A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element
Abstract
:1. Introduction
2. Methodology
2.1. Sensing Principle
2.2. Data Acquisition
2.3. CNN Model
3. Results and Discussion
3.1. Specklegram Correlation
3.2. Improving Robustness to Environmental Changes
3.3. Comparing Results for Different MMFs
3.4. Sacrificing Resolution for Increased Robustness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Güemes, A.; Fernández-López, A.; Soller, B. Optical Fiber Distributed Sensing—Physical Principles and Applications. Struct. Health Monit. 2010, 9, 233–245. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagic, D. Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index. Opt. Lett. 2014, 39, 6221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Alla, D.; Huang, J. High-temperature stable FBGs fabricated by a point-by-point femtosecond laser inscription for multi-parameter sensing. OSA Contin. 2021, 4, 355. [Google Scholar] [CrossRef]
- Ghadimi, M.; Bridge, E.M.; Scarabel, J.; Connel, S.; Shimizu, K.; Streed, E.; Lobino, M. Multichannel optomechanical switch and locking system for wavemeters. Appl. Opt. 2020, 59, 5136. [Google Scholar] [CrossRef]
- White, J.D.; Scholten, R.E. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor. Rev. Sci. Instrum. 2012, 83, 113104. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Xu, B.; Mao, B.; Qiu, Y.; Meng, Y. High-resolution wavemeter based on polarization modulation of fiber speckles. APL Photonics 2020, 5, 126101. [Google Scholar] [CrossRef]
- Duarte, F.J. Prism-grating system for laser wavelength measurements. J. Phys. E 1983, 16, 599–601. [Google Scholar] [CrossRef]
- Wei, C.; Yan, S.; Zhang, T. Compact diffraction grating laser wavemeter for cold atom experiments. Optoelectron. Lett. 2017, 13, 335–338. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, S. Heterodyne wavelength meter for continuous-wave lasers. Appl. Opt. 2007, 46, 5631. [Google Scholar] [CrossRef]
- Hussein, H.; Sobee, M.A.; Amer, M. Calibration of a Michelson-type laser wavemeter and evaluation of its accuracy. Opt. Lasers Eng. 2010, 48, 393–397. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, S.; Li, W.; Zhu, N.; Li, M. Ultra-Fast Wavemeter for CW Laser Based on Wavelength-to-Time Mapping. J. Light. Technol. 2019, 37, 2661–2667. [Google Scholar] [CrossRef]
- Fischer, A.; Kullmer, R.; Demtröder, W. Computer controlled Fabry-Perot wavemeter. Opt. Commun. 1981, 39, 277–282. [Google Scholar] [CrossRef]
- Goad, J.H., Jr. Construction and Performance of a Fabry-Perot Inteferometer Based Airborne Autonomous Wavemeter for Laser Tuning; SPIE: Bellingham, WA, USA, 1990; p. 360. [Google Scholar] [CrossRef]
- Redding, B.; Alam, M.; Seifert, M.; Cao, H. High-resolution and broadband all-fiber spectrometers. Optica 2014, 1, 175. [Google Scholar] [CrossRef]
- Cao, H. Perspective on speckle spectrometers. J. Opt. 2017, 19, 060402. [Google Scholar] [CrossRef]
- Han, N.; West, G.N.; Atabaki, A.H.; Burghoff, D.; Ram, R.J. Compact and high-precision wavemeters using the Talbot effect and signal processing. Opt. Lett. 2019, 44, 4187. [Google Scholar] [CrossRef] [PubMed]
- Winzer, P.J. Scaling Optical Fiber Networks: Challenges and Solutions. Opt. Photonics News 2015, 26, 28. [Google Scholar] [CrossRef]
