CREF) [19,27,28]. This study is a further exploration based on the
previous works, a DL technology is developed to reconstruct radar CREF from observations
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of China’s new-generation geostationary meteorological satellite FY-4A. This model is a
regional model with a focus on the weather conditions in southwest China, as previous
studies indicate that strong convections have distinct local characteristics. To consider the
complex surface of southwestern China, the topography data are also added to the model.
Moreover, a new DL model based on the attention mechanism is introduced to improve
the reconstruction ability and a comparison with the traditional U-Net model (which is
the convolutional network architecture for fast and precise segmentation of image) is also
conducted. The reconstructed CREF maps from the GEO satellite imager observations can
be applied to monitoring large-scale weather systems and the early warning of severe local
storms, and provide more complete information on rapidly developing severe convective
weather systems as well as meteorological disasters.

Section 2 is the introduction of data used in this paper. Section 3 mainly focuses on
the data preprocessing, the structure of two DL models, and model evaluation methods.
The independent validation results and typical case study, along with real application
demonstration are presented in Section 4. A summary and conclusions are shown in
Section 5.

2. Data
2.1. Satellite Observations

FY-4A is the first of the new generation of Chinese geostationary meteorological satel-
lites (FengYun-4 series) and was successfully launched on 11 December 2016, positioned
around 104.7◦ E [16]. The FY-4A carries an Advanced Geosynchronous Radiation Imager
(AGRI). The AGRI was designed with 14 spectral bands, including VIS bands (with a
central wavelength from 0.47 µm to 0.65 µm), near-infrared (NIR) bands (with central
wavelengths from 0.825 µm to 2.225 µm), and IR bands (with central wavelengths from
3.725 µm to 13.5 µm), which can perform a 5 min scan over Chinese regions and a 15 min
scan in full disk [17]. The spatial resolution ranges from 0.5 km (VIS band) to 4 km (IR
band) at the nadir. The VIS and NIR bands contain more information about clouds, but it
is only available during the daytime. In contrast, the IR bands can provide observations
during both daytime and nighttime. Therefore, two models were established to fully use
the cloud information contained in all available bands. One model uses the VIS/NIR and
IR bands as input (termed the VIS+IR model) for the daytime, and the other one only uses
IR bands as input (termed the IR-only model) for the whole-day reconstructions. Table 1
shows the input parameters and corresponding physical meanings of the VIS+IR model
and IR-only model, respectively.

The input imager spectral bands in the model are selected according to the physical
interpretation of radar reflectivity–convection–satellite observation relationships, mainly
focusing on bands that are most sensitive to clouds and hydrometeors, and the study
of Sun et al. [28] was also referred to. For example, the VIS band at 0.65 µm is a weak
absorption band sensitive to COT and cloud phase, especially for strong convective clouds.
The 1.61 µm band in the NIR spectral region shows high sensitivity to ice-phase clouds
and cloud-effective particle radius with a strong absorption effect. Moreover, clouds with
different phases have different absorption characteristics in the 8.6, 10.8, and 12.0 µm
bands. While the brightness temperature difference (BTD) of 12.3–10.8 µm is less than
that of µm for cloud water particles, the opposite situation is obtained for cloud ice par-
ticles. Based on those situations, the VIS+IR model chooses VIS band of 0.65 µm, NIR
band of 1.61 µm, and IR bands of 10.8 µm, 12.3 µm along with BTDs of 10.8–6.2 µm and
12.3 + 8.6 − 2 × 10.8 µm combination as model input. For the IR-only model, only IR bands
are used as input to produce unified day/night results. Note that the VIS and NIR band
observations have been modified by multiplying the sec(θ), where θ is the solar zenith
angle (θ < 65◦). Some studies have found that the height of the ground surface may have
some influence on the effect of the model [27], so the digital elevation model (DEM) data are
also included as an input parameter in this study to represent the topographic information.
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Table 1. Satellite characteristic parameters and physical significance of model inputs.

