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Abstract: The traditional self-supported piezoelectric thin films prepared by filtration methods are
limited in practical applications due to their poor tensile properties. The strategy of using flexi-
ble polyethylene terephthalate (PET) fabric as the flexible substrate is beneficial to enhancing the
flexibility and stretchability of the flexible device, thus extending the applications of pressure sen-
sors. In this work, a novel wearable pressure sensor is prepared, of which uniform and dense ZnO
nanoarray-coated PET fabrics are covered by a two-dimensional MXene nanosheet. The ternary
structure incorporates the advantages of the three components including the superior piezoelectric
properties of ZnO nanorod arrays, the excellent flexibility of the PET substrate, and the outstanding
conductivity of MXene, resulting in a novel wearable sensor with excellent pressure-sensitive proper-
ties. The PET/ZnO@MXene pressure sensor exhibits excellent sensing performance (S = 53.22 kPa−1),
fast response/recovery speeds (150 ms and 100 ms), and superior flexural stability (over 30 cycles
at 5% strain). The composite fabric also shows high sensitivity in both motion monitoring and
physiological signal detection (e.g., device bending, elbow bending, finger bending, wrist pulse
peaks, and sound signal discrimination). These findings provide insight into composite fabric-based
pressure-sensitive materials, demonstrating the great significance and promising prospects in the
field of flexible pressure sensing.

Keywords: flexible pressure sensors; MXene; pressure-sensitive; ZnO nanoarrays

1. Introduction

With the development of flexible wearable devices, the demand for multifunctional
pressure sensors has increased dramatically. The flexible pressure-sensitive devices based
on flexible substrates and sensitive materials possess several unique advantages including
high durability, scalability, and portability, thus exhibiting numerous potential applica-
tions in the fields of intelligent sensing, physiological activity monitoring, and health
diagnosis [1–7]. Traditional self-supporting flexible films’ poor flexibility, tensile strength,
and wear resistance make it difficult for them to meet practical requirements [8–11]. Thus,
it remains a challenge to endow the fabric with excellent pressure sensitivity while being
both flexible and breathable. To achieve high detection sensitivity and a wide range of
stress/strain detection at the same time, it is crucial to design and construct flexible sensing
materials with outstanding sensing capabilities.

To design flexible piezoelectric sensors with high sensitivity, three factors need to
be taken into account, which are the species of flexible substrates and sensitive materials
and the design of device structures. Textiles used in wearable electronics for medical and
human activity sensing should be hygroscopic, soft, breathable, and comfortable against
human skin. In the choice of a flexible substrate, PET (polyethylene terephthalate) fabric
demonstrates several advantages including reasonable costs, stretchability, and thermal
stability up to 100 ◦C. Other characteristics such as excellent flexibility, breathability, and
comfort also attract great attention [12,13]. For the sensitive unit, materials with excel-
lent stability, conductivity, and piezoelectricity are optimal, including graphene [14,15],
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metal oxides [16], MXene [17–20], MOF [21–23], etc. As a typical semiconductor material,
ZnO nanorods with a hexagonal structure benefit from inexpensive preparation costs,
great chemical stability, and excellent piezoelectric properties, and have been intensively
studied in flexible piezoelectric sensors [24,25]. However, it has been reported that if the
ZnO nanorod arrays are assembled on the PET surface, the contact resistance between
the ZnO nanorods would be increased, resulting in a high resistance [26]. Therefore, it is
urgent to improve the electrical conductivity of the system for further practical applica-
tions. Due to its extensive physicochemical features and superior electrical conductivity,
Ti3C2Tx (MXene) has received extensive attention in the field of piezoelectric sensors. In
previous works, several MXene-based pressure sensors have been constructed as flexible,
self-supporting membranes [27,28]. However, its flexibility, tensile properties, and wear
resistance limit its performance [29,30]. Therefore, it is envisaged that the combination of
PET and MXene to fabricate a flexible substrate could promote electrical conductivity while
solving the problem of poor toughness of MXene self-supporting membranes. Furthermore,
the excellent piezoelectric properties of ZnO nanorod arrays would provide composite
membranes with dual functional properties of compression and stretching.

