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Abstract: The use of fitness apps to track physical exercise has been proven to promote weight loss
and increase physical activity. The most popular forms of exercise are cardiovascular training and
resistance training. The overwhelming majority of cardio tracking apps automatically track and
analyse outdoor activity with relative ease. In contrast, nearly all commercially available resistance
tracking apps only record trivial data, such as the exercise weight and repetition number via manual
user input, a level of functionality not far from that of a pen and paper. This paper presents LEAN,
a resistance training app and exercise analysis (EA) system for both the iPhone and Apple Watch.
The app provides form analysis using machine learning, automatic repetition counting in real time,
and other important but seldom studied exercise metrics, such as range of motion on a per-repetition
level and average repetition time. All features are implemented using lightweight inference methods
that enable real-time feedback on resource-constrained devices. The performance evaluation includes
a user survey and benchmarking of all data science features using both ground-truth data from
complementary modalities and comparisons with commercial apps.

Keywords: wearable computing; mobile sensing; exercise form classification; repetition counting

1. Introduction

With at least 2.8 million people dying each year as a result of being overweight or
obese [1], fitness apps are becoming increasingly important to encourage regular physical
exercise [2] and monitor physiotherapy [3]. One study found that the use of smartphone
fitness apps was associated with both increases in physical activity and significant reduc-
tions in body weight and body mass index [4]. Many outdoor cardio activities can be
tracked with relative ease using a device with an embedded global navigation satellite
system (GNSS) receiver [5,6]. However, creating an app that automatically tracks resistance
training is much more difficult. One factor that makes this so challenging is the large
number of commonly practised resistance training exercises. Moreover, most of these
exercises are typically performed indoors with little variation in position, meaning that
GNSS information is largely useless. As a consequence, the majority of current resistance
exercise tracking apps are not nearly as enticing in terms of ease of use, automatability,
and simplicity as the corresponding cardio tracking apps. Most require tedious interaction
during a workout, such as manually entering the number of repetitions completed.

One overlooked feature that would be of great benefit in resistance exercise tracking
apps is form analysis. Automatic form analysis would, for example, greatly reduce the
risk of injuries. Research on CrossFit training has found that anywhere between 19.4% [7]
and 73.5% [8] of people who regularly participate in CrossFit training have sustained an
injury during training sessions. Moreover, Gray et al., in 2015, indicated that 36.2% of
injuries in the gym are caused by “overexertion/strenuous/unnatural movement” [9].
In addition to reducing the risk of injuries, good form will also result in greater muscle gain
over time [10]. Moreover, automatic form analysis could also help beginners overcome
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so-called gymtimidation, that is, anxiety about making mistakes in the gym [11]. One way
to learn and practice proper exercise form is to hire a personal trainer. However, on top
of a gym membership, the cost of a personal trainer is too expensive for many. Another
alternative is to watch online video tutorials. The drawback here, however, is that there
is no feedback mechanism. It is not always possible to evaluate your own form in certain
exercises, and users may think that they are performing an exercise correctly even though
they are not. LifeSmart claims to be the first wearable to provide exercise form feedback
using unsupervised learning methods [12]. The form analysis system assumes that the
first few repetitions of a set are completed with good form. Subsequent repetitions in the
same set are evaluated against that reference to assess whether the user is maintaining
good form throughout the set. Since our exercise system is designed to also be useful for
beginners, the assumption that the first few repetitions are performed with good form
cannot be made, and therefore, an unsupervised learning approach would not be suitable.
A more common approach for form analysis is with the use of supervised learning models.
W8-Scope proposes a resistance training monitoring system using a 3-axis accelerometer
and 3-axis magnetometer mounted on top of the weight stack of a cable machine [13].
The main drawbacks of this approach are the increased cost and inconvenience related
to using pre-installed sensors. More generally, there is a need for form analysis systems
that do not require multiple sensors mounted on the body [14,15]. The form analysis
presented in this paper can be implemented using only measurements from off-the-shelf
smartwatches, thereby both obviating the need for pre-installed sensor infrastructure and
making it possible to analyse any exercise involving sufficient wrist movement.