NO Input Factor Physical Meaning

1 0.65 µm
Cloud optical thickness,

strong convective
clouds phase

2 1.61 µm Ice-phase clouds, cloud
effective particle radius

3 2.225 µm Cloud phase,
aerosol, vegetation

4 3.725 µm Surface

5 10.8 µm Cloud top
temperature estimation

6 12.0 µm Cloud top
temperature estimation

7 10.8–6.2 µm Cloud top height relative to
the convective layer

8 12.0 + 8.5 − 2 × 10.8 µm Cloud top phase state

9 DEM Regional topography

VIS + IR Inputs: 1–9

IR-only Inputs: 4–9

2.2. Radars

The radar data used in this study are obtained from the China New Generation Weather
Radar Network (CINRAD) deployed by the China Meteorological Administration (CMA).
CINRAD contains 123 S-band and 94 C-band Doppler weather radars. S-band radars are
mainly deployed in the eastern and coastal regions, while C-band radars are deployed
primarily in the northwest and northeast regions. These radars provide accurate monitoring
and forecasting of weather disasters such as typhoons, thunderstorms, and hail [29]. Since
this study aims to build a regional radar reflectivity retrieval model, especially for the
southwest of China, the CREF data in southwest China range from 25◦ N to 35◦ N latitude,
and 100° E to 110° E longitude was finally chosen as the label data. This region was selected
because the radar coverage is larger than most other areas in western China, thus providing
sufficient radar observations for model training. CREF is the maximum base reflectivity
factor that can be found in a given vertical column in the radar umbrella [28]. CREF can
visually reflect the intensity structure and variation of a strong convective system. The
radar CREF data have a temporal resolution of 6 min and a spatial resolution of 0.01◦ with
the maximum value of 67 dBZ in the labeled dataset.

2.3. GPM Precipitation Data

Because precipitation and radar echoes have a good relationship, to test the effective-
ness of radar echoes reconstructed by the DL model in areas without radar coverage, the
Global Precipitation Measurement (GPM) precipitation dataset is selected to test the recon-
struction result of the DL model. The GPM is the next generation of the Global Satellite
Precipitation Measurement Program following the Tropical Rainfall Measurement Mission
(TRMM) precipitation program, with a constellation of 10 satellites launched on 28 February
2014 [30,31]. The GPM carries an advanced dual-frequency rain gauge radar and passive
microwave sensors, which can detect solid and slight precipitation more accurately [32].
Attributed to the fusion of multiple satellites and rain gauge data, the accuracy of GPM
precipitation data is relatively high among other satellite precipitation products [30]. The
precipitation dataset used in this study is the latest generation of Integrated Multi-Satellite
Retrievals for GPM (IMERG). Based on different algorithm processing, GPM IMERG pro-
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vides three types of precipitation data, which are early, late, and final runs with latencies of
4 h, 12–24 h, and 3.5 months, respectively. The final run uses a month-to-month adjustment
to combine the multi-satellite data with Global Precipitation Climate Center (GPCC) gauge.
In this study, the final run dataset with a spatial resolution of 0.1◦ × 0.1◦ and a temporal
resolution of 30 min was used [33].

3. Method

Figure 1 illustrates the workflow of this study. It consists of three modules: data
selecting and preprocessing, model training, and model evaluation based on indepen-
dent datasets.

Figure 1. Workflow of CREF reconstruction algorithm based on the DL technique.