- Roman, M.; Zhu, C.; O’Malley, R.J.; Gerald, R.E.; Huang, J. Distributed Fiber-Optic Sensing with Low Bending Loss Based on Thin-Core Fiber. IEEE Sens. J. 2021, 21, 7672–7680. [Google Scholar] [CrossRef]
- Redding, B.; Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 2012, 37, 3384. [Google Scholar] [CrossRef]
- Redding, B.; Popoff, S.M.; Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 2013, 21, 6584. [Google Scholar] [CrossRef]
- Redding, B.; Popoff, S.M.; Bromberg, Y.; Choma, M.A.; Cao, H. Noise analysis of spectrometers based on speckle pattern reconstruction. Appl. Opt. 2014, 53, 410. [Google Scholar] [CrossRef]
- Liew, S.F.; Redding, B.; Choma, M.A.; Tagare, H.D.; Cao, H. Broadband multimode fiber spectrometer. Opt. Lett. 2016, 41, 2029. [Google Scholar] [CrossRef] [PubMed]
- Bruce, G.D.; O’Donnell, L.; Chen, M.; Dholakia, K. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Opt. Lett. 2019, 44, 1367. [Google Scholar] [CrossRef]
- Bruce, G.D.; O’Donnell, L.; Chen, M.; Facchin, M.; Dholakia, K. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter. Opt. Lett. 2020, 45, 1926. [Google Scholar] [CrossRef] [PubMed]
- Metzger, N.K.; Spesyvtsev, R.; Bruce, G.D.; Miller, B.; Maker, G.T.; Malcolm, G.; Mazilu, M.; Dholakia, K. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nat. Commun. 2017, 8, 15610. [Google Scholar] [CrossRef] [PubMed]
- Mazilu, M.; Vettenburg, T.; Di Falco, A.; Dholakia, K. Random super-prism wavelength meter. Opt. Lett. 2014, 39, 96. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Fan, X.; He, Z. Review on Speckle-Based Spectrum Analyzer. Photonic Sens. 2021, 11, 187–202. [Google Scholar] [CrossRef]
- Fujiwara, E.; da Silva, L.E.; Cabral, T.D.; de Freitas, H.E.; Wu, Y.T.; de Barros Cordeiro, C.M. Optical Fiber Specklegram Chemical Sensor Based on a Concatenated Multimode Fiber Structure. J. Light. Technol. 2019, 37, 5041–5047. [Google Scholar] [CrossRef]
- Fujiwara, E.; Wu, Y.T.; Santos, M.F.M.; Schenkel, E.A.; Suzuki, C.K. Identification of hand postures by force myography using an optical fiber specklegram sensor. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September 2015; p. 96343Z. [Google Scholar] [CrossRef]
- Efendioglu, H.S. A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distribution Sensing. IEEE Sens. J. 2017, 17, 2055–2064. [Google Scholar] [CrossRef]
- Wang, J.-J.; Yan, S.-C.; Ruan, Y.-P.; Xu, F.; Lu, Y.-Q. Fiber-Optic Point-Based Sensor Using Specklegram Measurement. Sensors 2017, 17, 2429. [Google Scholar] [CrossRef]
- Cabral, T.D.; Fujiwara, E.; Warren-Smith, S.C.; Ebendorff-Heidepriem, H.; Cordeiro, C.M.B. Multimode exposed core fiber specklegram sensor. Opt. Lett. 2020, 45, 3212. [Google Scholar] [CrossRef]
- Fujiwara, E.; Ri, Y.; Wu, Y.T.; Fujimoto, H.; Suzuki, C.K. Evaluation of image matching techniques for optical fiber specklegram sensor analysis. Appl. Opt. 2018, 57, 9845. [Google Scholar] [CrossRef] [PubMed]
- Plöschner, M.; Tyc, T.; Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 2015, 9, 529–535. [Google Scholar] [CrossRef]