Repetition counting takes advantage of the repeating motion patterns seen during
an exercise set with multiple repetitions (see Figure 1). A change in the repetition phase
(eccentric and concentric) of the exercise is represented by peaks and troughs in the inertial
signal of interest [16,17]. Most studies on repetition counting start with a pre-processing
step to smooth and remove the noise typically found in inertial data. This is commonly
achieved using some form of a low-pass filter [18]. Next, dimension reduction is applied to
the three-axis inertial data. A naive solution is to simply hard code the major dimension
for each exercise [19]. However, a better approach is to dynamically select the dimension
with the highest variance [20]. This dimension is most likely the predominant exercise
direction and will produce the most accurate results when counting peaks or troughs. Since
the repetition count can be calculated using either the peaks or troughs of inertial data,
many proposed solutions simply select either peaks or troughs for counting all exercises.
MiLift [21], which achieves an average error of 1.12 reps (out of an average of 9.65), utilizes
dynamic decision-making based on the spikiness of the peaks and troughs by calculating
the vertical displacement over a small time window. A novel, alternative approach to
repetition counting uses a convolutional neural network to identify if a window of motion
data contains the start of a repetition [22]. As this is a binary classification, motion window
sizes are varied across different exercises to ensure that a motion window cannot contain
more than one start of a repetition. One drawback of this approach, however, is that
individual neural networks must be trained separately for each type of exercise. Moreover,
many methods for repetition counting compute the number of repetitions after the exercise
set, or entire workout, has been completed [19,21–23]. In this study, we instead present a
repetition-counting algorithm specifically designed to enable real-time feedback on devices
with limited memory resources, such as smartwatches.

In summary, despite the large number of available resistance training apps, they
typically (i) only provide a very limited number of EA features; (ii) do not allow for
real-time feedback; and (iii) sometimes utilize computationally complex and privacy-
invasive sensors, such as cameras. This paper presents the resistance training app LEAN
(Lightweight Exercise tracker for Athletes and Novices) that contains a large range of EA
features and real-time feedback, all based on convenient measurements from a smartwatch.
The app is available for the iPhone with a companion app for the Apple Watch. In addition
to form analysis, LEAN also provides automatic repetition counting and exercise metrics
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such as the range of motion on a per-repetition level. The relationship between these EA
features is illustrated in Figure 2. While it is possible to design EA systems using multiple
IMU sensors, this presents a barrier to entry both economically and in terms of usability [24].
Given that this paper focuses on designing an EA for a broad set of users, convenience
and ease of use are important factors. For this reason, this paper will collect measurements
from a single IMU embedded in an Apple Watch remaining on the wrist of the user.

Figure 1. Illustration of the three resistance training exercises considered in this paper with motion
graphs of 10 s of acceleration (m/s2) and rotation rate (rad/s) in the middle and bottom rows,
respectively. The x, y, and z dimensions are displayed as blue, orange and green, respectively.

Figure 2. Process diagram illustrating the relationship between the implemented EA features.
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Contributions

The main contributions of this paper are:

• Form classification that does not assume that the first few repetitions during an
exercise set are of good form, does not place the inertial sensors on the weight stack,
and does not require multiple sensors mounted on the body.

• Integration of the form analysis classification model and the repetition-counting
algorithm to improve the computational efficiency of the system.

• An incremental repetition-counting algorithm that uses dynamically sized buffers to
count repetitions in real time and that does not have to store long time periods of
motion data in memory.

• A description of how to compute fine-grained exercise metrics. This includes the ratio
of the time spent on concentric (shortening the muscle) and eccentric (lengthening the
muscle) motions and the range of motion.

All in all, we present an EA system that is efficient enough to be used in a smartwatch
for extended periods of time while automatically tracking resistance training metrics at a
level of detail similar to existing cardio tracking apps.

Section 2 describes the EA algorithms, Section 3 describes the front-end app design,
Section 4 presents the performance evaluation, and Section 5 concludes the paper.

2. Exercise Analysis

In this section, we describe the inference algorithms for exercise classification, form clas-
sification, repetition counting, estimating timing statistics, and estimating range of motion.

2.1. Exercise and Form Classification

The exercise and form classifiers need to be able to run over an extended period of time
with modest energy requirements, while at the same time making minimal assumptions
on the experience or characteristics of the user. To satisfy these requirements, we decided
to utilize supervised, lightweight machine learning algorithms. In particular, we used a
gradient-boosted classifier, which, similarly to a random forest classifier, combines multiple
decision trees to build a more accurate model.