3.1. Data Preprocessing

The FY-4A AGRI observations and radar CREF data are selected from the warm sea-
sons from April to October 2018 and 2019 when there were abundant convective activities.
FY-4A AGRI VIS/IR band observations and cloud mask (CLM) products are used in this
study. The spatial resolution of AGRI is 4 km and the time resolution is 5 min. While
the radar data have a higher spatial resolution of 0.01◦ × 0.01◦, they are interpolated to
the 0.04◦ × 0.04◦ grid resolution to match the AGRI observations. The time difference
between matched satellite and radar observations is less than 3 min. Since there are too
many clear sky pixels from one satellite image, which are distractions for the CNN model,
the operational CLM product from AGRI is then adopted to exclude these clear pixels. The
AGRI CLM product is classified into four categories [34]: 1—cloudy, 2—probably cloudy,
3—clear sky, and 4—probably clear sky. Only those pixels in the first category are treated
as cloudy pixels in this study, and all other pixels are considered non-cloudy sky cases that
will be discarded. After the spatiotemporal collocation and the exclusion of clear-sky pixels,
5267 samples containing convective events are finally obtained. The matched datasets
are randomly split into 80% (about 4223 samples) as the training dataset and 20% (about
1044 samples) as the independent validation dataset. Figure 2 shows the distribution of
samples in each month. Finally, the maximum and minimum normalization is applied,
which scales the input data to the range of 0 to 1 to accelerate the model convergence.
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Figure 2. Number of samples for model training and validation in each month of 2018–2019.

3.2. DL Network Structure
3.2.1. U-Net

The U-Net network is originally applied in the field of semantic segmentation (the
process of assigning a class label to each pixel in an image) [35]. Based on the framework
of the fully convolutional network, U-Net uses an encoder–decoder structure in order to
better capture the multi-scale contextual information of the images. The network structure
with some modifications is widely used for regression prediction in the field of meteorology.
As illustrated in Figure 3, the U-Net model consists of two parts: an encoder structure (left
side) and a decoder structure (right side). The encoder structure is mainly used for feature
extraction and includes several convolution blocks. Each convolution block contains two
3 × 3 convolution layers, an activation function named the rectified linear unit (ReLU), and
a max-pooling layer with a stride of 2 for down-sampling. At each down-sampling step,
the number of feature channels is doubled. The decoder structure contains key steps of
up-sampling which halve the number of feature channels and skip connection. The encoder
and decoder structures are connected by the skip link structure to combine low-dimensional
feature maps with high-dimensional feature maps. At the last layer, a 1 × 1 convolution
layer is used to map the feature vectors to the assigned regression map. The sizes of input
data are 251 × 251 × 9 for the VIS+IR model and 251 × 251 × 6 for the IR-only model.

Figure 3. Strcucture of U-Net.

3.2.2. Attention U-Net

Attention U-Net is a transformation of U-Net which introduces an attention mecha-
nism to process encoder and decoder feature maps. As shown in Figure 4, the U-Net model
is the main architecture, and the attention gates denoted by the red circles are integrated to
automatically adjust the feature weight in different locations before skipping the connection
of the encoder and decoder [36]. Compared to the U-Net networks, Attention U-Net can
focus on the region of interest by putting more weight on features that are passed through



Sensors 2023, 23, 81 7 of 14

the skip connections. Moreover, the Attention U-Net does not introduce significant addi-
tional computation. Oktay et al. [37] showed that after combining the attention mechanism
with U-Net, the model could suppress feature activations in irrelevant regions during the
learning process and can finally achieve better performance than before.

Figure 4. Strcucture of Attention U-Net.

3.3. Model Training and Testing

The model inputs for the IR-only model and VIS+IR model are 6 bands and 9 bands,
respectively. The model output is the composite radar reflectivity map. Both satellite data
and the composite radar reflectivity have a size of 251 pixels in width and 251 pixels in
height. In this study, the Attention U-Net model (marked as AU model) and the U-Net
model (marked as U model) are built for the IR-only model and VIS+IR model, respectively.
The models are built with Pytorch, and the optimizer is Adam, which can make the loss
function reach the optimal value as soon as possible. Moreover, a batch input method is
used to accelerate the training speed, and the batch size is set to 4. In the training model,
the learning rate is initially set to 0.0005. During the training process, the learning rate is
adjusted by the “warm-up” adjustment strategy [38,39] to avoid the oscillation of the loss
function curve due to the high initial learning rate setting. The training is set to 300 epochs,
and it will stop when the loss function ceases to fall ten times in succession. The loss
function is designed as the sum of the root-mean-square error (RMSE) and the absolute
error (MAE). In addition, RMSE, MAE, and explained variance (R2) are also calculated
to evaluate the performance of the model. Lower RMSE and MAE indicate a smaller
difference between actual radar CREF and reconstructed values, which means the models
have a better performance. Similarly, the closer R2 is to 1, the better the model is. RMSE,
MAE, and R2 are expressed as Equations (1)–(3), respectively. In these equations, yi and
ypred are the actual CREF and reconstructed CREF from satellite observations. yi is the
average of the actual radar observations.