- Sun, K.; Ding, Z.; Zhang, Z. Fiber directional position sensor based on multimode interference imaging and machine learning. Appl. Opt. 2020, 59, 5745. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Zhang, Z.; Li, J.; Gao, H.; Zhang, F.; Chen, X. Machine Learning-Based Multifunctional Optical Spectrum Analysis Technique. IEEE Access 2019, 7, 19726–19737. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, Q.; Han, T.; O’Malley, R.; Kumar, A.; Gerald, R.E., II; Huang, J. Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning. J. Neurosci. Methods 2021, 351, 109073. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.S.; Guevarra, D.; Newhouse, P.F.; Soedarmadji, E.; Gregoire, J.M. Machine learning of optical properties of materials—Predicting spectra from images and images from spectra. Chem. Sci. 2019, 10, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Pitkäaho, T.; Manninen, A.; Naughton, T.J. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Appl. Opt. 2019, 58, A202. [Google Scholar] [CrossRef]
- Borhani, N.; Kakkava, E.; Moser, C.; Psaltis, D. Learning to see through multimode fibers. Optica 2018, 5, 960. [Google Scholar] [CrossRef]
- Li, S.; Sun, L. Detectability of Bridge-Structural Damage Based on Fiber-Optic Sensing through Deep-Convolutional Neural Networks. J. Bridg. Eng. 2020, 25, 04020012. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Pontes, M.J. Optical Fiber Specklegram Sensors for Mechanical Measurements: A Review. IEEE Sens. J. 2020, 20, 569–576. [Google Scholar] [CrossRef]
- Haykin, S. Neural networks expand SP’s horizons. IEEE Signal Process. Mag. 1996, 13, 24–49. [Google Scholar] [CrossRef]
- Wu, S.; Yin, S.; Yu, F.T.S. Sensing with fiber specklegrams. Appl. Opt. 1991, 30, 4468. [Google Scholar] [CrossRef] [PubMed]
- Varyshchuk, V.; Bobitski, Y. Correlation Processing of Speckle Pattern in Multimode Polymer Optical Fiber for Deformation Monitoring in Nanometer Range. In Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 329–338. [Google Scholar]
Layers | Type | Kernel/Pool Sizes | Activation Function |
---|---|---|---|
1 | Convolution2D_1 Maxpooling2D_1 | Kernel size = 3 × 3 Pool size = 2 × 2 | ReLU - |
2 | Convolution2D_2 Maxpooling2D_2 | Kernel size = 3 × 3 Pool size = 2 × 2 | ReLU - |
3 | Flatten | - | - |
4 | Dense_1 | - | ReLU |
5 | Dense_2(with Dropout) | - | |
6 | Dense_3 | Softmax |
Step Size | Model | Number of Images | Accuracy (%) | ||
---|---|---|---|---|---|
Train | Test | Train | Test | ||
1 pm | CNN_Model | 8000 | 1000 | 100 | 100 |
1 pm | VGG16 | 8000 | 1000 | 96.1 | 74.5 |
1 pm | RESNET50 | 8000 | 1000 | 91.2 | 67.4 |
MMF Type | Length of the MMF (in m) | Core Diameter of MMF (in µm) | Numerical Aperture (NA) | Classification Accuracy (%) |
---|---|---|---|---|
Step-index | 16 | 400 | 0.22 | 100 |
Step-index | 0.1 | 105 | 0.22 | 100 |
Step-index | 0.1 | 105 | 0.11 | 81.77 |
Graded-index | 0.1 | 62.5 | 0.2 | 98.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inalegwu, O.C.; II, R.E.G.; Huang, J. A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element. Sensors 2023, 23, 4574. https://doi.org/10.3390/s23104574
Inalegwu OC, II REG, Huang J. A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element. Sensors. 2023; 23(10):4574. https://doi.org/10.3390/s23104574
Chicago/Turabian StyleInalegwu, Ogbole C., Rex E. Gerald II, and Jie Huang. 2023. "A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element" Sensors 23, no. 10: 4574. https://doi.org/10.3390/s23104574
APA StyleInalegwu, O. C., II, R. E. G., & Huang, J. (2023). A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element. Sensors, 23(10), 4574. https://doi.org/10.3390/s23104574