In this work, the PET/ZnO@MXene composite flexible fabric is prepared by uniformly
assembling ZnO nanorod arrays on the surface of the PET fabric. The composites are
then coated with MXene nanosheets obtained from etching via the impregnation method.
Based on the SEM, XRD, XPS, and other characterization methods, the morphology and
structure of the sensor are analyzed. The pressure-sensing performance of the composite
fabric sensor is tested, including sensitivity, response recovery curve, tensile resistance,
and human signal detection. Finally, the flexible wearable device is made to conduct
preliminary exploration and experimental verification for its application scenario.

2. Materials and Methods
2.1. Materials

Lithium fluoride (LiF, 99.9%), hydrochloric acid (HCl, 37%), anhydrous zinc acetate
(CH6O4Zn, 99.5%), polyetherimide (PEI, RG), methanol (CH3OH, 99.9%), and acetone
(C3H6O, 99.9%) were purchased from Adamas. The Ti3AlC2 MAX phase (400 mesh) was
purchased from 11 Technology Co. Ltd. (Jilin, China). Hexamethyleneimine (C6H13N,
98%) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O, AR) were purchased from Aladdin
reagents. All chemicals were used as purchased without further purification.

2.2. Synthesis of MXene Nanosheets

To synthesize Ti3C2Tx nanosheets from the Ti3AlC2 MAX phase, a reported etching
method was utilized based on the etching solution of LiF/HCl [31]. Firstly, 2 g of LiF and
HCl (20 mL, 9 M) were stirred for 30 min to ensure that LiF was entirely dissolved. Then
the solution was heated to 35 ◦C, and the Al layer in the precursor MAX phase was slowly
etched at a certain speed for 24 h. The resulting solution was repeatedly washed with
deionized water until the pH value was higher than 6. Anhydrous ethanol (40 mL) used as
an intercalating agent was added to the solution and the mixture was sonicated for 1 h. The
solution was then centrifuged at 10,000 rpm for 10 min and the sediment was collected. The
precipitate was mixed with deionized water (20 mL) under ultrasonication for 20 min, and
further centrifuged at 3500 rpm for 3 mins. The black-brown upper solution was collected,
which was the MXene few-layer nanosheets. Using repeated centrifugation, the yield of
MXene nanosheets could be increased.

2.3. Fabrication of Flexible Pressure Sensor Based on PET/ZnO@MXene

Large pieces of fabric were cut into 2 cm × 2 cm pieces and treated ultrasonically in
methanol, acetone, and deionized water solutions for 10 min to obtain a clean PET flexible
fabric. Then 0.02 g of zinc acetate dihydrate was dissolved in 20 mL of anhydrous ethanol
and stirred at 600 rpm for 30 min to form a transparent solution. One milliliter of the zinc
acetate solution was added to the flexible PET fabric base and dried in the atmosphere.
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This adding–drying step was repeated 4–5 times. The as-made flexible material was then
treated at 350 ◦C for 20 min. Meanwhile, zinc nitrate hexahydrate (0.745 g), polyetherimide
(PEI, 0.4 g), and hexamethylenetetramine (HMTA, 0.35 g) were dissolved in 100 mL of
deionized water and stirred at 600 rpm for 30 min. The pre-treated PET fabric material
was then inverted in the configured growth solution and hydrothermally reacted for 4 h at
90 ◦C. The obtained PET/ZnO NRs flexible fabric was repeatedly dipped into the 1 g/mL
of MXene nanosheets aqueous solution, and this step was repeated 5 times to obtain a
uniformly coated PET/ZnO@MXene fabric. The copper films were attached as electrodes
to both ends of the PET/ZnO@MXene flexible fabric, and two clean flexible PVC films
covered the two ends of the pressure-sensitive device to prevent material contamination
and ensure the stability of the equipment during the test. The picture of the fabricated
sensor is shown in Figure S1. Scheme 1 is the synthesis diagram of the PET/ZnO@MXene
composite fabric.
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2.4. Characterization

