Privacy Risk Assessment of Smart Home System Based on a STPA–FMEA Method
Abstract
:1. Introduction
2. Literature Review
2.1. Privacy Risk of Smart Home
2.2. Related Work
3. Research Methodology
4. Risk Identification
4.1. Defining the Scope of the System
4.2. Establishing a Hierarchical Control Structure
- (1)
- User Risk Characteristics
- (2)
- Product Risk Characteristics
- (3)
- Environment Risk Characteristics
4.3. Identification of Risk Factors
4.3.1. Sources of Risk
4.3.2. Identification of Risk Events
4.3.3. Risk Identification Results
5. Risk Assessment
5.1. Quantitative Analysis of Risk
5.1.1. User Factor
5.1.2. Environmental Factors
5.1.3. Risk Assessment Results
5.2. Analysis of Risk Assessment Results
6. Improvement of the System
6.1. Control Measures for Risks
6.2. Evaluation of Risk Control Measures
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDC. Worldwide Quarterly Smart Home Device Tracker. Available online: https://www.idc.com/getdoc.jsp?containerId=IDC_P37480 (accessed on 27 October 2022).
- Ventikos, N.P.; Chmurski, A.; Louzis, K. A systems-based application for autonomous vessels safety: Hazard identification as a function of increasing autonomy levels. Saf. Sci. 2020, 131, 104919. [Google Scholar] [CrossRef]
- Li, W.D.; Yigitcanlar, T.; Erol, I.; Liu, A.R. Motivations, barriers and risks of smart home adoption: From systematic literature review to conceptual framework. Energy Res. Soc. Sci. 2021, 80, 102211. [Google Scholar] [CrossRef]
- Bugeja, J.; Jacobsson, A.; Davidsson, P. PRASH: A Framework for Privacy Risk Analysis of Smart Homes. Sensors 2021, 21, 6399. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Cao, N.; Young, L.; Howard, J.; Logan, W.; Arbuckle, T.; Sponseller, P.; Korssjoen, T.; Meyer, J.; Ford, E. Validating FMEA output against incident learning data: A study in stereotactic body radiation therapy. Med. Phys. 2015, 42, 2777–2785. [Google Scholar] [CrossRef] [PubMed]
- Maisano, D.A.; Franceschini, F.; Antonelli, D. dP-FMEA: An innovative Failure Mode and Effects Analysis for distributed manufacturing processes. Qual. Eng. 2020, 32, 267–285. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Thomas, J. A system safety approach for tomographic treatment. Saf. Sci. 2019, 118, 772–782. [Google Scholar] [CrossRef]
- Leveson, N. A new accident model for engineering safer systems. Saf. Sci. 2004, 42, 237–270. [Google Scholar] [CrossRef]
- Bensaci, C.; Zennir, Y.; Pomorski, D.; Innal, F.; Liu, Y.L.; Tolba, C. STPA and Bowtie risk analysis study for centralized and hierarchical control architectures comparison. Alex. Eng. J. 2020, 59, 3799–3816. [Google Scholar] [CrossRef]
- Shapiro, S.S. Privacy Risk Analysis Based on System Control Structures Adapting System-Theoretic Process Analysis for Privacy Engineering. In Proceedings of the 37th IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 17–24. [Google Scholar]
- Liu, Z.S.; Zhang, A.S.; Wang, W.S. A Framework for an Indoor Safety Management System Based on Digital Twin. Sensors 2020, 20, 5771. [Google Scholar] [CrossRef]