To analyse a user’s form, independent machine learning models were created for each
exercise. The chosen exercises were bicep curls, lateral raises, and shoulder presses. All
models included a “Good” and “Other” label. “Good” indicates the user is exercising
with good form, and “Other” indicates the user is not currently exercising. Thereby, each
model can be used to indicate both when the user is currently exercising and the state
of their current form. One challenge with the “Other” label is that the motion of a user
in between exercise sets is random and diverse. The user could be sitting still, walking
around, or racking their weights. To overcome this problem, the training data for the
classification of “Other” is a mixture of all these actions. Additional labels classify the user
as exercising with a certain type of poor form, such as performing the exercise with bad
range or performing the exercise too fast. The data captured during training includes the
rotation rate, acceleration, quaternion, and gravity (all part of watchOS).

All recorded data were annotated with the exercise performed in that particular
recording. The classification was based on 4 s time windows with 50% overlap. This
window length is long enough to capture the motion of at least one repetition but short
enough to enable the detection of a change in form or exercise relatively quickly. A 50%
overlap further improves the responsiveness of the model by enabling form analysis every
two seconds rather than every four. The next step was to extract features from these
windows. For the bicep curls and the lateral raises, the exercise and variations of form
could be identified by visually inspecting motion data, enabling us to extract a minimal
number of manually selected features, as outlined in Table 1. Each feature was responsible
for signalling a specific classification or motion characteristic of the exercise. For instance,
during a bicep curl, the rotation rates in the Y and Z dimensions almost always intersect at
Y = 0, as shown in Figure 1. This occurrence was represented using a binary feature by
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summing the number of rotation rate Y, Z pairs, where one value is positive and the other
is negative. If this sum exceeds 87.5% of the total number of rotation rate Y, Z pairs in a
window, the feature is set to “1”, signalling that a bicep curl is occurring. Figure 3 shows
the average feature values for each bicep curl form label.

Table 1. Exercise features.

Exercise Feature Axis Used to Identify

Bicep curl
Maximum acceleration X The speed of the repetition.
Gravity height X The range of the repetition.
Rotation symmetry Y, Z If a bicep curl is occurring.

Lateral raise

Maximum rotation Y The speed of the repetition.
Gravity height X The range of the repetition.

Minimum roll N/A Whether the wrist had been by the
user’s side.

Roll height N/A The range of the repetition.
Gravity/Roll turning points X, Z A smooth and repetitive rotation pattern.

Figure 3. The average training and testing values of features extracted for the bicep curl.

Additional manually extracted features included the following: the maximum accel-
eration of a specific axis to indicate an exercise is being performed too fast; the difference
between the maximum and minimum gravity value of a specific axis to indicate an exercise
is being performed with bad range; and the total number of turning points of a gravity or
attitude axis to indicate an exercise is being performed at all [25]. Usually, a lower number
of turning points are found when the user is currently exercising. By fixating the axes
from which we extract features, we assume that the Apple Watch always has the same
orientation with respect to the wrist. To relax this assumption, the app allows the Apple
Watch to be worn in two different orientations and on either of the user’s wrists. This
is made possible by two settings within watchOS’s user settings: one setting to indicate
which wrist the Apple Watch is worn on and one setting to set the orientation of the watch.



Sensors 2023, 23, 4602 6 of 18

These settings automatically adjust the display orientation and adjust the inertial axes to
accommodate all common orientations.

Classification using a small number of manually extracted features worked very well
for exercises that include a rotation of the wrist. However, for the shoulder press, the motion
of the wrist is primarily a translation in the vertical direction. In other words, the rotation
rate is mostly noise and gives no indication of the current activity of the user, which makes
the form classification much more challenging. Therefore, the feature extraction approach
taken for the shoulder press was to extract as many features as possible from the acceleration
data in both the time domain and frequency domain. Taking inspiration from a time series
feature extraction library [26], we calculated the following statistical features for each axis:
acceleration, mean, standard deviation, average absolute difference, minimum, maximum,
minimum–maximum difference, median, median absolute deviation, interquartile range,
number of values above the mean, number of local maxima, skewness, kurtosis, energy,
average resultant acceleration, and signal magnitude area. Additionally, we converted
the acceleration data from the time domain to the frequency domain via a fast Fourier
transform and calculated the same statistical features, totalling 94 features altogether. To
reduce the number of features to be computed, we attempted to use univariate feature
selection. This revealed that the feature “skewness” had the least influence on the model’s
classification. However, removing this feature resulted in a clear reduction of the model’s
F1-score, so all 94 original features were kept. In the ‘Just Workout” mode, the app first
uses exercise classification to identify the exercise being performed and then start counting
repetitions and analyze the form of that particular exercise. The exercise classification in
this mode used the same features as the form classification.