The crystalline structures of PET, MXene, PET/ZnO NRs, and PET/ZnO@MXene
were characterized by X-ray diffraction (XRD, D8-Advance, Saarbruecken, Germany) with
2θ in the ranges of 5~60◦ at room temperature. The morphology of the PET, PET/ZnO
NRs, and PET/ZnO@MXene film was observed with field emission scanning electron
microscopy (FE-SEM, JEOL JSM-7001F, Tokyo, Japan). The surface compositions and
chemical states were examined by X-ray photoelectron spectroscopy (XPS, VG ESCALAB
210, Massachusetts, USA). The sensing performance was measured by the Flexible Device
Analysis System (AES-4SD-SA7102, SINO AGGTECH, Beijing, China).

3. Results and Discussion
3.1. Morphology and Structure Characterization

The SEM images of PET, PET/ZnO, and PET/ZnO@MXene are displayed in
Figure 1. The PET fiber showed a smooth surface with a diameter of approximately 10 µm
(Figures 1a and S2). After hydrothermal processing, uniform and dense ZnO nanorod
arrays were found to grow on the surface of PET, shown in Figure 1b. The high-resolution
SEM image (Figures 1c and S3) showed that the aligned ZnO arrays were hexagonal
nanorods with a diameter smaller than 300 nm. According to the diameter change of the
PET before and after ZnO growth, the length of the nanorod was estimated to be approxi-
mately 2 µm. After being impregnated with MXene nanosheets, the as-made PET/ZnO
fabric displayed a rough and wrinkled MXene film on the surface in Figures 1d and S4.
The tight encapsulation of MXene nanosheets on the ZnO surface might be owing to the
electrostatic interactions between the negatively charged hydrophilic MXene nanosheets
and oxides, which is beneficial to promote electron transmission [32].
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Figure 1. SEM images of the obtained materials. (a) PET fabric, (b) PET/ZnO composite fabric,
(c) magnified image of the PET/ZnO composite fabric, and (d) PET/ZnO@MXene composite fabric.

The structures of the PET, PET/ZnO, and PET/ZnO@MXene composite fabrics were
characterized by XRD. In Figure 2, the diffraction peaks at 2θ = 18.1◦, 23.6◦, and 25.9◦ are
attributed to the monoclinic crystal structure of PET. For the PET/ZnO NRs, the diffraction
peaks at 2θ = 32.4◦, 35.2◦, 37.0◦, 48.3◦, 57.3◦, 63.6◦, and 68.6◦ could be owing to that of
hexagonal wurtzite ZnO, matching JCPDS NO. 36-1451 [33]. The existence of MXene in the
PET/ZnO@MXene fiber fabric was proven by the (002) diffraction peak at 2θ = 7.0◦ [32,34].
Since the surface of PET was covered by ZnO nanorod arrays and Mxene, the diffraction
peaks of PET could not be observed in the PET/ZnO@MXene composite. No additional
diffraction peaks of impurities were shown in the XRD pattern, demonstrating a relatively
high purity of the developed sensitive device.

The chemical states and elemental compositions of PET/ZnO@MXene were analyzed
by XPS. Shown in the full-survey XPS spectrum of PET/ZnO@MXene, the presence of Zn,
C, O, Ti, and F elements is confirmed. Furthermore, the high-resolution spectra of the C,
O, and Zn elements were analyzed. In Figure 3b, strong peaks with the binding energy
of approximately 286.2, 284.6, and 281.6 eV could be attributed to C-O/C-N, C-C, and
C-Ti bonding, respectively [34]. The high-resolution XPS spectrum of O 1s can be divided
into four distinct peaks in Figure 3c, with binding energies of 532.7 eV, 531.1 eV, 530.2 eV,
and 529.8 eV. The four peaks corresponded to the presence of C-O, C-Ti-(OH)x, Zn-O, and
Ti-O, respectively [35–37]. The high-resolution XPS spectrum of Zn 2p shown in Figure 3d
displayed two fitted peaks at 1044.2 eV and 1021.1 eV, which were assigned to Zn 2p1/2 and
Zn 2p3/2, respectively. These results indicate that on the surface of ZnO NRs, the chemical
compound valence of Zn is in the positive divalent oxidation state [33,36,38].
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3.2. Pressure Sensing Performance of the PET/ZnO@MXene Composite Fabric