- Kliestik, T.; Poliak, M.; Popescu, G.H. Digital Twin Simulation and Modeling Tools, Computer Vision Algorithms, and Urban Sensing Technologies in Immersive 3D Environments. Geopolit. Hist. Int. Relat. 2022, 14, 9–25. [Google Scholar]
- Rowland, Z.; Cug, J.; Nica, E. The Geopolitics of Smart City Digital Twins: Urban Sensing and Immersive Virtual Technologies, Spatio-Temporal Fusion Algorithms, and Visualization Modeling Tools. Geopolit. Hist. Int. Relat. 2022, 14, 56–71. [Google Scholar]
- Zvarikova, K.; Rowland, Z.; Nica, E. Multisensor Fusion and Dynamic Routing Technologies, Virtual Navigation and Simulation Modeling Tools, and Image Processing Computational and Visual Cognitive Algorithms across Web3-Powered Metaverse Worlds. Anal. Metaphys. 2022, 21, 125–141. [Google Scholar]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Benefits and risks of smart home technologies. Energy Policy 2017, 103, 72–83. [Google Scholar] [CrossRef]
- Ni, J.B.; Zhang, K.; Lin, X.D.; Shen, X.M. Securing Fog Computing for Internet of Things Applications: Challenges and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 601–628. [Google Scholar] [CrossRef]
- Shaw, N.; Sergueeva, K. The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. Int. J. Inform. Manag. 2019, 45, 44–55. [Google Scholar] [CrossRef]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Kirkham, T.; Armstrong, D.; Djemame, K.; Jiang, M. Risk driven Smart Home resource management using cloud services. Future Gener. Comput. Syst.-Int. J. Esci. 2014, 38, 13–22. [Google Scholar] [CrossRef]
- Jacobsson, A.; Boldt, M.; Carlsson, B. A risk analysis of a smart home automation system. Future Gener. Comput. Syst.-Int. J. Esci. 2016, 56, 719–733. [Google Scholar] [CrossRef]
- Nurse, J.R.; Atamli, A.; Martin, A. Towards a usable framework for modelling security and privacy risks in the smart home. In International Conference on Human Aspects of Information Security, Privacy, and Trust; Springer: Berlin/Heidelberg, Germany, 2016; pp. 255–267. [Google Scholar]
- Psychoula, I.; Chen, L.M.; Chen, F. Privacy Modelling and Management for Assisted Living within Smart Homes. In Proceedings of the 19th Annual IEEE International Conference on E-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017. [Google Scholar]
- Krichen, M.; Alroobaea, R. A New Model-based Framework for Testing Security of IoT Systems in Smart Cities using Attack Trees and Price Timed Automata. In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), Heraklion, Greece, SCITEPRESS—Science and Technology Publications, Heraklion, Crete, Greece, 4–5 May 2019; pp. 570–577. [Google Scholar]
- Sturgess, J.; Nurse, J.R.C.; Zhao, J. A capability-oriented approach to assessing privacy risk in smart home ecosystems. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT–2018, London, UK, 28–29 March 2018; pp. 1–8. [Google Scholar]
- Park, M.; Oh, H.; Lee, K. Security Risk Measurement for Information Leakage in IoT-Based Smart Homes from a Situational Awareness Perspective. Sensors 2019, 19, 2148. [Google Scholar] [CrossRef]
- Yang, A.M.; Zhang, C.Y.; Chen, Y.J.; Zhuansun, Y.X.; Liu, H.X. Security and Privacy of Smart Home Systems Based on the Internet of Things and Stereo Matching Algorithms. IEEE Internet Things 2020, 7, 2521–2530. [Google Scholar] [CrossRef]