Given the large number of features, a test was conducted to identify how the efficiency
of the Apple Watch app compares to the official Apple Workout app. To create a worst-case
scenario in terms of efficiency, a modified version of LEAN was created. In this modified
version, the shoulder press form analysis model (94 features extracted every 2 s) runs for
the entire workout session. With this implementation, three workout sessions of 70 min
caused the battery to drop an average of 10%. We then ran three “Traditional Strength
Training” 70-minute workouts in the Apple Workout app on the same Apple Watch. This
caused an average drop in battery of 11% on the same Apple Watch. All workouts started
from a battery life of 60% in a controlled temperature environment. Therefore, we can
conclude that LEAN is at least equally efficient as the official Apple workout app for the
Apple Watch, despite being tested in a worst-case scenario.

2.2. Repetition Counting

The repetition-counting algorithm counts the user’s repetitions during an exercise set
and stores the start, middle (when the motion has only been performed in one direction)
and end timestamps for each repetition. These timestamps are used to calculate exercise
metrics, such as the average repetition time and the ratio of time spent in the concentric
and eccentric phases of each repetition. The algorithm only runs when the exercise form
classification model detects that the user is currently exercising. This helps to reduce the
risk of false-positive repetitions that many other papers have to locate and remove via
various heuristic methods [23]. The algorithm is detailed in Algorithm 1 and Figure 4 and is
also illustrated in Figure 5. The two inputs of the algorithm are the gravity buffer and an
array of the current indices of turning points, for which it has not yet been determined
whether they are part of a repetition or not. In the algorithm, a turning point is defined as
being a data point where the two consecutive values before and after the data point are
both either larger or smaller than the value of the data point itself. In accordance with [21],
the signal used to count repetitions is the gravity acceleration vector provided by the Apple
Watch. Further, the algorithm is applied to the axis with the largest variance, as this is likely
the dominant motion direction during the exercise and will produce the most accurate
repetition count.
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2.3. Other Exercise Metrics

The calculation of exercise metrics relies upon data output by the repetition-counting
algorithm. For example, the total exercise set time can be calculated as the difference in
time between the start of the first repetition and the end of the last repetition. Moreover, it is
also straightforward to compute other exercise metrics, such as the average repetition time
and average time spent in concentric and eccentric motion. This extends prior studies that
have primarily focused on metrics such as the length and timing of repetitions and energy
expended by the arm during an exercise [27–29]. The range of motion is defined as the
angle through which the Apple Watch is rotated on the most dominant axis during either
the concentric or eccentric phase of a repetition. Research has shown that using a full range
of motion rather than a partial range of motion helps to maximise muscle strength [30].
This metric is only calculated for the bicep curl and lateral raise, both of which exhibit
meaningful rotation, unlike the shoulder press. To compute this metric, we first store the
roll angles measured during a repetition in an array. The sum of the differences between
each consecutive local turning point within this array is equal to the total angle rotated
during the repetition. This value is then halved since a repetition consists of the same
motion repeated twice, in opposite directions. Due to the consistent orientation of the
Apple Watch on the wrist, we can safely assume that roll will be the correct attitude axis
to measure the range of motion with. However, other exercises may require combining
multiple Euler angles due to the varied orientation of the wrist itself during the exercise.

Algorithm 1 Repetition counting algorithm

Input: B = Gravity buffer array; TP = Turning points array
Output: C = Repetition count

Initialisation:
1: C ← 0

LOOP Process
2: for i← 0 to B.length do
3: if (isTurningPoint(B[i])) then
4: TP.append(B[i])
5: end if
6: if (TP.length == 3) then
7: height1← abs(TP[0]− TP[1])
8: height2← abs(TP[1]− TP[2])
9: repHeight← height1 + height2

10: threshold← (Max(B)− (Min(B))/2
11: if (repHeight > threshold) then
12: C ← C + 1
13: TP← TP.removeFirst(2)
14: else
15: TP← TP.removeFirst(1)
16: end if
17: end if
18: end for
19: if (TP.length > 0) then
20: B← B.removeFirst(TP[0])
21: else
22: B← B.removeAll()
23: end if
24: return C
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Figure 4. Program flow chart for the repetition-counting algorithm.

Figure 5. A gravity plot of before and during a set of bicep curls with repetition-counting algorithm
buffers and turning points indicated.