The developed pressure sensors can be used to track weak vibration or bending signals
based on their sensitivity to minor deformation. We examined the sensor’s pressure-sensing
capability towards various pressures. In Figure 4a, the I-V curves under different pressures
showed that the sensor’s response to static pressure was stable (–1~1 V). The I-V curves
exhibited good linear Ohmic contact behavior, with the resistance value (slope of the I-V
curve) remaining constant under the applied pressures of 0.36, 0.97, 1.93, 2.90, and 3.20 kPa.
The I-V curve’s slope increases as the strain increases, implying that the resistance of the
composite increases as the pressure increases. In the following tests, the voltage value was
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set as 1 V. In Figure 4b, the sensor exhibited an obvious response under different strains, and
the response value increased with the increase in strain. Additionally, the dynamic response
and recovery curves of the flexible pressure sensor based on PET/ZnO@MXene achieved
almost the same response value within five measurement periods under each strain, indi-
cating that the sensor has good recycle stability. In addition, a clearly discernable current
change signal appeared even under the pressure of 60 Pa as shown in Figure 4c, indicative
that the flexible pressure sensor based on the composite fabric has a low detection limit.
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Figure 4. Electronic and sensing performance of a PET/ZnO@MXene flexible composite fabric
pressure sensor. (a) I-V curve, (b) I-T curve under different applied pressures, (c) response change
under P = 60 Pa pressure, (d) response recovery time under P = 0.97 kPa pressure, (e) linear sensitivity
fitting diagram within the pressure ranges of 0.36–3.20 kPa, (f) strain–stress curve after 30 cycles
under the strain of 5%.

Response and recovery speed is also an important parameter for electronic skin
strain units used in human health monitoring. Since certain physiological signals (pulse,
heart rate, respiration, etc.) range in frequencies from 0.2 to 2.0 Hz, fast recognition
speed is critical for precise sensing. Figure 4d shows a single response and recovery
process of the PET/ZnO@MXene flexible pressure sensor under a stress condition of
0.97 kPa. The response and recovery times were as short as 150 ms and 100 ms, respectively,
which demonstrated the excellent response and recovery characteristics of the sensor.
Generally, the sensitivity of a pressure sensor is defined as S = δ (∆I/I0)/δp, where ∆I is the
relative change in current, I0 is the current without applied pressure, and P is the applied
pressure. Using sensitivity fitting, as shown in Figure 4e, the sensitivity S was calculated
to be 53.22 kPa−1. Notably, the fabric is stretchable since the framework structure of the
composite fabric can be extended in different directions. Therefore, a uniaxial tensile test
was conducted to evaluate the mechanical property of the flexible sensor. After 30 repeated
cycles of stretching under strain (ε) of 5%, the device showed stable mechanical scalability.
After cyclic loading, the sensitivity change of the device was negligible. Based on the
above results, the stable performance of the textile sensor provides feasibility in long-term
service. Table S1 shows the comparison of different flexible sensing parameters between our
sensor and previously reported works. The sensitivity value of our sensor exceeded several
sensors and is much more sensitive than the reported PET/MXene film. The response times
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are also competitive [39–42]. Moreover, the minimum pressure value of 60 Pa is much
lower than other flexible sensing materials.