- Heartfield, R.; Loukas, G.; Bezemskij, A.; Panaousis, E. Self-Configurable Cyber-Physical Intrusion Detection for Smart Homes Using Reinforcement Learning. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1720–1735. [Google Scholar] [CrossRef]
- Tan, O.; Gomez-Vilardebo, J.; Gundus, D. Privacy-Cost Trade-Offs in Demand-Side Management with Storage. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1458–1469. [Google Scholar] [CrossRef]
- Miandashti, F.J.; Izadi, M.; Shirehjini, A.A.N.; Shirmohammadi, S. An Empirical Approach to Modeling User-System Interaction Conflicts in Smart Homes. IEEE Trans. Hum.-Mach. Syst. 2020, 50, 573–583. [Google Scholar] [CrossRef]
- Kulik, T.; Dongol, B.; Larsen, P.G.; Macedo, H.D.; Schneider, S.; Tran-Jørgensen, P.W.; Woodcock, J. A Survey of Practical Formal Methods for Security. Form. Asp. Comput. 2022, 34, 1–39. [Google Scholar] [CrossRef]
- Ortiz, J.; Chih, W.H.; Tsai, F.S. Information privacy, consumer alienation, and lurking behavior in social networking sites. Comput. Hum. Behav. 2018, 80, 143–157. [Google Scholar] [CrossRef]
- Wang, E.S.T. Effects of Brand Awareness and Social Norms on User-Perceived Cyber Privacy Risk. Int. J. Electron. Comm. 2019, 23, 272–293. [Google Scholar] [CrossRef]
- Khan, H.U.; Alomari, M.K.; Khan, S.; Nazir, S.; Gill, A.Q.; Al-Maadid, A.A.; Abu-Shawish, Z.K.; Hassan, M.K. Systematic Analysis of Safety and Security Risks in Smart Homes. Cmc.-Comput. Mater. Con. 2021, 68, 1409–1428. [Google Scholar]
- Allison, C.K.; Revell, K.M.; Sears, R.; Stanton, N.A. Systems Theoretic Accident Model and Process (STAMP) safety modelling applied to an aircraft rapid decompression event. Saf. Sci. 2017, 98, 159–166. [Google Scholar] [CrossRef]
- Pereira, D.P.; Hirata, C.; Nadjm-Tehrani, S. A STAMP-based ontology approach to support safety and security analyses. J. Inf. Secur. Appl. 2019, 47, 302–319. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Liu, T.Z. Risk assessment based on a STPA-FMEA method: A case study of a sweeping robot. Risk Anal. 2022, 43, 13927. [Google Scholar] [CrossRef]
- Duezguen, R.; Mayer, P.; Berens, B.; Beckmann, C.; Aldag, L.; Mossano, M.; Volkamer, M.; Strufe, T. How to Increase Smart Home Security and Privacy Risk Perception. In Proceedings of the 20th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom), Shenyang, China, 20–22 October 2021; pp. 997–1004. [Google Scholar]
- Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [Google Scholar] [CrossRef]
Components for Smart Home System | Threats | Failure Modes | Incidents | Symbol |
---|---|---|---|---|
hardware systems | insufficient physical protection mechanism | physical security failures | stealing | A1 |
loss | A2 | |||
cloning | A3 | |||
firmware logic vulnerability | physical security failures | modifying device functions | A4 | |
loss | A5 | |||
control mechanism failures | monitoring user residence | A6 | ||
location tracking | A7 | |||
lack of side letter channel protection | physical security failures | loss | A8 | |
control mechanism failures | monitoring user residence | A9 | ||