RMSE =

√
∑N

i=1(yi − ypred,i)2

N
(1)

MAE =
∑N

i=1(
∣∣∣yi − ypred,i

∣∣∣)
N

(2)

R2 = 1 −
∑N

i=1(yi − ypred,i)
2

∑N
i=1(yi − yi)

(3)

Different radar echo intensities are usually given different attention in meteorology.
Therefore, it is necessary to evaluate the model at different radar intensities. Classification
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metrics including the probability of detection (POD), false alarm ratio (FAR), critical success
index (CSI), and Heidke skill score (HSS) are utilized here to evaluate the reconstruction
performance of the model at different thresholds of CREF. Higher POD, CSI, and HSS
values and smaller FAR values indicate better model performance. The definition of used
classification scores is defined in Table 2 and Equations (4)–(7).

Table 2. Definition of classification index parameters.

Observation

T F

Estimation
T TP FP

F FN TN

POD =
TP

TP + FN
(4)

FAR =
FP

FP + TP
(5)

CSI =
TP

TP + FP + FN
(6)

HSS =
2 × (TP × TN − FN × FP)

FN × 2 + FP × 2 + 2 × TP × TN + (FN + FP)× (TP + TN)
(7)

4. Results
4.1. Statistical Results

Figure 5 shows the probability distribution of nonzero radar reflectivity in all samples.
The results show that the distribution of training and test samples is relatively consistent,
which means the test set can represent the features of the training set. Note that the CREF
is mainly concentrated around 0–30 dBZ, with a small proportion of strong radar echoes
exceeding 35 dBZ.

Figure 5. Probability distribution of CREF in the training (black line) and test (red line) datasets,
respectively. Note that 0 dBZ is not included.

In this study, four models are established, namely, the Attention U-Net VIS+IR model,
Attention U-Net IR-only model, U-Net VIS+IR model, and U-Net IR-only model. To
compare the performance of these four models, the classification metrics are calculated on
the test dataset for the reconstructed CREF at different thresholds in Figure 6. The result
shows that when the CREF is small, the POD, CSI, and HSS scores are high for all models.
With the increase of CREF to 40 dBZ, the POD, CSI, and HSS scores of the Attention U-Net
model are decreased from about 0.9 to 0.3. However, the POD, CSI, and HSS values of
the Attention U-Net model are still significantly superior to those of the U-Net model.
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Similarly, the FAR values are lower for the Attention U-Net and U-Net models at low
radar echo thresholds. As the radar echo increases to about 35–40 dBZ, the FAR values
increase to about 0.35, but the Attention U-Net model is still better than the U-Net model.
In addition, the performance of the VIS+IR and the IR-only models are also compared to
verify the added value of VIS/NIR bands. The results reveal that adding VIS/NIR bands
can improve the model performance, especially for the U-Net model. When the radar echo
increases to 30 dBZ, the POD, CSI, and HSS of the U-Net VIS_IR model are significantly
better than those of the U-Net IR model. In general, through the comparison between the
four models, it is found that the AU_VIS_IR model has the best classification scores, with
the POD, CSI, and HSS being higher than 0.8 and the FAR value lower than 0.1 at a low
radar echo threshold. As the radar echo threshold increases, the performance gradually
becomes worse. However, the AU_VIS_IR model is still superior to the rest models. The
AU model achieves better results than the U model in reconstructing the CREF and the
VIS+IR model also exhibit better performance than the IR-only model. However, all four
models show deficiencies in regions of strong radar reflectivity.