3. App Design

In this section, we describe the design of the apps that incorporate the exercise features
presented in Section 2. The final result is a resistance training iPhone app with an optional
Apple Watch app. Workouts (i.e., predefined sequences of exercises) created on the iPhone
automatically sync to the user’s Apple Watch. The apps contain 20 popular resistance
exercises by default, with the possibility for users to add new exercises. The apps support
both traditional repetition exercises, where the exercise is completed by repeating a specific
motion, and isometric exercises, where a specific body position is held for a period of
time. Three of the included exercises (bicep curl, lateral raise, and shoulder press) have EA
features enabled. During an exercise set with an EA-enabled exercise, the Apple Watch will
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vibrate when the user completes the penultimate repetition, signalling that they have one
repetition remaining. For these exercises, the user can also view detailed statistics on their
performance over each set. These include the average repetition time, the average range
of motion, the percentage of time exercising, and the average time spent in eccentric and
concentric motion expressed as a percentage of the full repetition.

3.1. iPhone App Front-End

Generally, the iPhone user interface is kept as simple as possible. The iPhone app is
divided into three main views, navigated by a tab bar at the bottom of the display. The first
tab, named “Workouts”, displays a list of all workouts created by the user, as shown in
Figure 6a. From this page, the user can perform three main actions: they can sort, filter,
and search for workouts in the workout list; press on a workout in the list to view more
details; or press on the plus button to create a new workout. The user interface uses images
to represent different exercises, and each workout is presented as a preview of the exercises
contained within it. Similarly, images are also used to indicate what equipment is required
for each exercise. When pressing on a workout from the list, a page containing more details
about the workout is displayed, as shown in Figure 6b. From here, the user can either start,
edit, or delete the workout. Below the “Start” button is the list of exercises included in the
workout, including the weight and repetition target for each set. Each exercise within the
workout has a “sets” option. This allows the user to create a workout with consecutive
exercise sets with different weight and repetition targets more easily.

(a) (b) (c) (d)

Figure 6. Wireframes of the iPhone interface: (a) workout list page, (b) workout detail page, (c) work-
ing out page, and (d) exercise detail page.

Figure 6c shows the page displayed during a workout. The top of the page indi-
cates progress through the workout, expressed as a percentage, estimated time remaining,
a progress bar, and indicators of the current exercise and set. The most important infor-
mation is displayed in the centre of the display, detailing the current exercise along with
the weight, target repetition count and the equipment required. Additionally, images of
the previous and next exercises are displayed with reduced opacity on either side of the
current exercise image. The workout controls are situated at the bottom of the display
for easier reachability on a mobile device. The “Exit” button allows the user to exit the
workout early before completing all exercises, and the “play/pause” button allows them
to stop and start the workout timer. Lastly, the arrow buttons allow them to move to the
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next or previous exercise set. Moving to the previous exercise was included for two main
reasons. First, the user may accidentally double-tap the next exercise button and need to go
back. Secondly, it may not always be possible to complete a workout in the intended order
when a gym is busy with a large proportion of equipment or machines already occupied.
This functionally allows the user to skip an exercise and come back to it later on when the
equipment or machine becomes available.

The second tab, named “Exercises”, has a similar layout and functionality as the
“Workouts” tab. In particular, the tab allows the user to sort, filter, and search the list of
exercises; press on an exercise in the list to view more details; or press the plus button to
add a new exercise. The “Exercise Details” page, shown in Figure 6d, displays information
such as which muscles the exercise utilises, along with a button that takes you to a YouTube
tutorial of the correct form for that particular exercise. The last tab, named “Profile”,
contains a list of completed workouts, user statistics, and a settings page. The list of
completed workouts includes workouts completed on both the iPhone and the Apple
Watch, enabling the user to gain more detailed insight into the EA features measured by
the Apple Watch on a larger display.

3.2. Apple Watch App Front-End

For a smartwatch, it is even more important to keep the interface as simple as possible,
as it has a much smaller display. The main view will display a simplified version of the
“Workouts” tab on the iPhone. Since the watch’s display is so small, the user will not be able
to create or edit workouts from the Apple Watch. While it would technically be possible to
include this functionality, the interface would have to be overly complex.