location tracking | A10 | |||
radio signal capture | physical security failures | learning user actions | A11 | |
software systems | insufficient authentication | control mechanism failures | changing system configuration | B1 |
modifying device functions | B2 | |||
inadequate accountability | control mechanism failures | inferring user activities | B3 | |
modifying device functions | B4 | |||
entity–application interaction vulnerability, | system technical faults | remotely manipulating terminals | B5 | |
manipulating sensor changing system configuration measurements | B6 | |||
controlling communication | B7 | |||
buffer overflow | system technical faults | remotely manipulating terminals | B8 | |
programming error | system technical faults | remotely manipulating terminals | B9 | |
information leakage | B10 | |||
malware | control mechanism failures | access to classified data | B11 | |
communication systems | insufficient authentication | control mechanism failures | remotely manipulating terminals | C1 |
manipulating sensor changing system configuration measurements | C2 | |||
inadequate accountability | control mechanism failures | changing system configuration | C3 | |
modifying device functions | C4 | |||
sensor and internal gateway inapplicability | control mechanism failures | controlling communication | C5 | |
API network protocol vulnerabilities | system technical faults | loss | C6 | |
cloning | C7 | |||
data component | data poisoning | system technical faults | information leakage | D1 |
model inversion | system technical faults | access to classified data | D2 | |
third-party propagation | system technical faults | information leakage | D3 | |
retransmission | system technical faults | loss | D4 | |
cloning | D5 | |||
disorder | system technical faults | loss | D6 |
Risk Scenario Label | Severity S | Occurrence Rate O | Detectability D | Original RPN |
---|---|---|---|---|
A1 | (2.3, 1.7, 2.5, 1.2, 1.2) | (1.8, 3.5, 1.8, 1.5, 2.1) | (7.8, 1.8, 3.2, 1, 1) | 32.29 |
A2 | (4.6, 1, 1.5, 2.3, 0.8) | (2.1, 3.6, 2.3, 3.2, 1.3) | (5.6, 2.1, 1, 1, 1.2) | 54.10 |
A3 | (7.2, 1, 1.3, 1.3, 1.3) | (2.8, 2.6, 1, 2.8, 2.1) | (4.8, 2.8, 1.1, 1.2, 1.1) | 96.77 |
A4 | (6.5, 1.2, 1, 1.9, 1.6) | (1.1, 3.2, 1.9, 2.1, 2.1) | (7.5, 2.3, 1.8, 1.3, 1.3) | 53.63 |
A5 | (2.3, 2.1, 1.2, 1.1, 1.2) | (3.4, 2.3, 2.1, 1.2, 1.7) | (4.3, 3.3, 2, 1.3, 1.3) | 33.63 |
A6 | (3.1, 1.5, 1.7, 1.5, 1.5) | (2.6, 2.2, 3.3, 2.3, 2.1) | (6.7, 3.8, 2.8, 3.2, 2.8) | 54.00 |
A7 | (3.8, 1.5, 1.1, 1.5, 1.5) | (3.9, 2.8, 2.1, 2.3, 2.8) | (6.2, 2.9, 1.2, 2.8, 2.1) | 91.88 |
A8 | (2.3, 1.9, 1.7, 1, 1) | (1.2, 3.4, 2.8, 1.2, 1.6) | (4.1, 2.8, 1, 1.1, 1) | 11.32 |
A9 | (5.2, 1, 1.3, 1.2, 1.2) | (2.1, 2.3, 1, 1.5, 3.1) | (5.6, 3.2, 1.8, 1, 1.8) | 61.15 |
A10 | (5.3, 1.3, 3.2, 1.8, 1.2) | (4.5, 3.4, 2.3, 1.2, 2.3) | (2.1, 3.2, 1.3, 1.3, 3.2) | 50.09 |
A11 | (3.2, 1, 1, 1.8, 1.3) | (5.7, 2.1, 1, 2.1, 1.8) | (5.3, 1.8, 2.3, 1, 1) | 96.67 |
B1 | (2.3, 2.3, 1, 1.2, 1) | (3.8, 1.8, 1, 1.2, 1) | (6.3, 2.1, 1.5, 2.3, 1.5) | 55.06 |
B2 | (2.2, 2.2, 1.2, 1.1, 1.2) | (3.9, 2.2, 1, 1.2, 1) | (6.8, 2.1, 3.6, 2.1, 1.3) | 58.34 |