Figure 6. Classification metrics of four models in different radar echo thresholds. (a) POD; (b) FAR;
(c) CSI; (d) HSS. AU_VIS_IR is the Attention U-Net VIS+IR model, AU_IR is the Attention U-Net
IR-only model, U_VIS_IR is the U-Net VIS+IR model, and U_IR is the U-Net IR-only model.

Figure 7 shows the results of RMSE, MAE, and R2 for the four models on the test
dataset. The RMSE, MAE, and R2 of the AU_VIS_IR model are 2.1926 dBZ, 0.7107 dBZ,
and 0.9176, respectively. The RMSE, MAE, and R2 of the AU_IR model are 2.3849 dBZ,
0.7764 dBZ, and 0.9027, respectively. The AU_VIS_IR model has better performance than
the AU_IR model in terms of all statistics. The situation is similar for the U_VIS_IR model
and the U_IR model. The RMSE, MAE, and R2 of the U_VIS_IR model are 2.5024 dBZ,
0.8457 dBZ, and 0.8954, respectively, which are superior to those of the U_IR model. This is
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probably because the VIS/NIR bands include additional information on cloud optical depth,
including VIS/IR bands, which could better reflect the evolution of cloud and convective
systems [28]. Overall, the AU_VIS_IR model shows the best performance among all models
in terms of all statistics, which is consistent with the results mentioned above.

Figure 7. Regression metrics of the 4 models on the test dataset.

4.2. Case Study Analysis

In this section, a strong convective case is taken to display the reconstruction perfor-
mance of the four models. Figure 8 shows a heavy precipitation process that occurred
around 01:00 UTC on 4 June 2018, hitting the southeast of Sichuan province, and most areas
of Chongqing and Guizhou province. This heavy rainfall process was characterized by
long duration, short-term strong rainfall, and distinct local features.

Figure 8. Reconstructed CREF based on satellite observation. (a) Attention U-Net VIS_IR model;
(b) Attention U-Net IR model; (c) U-Net VIS_IR model; (d) U-Net IR model; (e) actual observed CREF.
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It is shown that the reconstruction of CREF from four models matches well with
the actual radar observations. The four models can basically reconstruct the distribution
pattern of actual observation data and capture the center of the strong convective system.
However, there are some missing details in the four models, especially in the U-Net model,
which may be related to the low spatial resolution of the satellite in comparison to the radar.
Moreover, the reconstructed CREF based on the DL technique still has some limitations,
and the maximum value is smaller than the actual observation. Overall, the Attention
U-Net model can capture more detailed information compared with the U-Net model and
is closer to the actual observations.

4.3. Application

Based on the above analysis, the Attention U-Net VIS_IR model with the best recon-
struction performance is selected to generate the nationwide CREF. Because the actual
radar observations are limited to spatial coverage, there is a large radar data void over
the ocean and most areas of western China. In order to validate the reconstructed radar
CREF from satellite, especially in the region where there is no actual radar observation, the
GPM precipitation dataset is selected as supplementary information to indicate the area of
strong radar echoes. Figure 9 shows a precipitation event from the GPM dataset and the
corresponding reconstructed CREF map based on the AU_VIS_IR model at 04:30 UTC on
10 June 2020.

Figure 9. June 10, 2020, 04:30 UTC. (a) GPM precipitation distribution; (b) radar composite reflectivity
based on the Attention U-Net VIS_IR model.