3.3. Wearable Testing Based on PET/ZnO@MXene Composite Fabric

Textile pressure sensors with high sensitivity and flexibility can be used to detect
different degrees of device bending, finger gestures, elbow bending, and acoustic vibration.
Considering that human motions might trigger different bending phenomena, a series of
tests were conducted to verify whether the sensor can meet our daily monitoring needs.
As shown in Figure 5a, the sensor can sensitively identify the bending of different angles.
Obvious current signal changes appear at 30◦, 45◦, 60◦, and 90◦, and the bending angle is
positively correlated with the response. Furthermore, the flexible fabric pressure sensor
is attached to the skin of the elbow joint. When the elbow was bent, the contact area
between the copper electrodes and the inner MXene-coated fabric increased, resulting in
more conductive paths along the MXene nanosheets. This led to a corresponding increase
in the current (see Figure 5b). For finger bending, the signal can also be quickly recognized
as shown in Figure 5c. In addition to the bending force, the pressure sensor can be used
to detect small pressure fluctuations, such as pulse signals collection, which is significant
in blood pressure and certain cardiac function diagnoses [23]. In Figure 5d, the radial
pulse of the wrist was a reflection of the heart rate, and the unique waveform of each cycle
pulse in a single-cycle pulse magnification consisted of two characteristic peaks, namely P1
(systolic wave) and P2 (diastolic wave) peaks. The repeated discernable peaks reflect the
high sensitivity and fast response rate of the sensor.
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in the current (see Figure 5b). For finger bending, the signal can also be quickly recognized 

as shown in Figure 5c. In addition to the bending force, the pressure sensor can be used 

to detect small pressure fluctuations, such as pulse signals collection, which is significant 

in blood pressure and certain cardiac function diagnoses [23]. In Figure 5d, the radial 

pulse of the wrist was a reflection of the heart rate, and the unique waveform of each cycle 

pulse in a single-cycle pulse magnification consisted of two characteristic peaks, namely 

P1 (systolic wave) and P2 (diastolic wave) peaks. The repeated discernable peaks reflect 

the high sensitivity and fast response rate of the sensor. 

 

Figure 5. Current response curve (a) when pure device is bent, (b) when elbow joint is bent, (c) when
finger is bent, (d) of pulse vibration. (e) pulse amplification curve of a single period, and (f) vocal
cord vibration curve.

The flexible pressure sensor can also be used to detect acoustic vibrations due to its
high sensitivity. To demonstrate this capability, the sensors were attached to membranes
and placed close to the vocal cords. Figure 5f shows that the textile sensors attached to
the neck skin could non-invasively monitor the pressure differences in muscle movements
during speech. When we said different words such as “Press” and “Fiber”, the device
showed high sensitivity and distinct current curves. Therefore, strain sensors demonstrate
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great potential in the field of health monitoring and human–computer interaction. It should
be noted that the strain sensor deformation degree in the process of motion monitoring and
physiological signal detection is more reasonable than that in the process of standard strain
sensing performance measurement.

4. Conclusions

In conclusion, a unique flexible pressure sensor based on PET/ZnO@MXene was
prepared through hydrothermal and impregnation methods. The XRD, SEM, and XPS char-
acterizations confirm that ZnO nanorod arrays are assembled uniformly with high density
on the surface of the PET fiber, while the MXene nanosheets are coated or interspersed
on the surface of the ZnO nanorod to regulate the electron transport characteristics. Due
to the excellent piezoelectric properties of ZnO and electron transport characteristics of
MXene, the flexible pressure sensor based on the composite fabric achieves high sensitivity
(53.22 kPa−1), fast response recovery time (<150 ms), and excellent bending stability (over
30 cycles under the strain of 5%). The sensor is further used as a part of human skin or
clothing to detect various external pressures, human activities, and even real-time pulse
wave monitoring. Based on the characteristics of low-cost manufacturing, high perfor-
mance, flexibility, and human friendliness, this work proposes a stretchable pressure sensor
with great promising potential in smart textiles or wearable electronics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23010091/s1, Figure S1: A physical image of the preparation process
and sensing test. (a) PET, (b) small pieces of PET, (c) PET/ZnO, (d) MXene solution (the enlarged
illustration is PET/ZnO@MXene), (e) fabrication of flexible pressure sensor, (f) the sample placed on
a flexible test platform; Figures S2–S4: SEM images of PET fibers, PET/ZnO, PET/ZnO@MXene in
different multiples. (b) is the enlarged view of the red box in (a), (c) is the enlarged view of the red
box in (b), and (d) is the enlarged view of the red box in (c). Table S1: Comparison of different flexible
sensing parameters between our sensor and some previously reported works. Refs. [39–42] are cited
in supplementary materials.
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