The “Working Out” view was split into the three pages shown in Figure 7. The user
can swipe between them during a workout, with Figure 7b being the default. This page
displays the information and controls most important to the user during a workout. For ex-
ercises that have EA features enabled, the text at the bottom of the display will show the
current prediction of form or “Resting” if the user is currently not performing an exercise.
In addition, the repetitions target displayed in the grey rectangle will be expressed as a
fraction of the current number of repetitions completed. Figure 7a will act as a secondary
workout page, displaying secondary information and controls. This includes pausing
and exiting the workout early, as well as the current exercise and set number the user is
performing. Figure 7c is made available by Apple to view and control the audio currently
playing, allowing the user to easily control their music without having to leave the app.

(a) (b) (c)

Figure 7. Wireframes of the Apple Watch “Working Out” interface: (a) secondary workout page,
(b) default page, and (c) audio control.
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4. Performance Evaluation

This section demonstrates the performance and utility of the LEAN app and its
included EA features. The code and the data for building the app and for recreating the
performance tests presented in this section are available at https://github.com/Resistance-
Training-App (accessed on 1 March 2023).

4.1. Data Collection

When recording training data, we ensured that the exercise and form classes were
balanced by recording exactly 20 min of data per exercise form and classification label.
A single user recorded the training data for all exercises and all exercise forms (a larger
number of users was considered in the user survey in Section 4.5) with a lightweight
dumbbell during two-minute recording sessions. This ensured that the motion of the
wrist would be similar to when using a heavier weight whilst being able to comfortably
perform two minutes of the exercise with no change in exercise form. All training data
were recorded at a frequency of 40 Hz. Based on previous studies, this sampling rate allows
for a good trade-off between accuracy and resource usage [31]. During data recording,
the Apple Watch was worn with the digital crown facing towards the hand, on the left
wrist. The three spatial axes in relation to the Apple Watch are shown in Figure 8.

Figure 8. Sensor axes of the Apple Watch Series 5 used for data collection.

4.2. Exercise and Form Classification

The form classification results are presented in Table 2 and Figure 9a–c. Using an 80:20
train–test split, the form analysis models for the bicep curl and lateral raise produce a recall
of 99% to 100%. Furthermore, the app allows the testing of these models using real-time
Apple Watch motion with the prediction and confidence displayed on the iPhone. Use
of this app confirms the high accuracy of these models, with a few anomalies occurring
mostly during the transitions between two activities. The shoulder press form analysis
model had some difficulty in separating between a good shoulder press and a shoulder
press with bad range. As shown in Table 2, the recall was 88% and 92% for a good shoulder
press and a shoulder press with bad range, respectively. This decrease in performance can
be explained by the similarity of the wrist acceleration during these two motions. In most
situations, the shoulder press form classification works well. However, sometimes when
transitioning from a set of good shoulder presses to being stationary, a single classification
of “bad range” could occur in between the classifications of “good” and “other”.

https://github.com/Resistance-Training-App
https://github.com/Resistance-Training-App
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Table 2. Performance of form classification.

Exercise Form Precision Recall F1-Score

Bicep curl

Bad range 1.00 1.00 1.00
Good 1.00 1.00 1.00
Other 1.00 1.00 1.00
Too fast 1.00 1.00 1.00
Avg/Total 1.00 1.00 1.00

Lateral raise

Bad range 0.99 0.99 0.99
Good 1.00 0.99 1.00
Other 0.99 1.00 1.00
Too fast 1.00 1.00 1.00
Avg/Total 1.00 1.00 1.00

Shoulder press

Bad range 0.89 0.92 0.90
Good 0.91 0.88 0.90
Other 1.00 1.00 1.00
Leg momentum 1.00 1.00 1.00
Avg/Total 0.95 0.95 0.95

(a) (b)

(c) (d)

Figure 9. Confusion matrices of form analysis models for (a) the bicep curl, (b) lateral raise,
and (c) shoulder press, and (d) confusion matrix for exercise classification.

In the “Just Workout” mode, we first identify the exercise the user is performing before
switching to the form analysis model of that particular exercise. As shown in Figure 9d,
the recall of all classification labels for this model was 100%. This can be explained by the
fact that the considered exercises are composed of very distinct motions. The accuracy can
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be expected to degrade when including multiple exercises with similar wrist motions, such
as the shoulder press and bench press.