Starting from June 2020, the western Pacific subtropical high has continued developing
and enhancing. The lower troposphere over the northwest Pacific is dominated by the
anomalous anticyclonic wind and thus the water vapor transportation over the west side
of the subtropical high is significantly stronger. This stronger transportation provides an
unusual amount of water vapor from the South China Sea and the western Pacific for this
persistent precipitation process in the southern region of China. From 2 to 10 June 2020, the
east of the southern regions of China received heavy and widespread precipitation. This
precipitation process was characterized by a wide area with a long duration and heavy
rainfall. The accumulated precipitation exceeds 600 mm in some local areas of Guangdong
and Guangxi Province. As shown in Figure 9a, strong rainfall occurred across northern
Guangxi, the southern region of Guizhou, western Fujian, and the middle-lower reaches of
the Yangtze River region, with the rain rate exceeding 20 mm/h in Anhui, Inner Mongolia,
and Jilin. Figure 9b shows the reconstructed CREF map from the AU_VIS_IR model with
AGRI observations at the corresponding time.

Overall, the distribution of reconstructed CREF is quite consistent with the pattern
of the precipitation, with the maximum CREF up to approximately 45 dBZ. The region of
strong reconstructed radar echoes is consistent with the short-term heavy precipitation
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areas, such as the southern Anhui, north China, and the western Pacific, where the re-
constructed CREF reaches above 30 dBZ and the rain rate is over 10 mm/h. Therefore,
the CREF retrieved from satellite observations with the DL model can be used as a good
indicator of heavy precipitation and provide relatively reliable supplementary information
in the regions where the coverage of radar is incomplete. However, the model also has
missed some precipitation areas. For example, there is a strong precipitation center that
occurs over Hainan Island, but it is not shown on the reconstructed radar map. Moreover,
there are also some regions with strong radar echoes but no precipitation. In the future,
adding NWP model data can be considered in the training process to improve the model’s
ability to capture severe weather.

5. Summary and Conclusions

This study aims to develop a retrieval algorithm for radar reflectivity from observa-
tions of the Chinese new-generation geostationary meteorological satellite FY-4A, to take
advantage of the large coverage of the GEO satellite, and make up for the deficiencies of
radar observations. The U-Net and Attention U-Net models are utilized to build the VIS+IR
model and the IR-only model, respectively. This study also performs a comparative analysis
of the above four models, and the results show the DL models could well reconstruct the
radar reflectivity from satellite observations, but they also show deficiencies in the regions
with strong radar echoes. The Attention U-Net model is superior to the other three models
in terms of all classification scores and statistics. Moreover, adding the VIS/NIR bands as
input in the model can improve the performance compared with using IR bands only.

Besides the calculation of statistics, the reconstruction ability is also validated. The
examination is carried out using actual radar observations over the area within the radar
coverage. The comparison results reveal that the DL models could rebuild the shape
and location of actual radar echoes, while the intensities are somewhat underestimated.
When compared with the U-Net model, the Attention U-Net model can capture more
detailed information about the radar echoes and produce closer results to the actual radar
observations. Therefore, the Attention U-Net model is selected to generate a radar CREF
map with wide coverage to analyze a typical widespread precipitation process. The GPM
precipitation dataset is utilized for independent validation, especially for regions without
radar observations. The reconstructed CREF from FY-4A AGRI data is consistent with
the pattern of the strong precipitation signals and could be used as a relatively reliable
indicator of strong precipitation to compensate for the lack of radar observations. However,
the GEO satellite IR images mainly observe the cloud top information, which is different
from the principle and method of radar detection. Only using satellite observations as
model input data may cause large uncertainties under some circumstances, such as extreme
cases with strong radar echoes. Future work will be focused on improving radar reflectivity
retrieval under situations with strong radar echoes, for example, through building a more
representative training dataset. In addition, since the NWP model data can provide further
information on clouds and strong convections, adding cloud hydrometers from the NWP
model is another approach to further improve the model performance. Moreover, how to
blend satellite reconstructed radar with actual radar observations to form a unified radar
reflectivity field with larger coverage and higher frequency for better applications also
needs to be studied in the future.
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