4.3. Repetition Counting

An existing app that is available for both the iPhone and Apple Watch is Gymatic
Workout Tracker (GWT), developed by Vimo Labs. It claims to be the first and only app that
automatically identifies exercises and counts the user’s repetitions. The repetition-counting
algorithm in LEAN, described in Section 2.2, was compared with the repetition counting
feature in GWT. The test was conducted using two Apple Watches side by side on the
same wrist to ensure that both apps receive similar inertial data input. Three exercises
were performed, each with three sets of 8, 10, and 12 repetitions. The results are displayed
in Table 3. In total, LEAN miscounted twice and GWT miscounted three times, with all
incorrect repetition counts missing one repetition. The incorrect repetition counts for our
app only occurred with the shoulder press, the only exercise tested that does not involve
a meaningful rotation of the wrist. As shown in Figure 10, a bicep curl or a lateral raise
repetition can be much more easily identified using gravity compared to a shoulder press,
where oscillations are not as consistent and amplitudes are smaller.

(a) (b)

(c)

Figure 10. A total of 10 s of gravity data demonstrating good form of (a) bicep curls, (b) lateral raises,
and (c) shoulder presses.
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Table 3. Performance of repetition counting. Deviations from the ground are shown in bold.

Exercise Reps Reps (LEAN) Reps (GWT)

Bicep curl
8 8 8
10 10 11
12 12 12

Lateral raise
8 8 9
10 10 10
12 12 12

Shoulder press
8 7 8
10 10 11
12 11 12

4.4. Other Exercise Metrics

To evaluate the accuracy of the exercise metrics, we video recorded one participant
performing 10 repetitions of each exercise while running a workout on the Apple Watch
at the same time. Using the video footage, it was possible to manually calculate precise
estimates of the average repetition time and the eccentric/concentric ratio. The range of
motion was more difficult to accurately estimate using video footage; one example of how
this metric was estimated is demonstrated in Figure 11. In Table 4, these estimated metrics
are compared to the metrics calculated by LEAN. The average repetition times of all three
exercises calculated by the app were all within a tenth of a second of the times estimated
using video footage. Moreover, the ranges of motion of bicep curl and lateral raise were
within 4 degrees of estimations using video footage. With this level of accuracy, the exercise
metrics provide highly valuable and detailed information to users, information which
would have been extremely cumbersome or expensive to collect by other means.

Figure 11. Estimating the range of motion in degrees of a lateral raise using frames from video footage.

Table 4. Performance of exercise metrics.

Exercise
Values Estimated Using Video Footage Values Recorded by LEAN

Average Rep Time (s) Range of Motion (deg) Average Rep Time (s) Range of Motion (deg)

Bicep curl 3.06 155 3.02 158.18
Lateral raise 4.12 107 4.18 108.58
Shoulder press 4.20 N/A 4.27 N/A
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4.5. User Survey

A beta version of the LEAN app was distributed to six volunteers via Apple’s beta
distribution system, “TestFlight”. Out of the six volunteers, four owned an Apple Watch,
with three being able to test the EA features, while the remaining volunteers only tested
the iPhone app. The volunteers were instructed to perform a pre-made workout three
times. The workout consisted of the three EA-enabled exercises: bicep curls, lateral raises,
and shoulder presses, each with ten repetitions. For the first workout, the volunteers were
asked to choose light weights that they could easily complete the workout with, while
for the second workout, they were asked to select weights that would challenge them to
complete each exercise set. The third workout was performed with what each volunteer
would consider as bad form with light weights to reduce the risk of injury.

Table 5 presents the complete results. During the first workout, only one out of nine
form analysis results from the three volunteers was reported as bad form, a lateral raise
detected as having bad range. It is unclear whether this was a misclassification or the
volunteer was indeed performing the exercise with insufficient range. The only repetition
count that was incorrect was an underestimation by one repetition during a shoulder press.
For the second workout, two form analysis results reported bad form, both during lateral
raises. Since volunteers used heavier weights for this workout, it is suspected that these
bad range classifications were accurate, as this is typical for lateral raises with heavier
weights. Three repetition counts were underestimated by one during workout two, one for
lateral raises, and two for shoulder presses. The increased miscounts may be due to the
use of heavier weights, which could cause pauses or slow movements during the exercise.
During workout three, all but one volunteer’s description of how they performed bad form
matched with the result of the form analysis.

Table 5. Performance of form classification and repetition counting with volunteers. Deviations from
the ground are shown in bold.

Exercise

Volunteer 1 Volunteer 2 Volunteer 3

Exercise Performance App Feedback Exercise Performance App Feedback Exercise Performance App Feedback

Form Reps Form Reps Form Reps Form Reps Form Reps Form Reps
Workout 1

Bicep curl Good 10 Good 10 Good 10 Good 10 Good 10 Good 10
Lateral raise Good 10 Good 10 Good 10 Good 10 Good 10 Bad range 10
Shoulder press Good 10 Good 9 Good 10 Good 10 Good 10 Good 10

Workout 2

Bicep curl Good 10 Good 10 Good 10 Good 10 Good 10 Good 10
Lateral raise Good 10 Good 10 Good 10 Bad range 9 Good 10 Bad range 10
Shoulder press Good 10 Good 9 Good 10 Good 10 Good 10 Good 9

Workout 3

Bicep curl Bad range 10 Bad range 10 Too fast 10 Too fast 10 Too fast 10 Too fast 10
Lateral raise Bad range 10 Bad range 10 Bad range 10 Bad range 9 Too fast 10 Too fast 10
Shoulder press Bad range 10 Bad range 9 Bad range 10 Good 10 Bad range 10 Bad range 10

We also conducted a user survey to gather feedback on the volunteers’ experience
with the app. The main results of the survey are summarized in Table 6. Overall, the feed-
back was positive. All respondents agreed or strongly agreed that each app was easy to
understand and navigate. Three out of four respondents either agreed or strongly agreed
that the form analysis was useful, while the remaining respondent neither agreed nor dis-
agreed. Feedback for the repetition counting was slightly more mixed, with one respondent
disagreeing that it was useful. When asked to elaborate, they stated, “I can count reps in
my head fine.” This response may make perfect sense for those who are not interested in
keeping track of their workouts in the long term. However, the primary benefit of automatic
repetition counting is to alleviate the user’s burden of manually logging repetition counts
after each exercise set. In addition to the questions shown in Table 6, we asked participants
whether they would use the app in the future, with possible answers being “Yes”, “Maybe”,
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or “No”. Four out of six respondents answered “Yes”, while the remaining respondents
answered “Maybe”.

Table 6. Results from user survey during acceptance testing.

Strongly Agree Agree Neither Agree Nor Disagree Disagree Strongly Disagree

The iPhone app was easy to understand and navigate. 2 4 0 0 0

The Apple Watch app was easy to understand and navigate. 3 1 0 0 0

The form analysis feature was useful in identifying poor form and
how to correct it. 1 2 1 0 0

The form analysis feature was accurate. 3 1 0 0 0

The repetition counting feature was useful. 1 2 0 1 0

The repetition counting feature was accurate. 0 2 2 0 0

The exercise metrics were useful and/or interesting. 2 2 0 0 0

5. Conclusions

This paper presented LEAN, an easy-to-use workout app for the iPhone and Apple
Watch that provides analysis of resistance training at a level similar to cardio-based workout
tracking apps. The apps were designed with simplicity in mind and deliver a familiar and
native iOS and watchOS experience. In addition, they provide multiple exercise features,
including form classification, repetition counting, and computation of exercise metrics,
such as the average repetition time and the range of motion. One major contribution
is the integration of form classification and repetition counting. This reduces both the
number of false positives in the repetition counting and the computational complexity.
In addition, a repetition-counting algorithm was implemented using an incremental buffer-
based approach. This reduces memory requirements and enables real-time feedback,
for example, smartwatch vibrations during the penultimate repetition to signal that only
one repetition is remaining. The integration of multiple inference algorithms is taken
one step further with the “Just Workout” mode. In this mode, the app first identifies
the type of exercise being performed before starting to count repetitions and switching
to the form analysis model of that particular exercise. During performance evaluations,
the form classification achieved a mean F1-score of 98%, while the repetition-counting
algorithm performed marginally better than existing commercial apps. The estimated
average repetition time and range of motion had errors on the order of 0.05 s and 2
degrees, respectively. During a user survey, it was confirmed that the exercise features
are both highly accurate and useful. One potential extension could be the integration of
automatically generated workouts with repetition and weight targets based on individual
workout history and performance, allowing users to select pre-designed workout plans
based on their fitness goals and preferences. Additionally, the app could be extended to
include social features, such as the ability to connect with friends and share workout data,
compete in challenges, or receive motivational messages from trainers or peers. We would
also look to train the algorithm on a larger dataset with a diverse set of body types and
exercise movements to improve its generalizability. Finally, an interesting direction for
future work could be to investigate the use of the app in a clinical or rehabilitation setting,
where the accurate measurement of resistance training performance is crucial for recovery
and injury prevention. The app could be tailored to specific rehabilitation protocols and
used in conjunction with physical therapy to provide patients with objective feedback on
their progress.
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