B3 | (5.4, 1.2, 1.1, 2.1, 1.9) | (1.8, 1, 3.1, 3.2, 3.5) | (7.8, 1.8, 4.3, 1.5, 1.2) | 75.82 |
B4 | (5.3, 1.3, 1.2, 1.9, 1.5) | (3.8, 1.2, 1.8, 2.1, 1.8) | (6.5, 1.9, 2.3, 1.8, 1.5) | 130.91 |
B5 | (2.9, 1.3, 1.3, 2.3, 1.3) | (6.2, 1.2, 1.1, 2.1, 1.8) | (6.3, 1.8, 2.5, 1.8, 1.2) | 113.27 |
B6 | (1.5, 2.2, 1.3, 1.5, 1.1) | (3.1, 1.1, 3.5, 2.1, 1.2) | (4.5, 2.3, 2.8, 1.8, 1.9) | 20.93 |
B7 | (5.6, 1.2, 1.2, 1.3, 1.5) | (5.3, 1.2, 1.3, 1.5, 1.8) | (5.2, 1.8, 1.2, 1.4, 1.2) | 154.34 |
B8 | (4.7, 1.3, 1.3, 1.5, 1.5) | (2.8, 1.8, 1.2, 1.2, 1.1) | (5.1, 1.7, 1.7, 1.4, 1.3) | 67.12 |
B9 | (5.2, 1.9, 1.5, 1.2, 1.2) | (3.8, 2.1, 2.6, 1.1, 1.3) | (5.2, 2.2, 2.1, 1.2, 1.5) | 102.75 |
B10 | (3.2, 1.9, 1.4, 1.2, 1.2) | (5.2, 2.1, 1.5, 1.2, 1.5) | (4.3, 1.5, 1.9, 1.1, 1.3) | 71.55 |
B11 | (2.1, 1.2, 1.2, 1.2, 1.2) | (2.3, 1.3, 1.9, 1.5, 1.8) | (3.5, 1.4, 1.8, 1.1, 1.3) | 16.91 |
C1 | (3.1, 2.1, 1.3, 1.5, 1.5) | (3.9, 2.6, 1.8, 2.1, 2.1) | (5.3, 3.1, 2.8, 1.8, 2.3) | 64.08 |
C2 | (2.8, 1.5, 1.8, 1.2, 1.3) | (3.1, 1.5, 2.1, 1.1, 1.5) | (3.9, 1.8, 2.9, 1.3, 1.2) | 33.85 |
C3 | (6.5, 1.9, 1.2, 1.2, 1.2) | (2.3, 1.3, 1, 1.2, 1.5) | (6.7, 1.8, 2.3, 1.3, 1.3) | 100.17 |
C4 | (4.5, 2.1, 1.2, 1.3, 1.3) | (2.6, 1.6, 1.9, 1.8, 1.8) | (6.8, 1.5, 3.8, 1.2, 1.2) | 79.56 |
C5 | (3.8, 1.3, 1.1, 1, 1.2) | (4.5, 1.5, 1.2, 1.3, 1.6) | (5.4, 1.9, 1.4, 1.2, 1.3) | 92.34 |
C6 | (5.3, 1.1, 1.1, 1.2, 1.3) | (6.1, 1.2, 1.2, 3.2, 1.1) | (3.2, 3.2, 1.3, 1.9, 1.7) | 103.46 |
C7 | (6.3, 1.1, 1, 1.3, 1.1) | (6, 1.3, 1.8, 1.3, 1.8) | (3.1, 1.9, 1.3, 1.5, 1.3) | 117.18 |
D1 | (3.8, 1.3, 1.5, 1.1, 1.2) | (5.1, 1.1, 1.3, 1.1, 1.3) | (4.7, 1.6, 1.9, 1, 1.2) | 91.09 |
D2 | (3.2, 1.2, 1.8, 1, 1.1) | (4.2, 1.3, 2.1, 1.1, 1.3) | (4.5, 1.8, 1.8, 1.2, 1.2) | 60.48 |
D3 | (3.3, 1.1, 1.7, 1, 1.2) | (4.1, 1.3, 2.1, 1.1, 1.2) | (4.4, 1.9, 1.8, 1.2, 1.2) | 59.53 |
D4 | (5.1, 1.5, 1.5, 1.1, 1.1) | (4.3, 1.9, 1.3, 1, 1.5) | (4.2, 2.1, 1.2, 1.1, 1.2) | 92.11 |
D5 | (4.2, 1.4, 1.4, 1, 1) | (4.1, 1.8, 1.4, 1.1, 1.4) | (4.3, 2, 1.3, 1.2, 1.3) | 74.05 |
D6 | (3.8, 1.5, 1.5, 1.1, 1.3) | (4.7, 1.7, 1.3, 1.2, 1.5) | (4.1, 2.1, 1.4, 1.2, 1.2) | 73.23 |
Defect Category | Causal Factors |
---|---|
Control defects | 1–1 Users fail to set high-strength passwords, leaving the system vulnerable to intrusion. |
1–2 Completely safe NQI for smart home systems failed to be provided. | |
1–3 System security is at high risk due to users’ misuse. | |
1–4 Users do not update the system in time. | |
1–5 No detection of DOS attacks is provided at the communication network layer. | |
1–6 Detection of network attacks, intrusions, viruses, etc. is not provided in the application service platform. | |
Feedback defects | 2–1 The feedback data from the terminal sensing device is incomplete. |
2–2 Perception data is not backed up in the application service platform. | |
2–3 Perception data is not encrypted in the application service platform. | |
2–4 Identity privacy protection and location privacy protection technologies are not provided in the application service platform. | |
Coordination defects | 3–1 End-to-end and node-to-node encryption is not working. |
3–2 Communication network transmits wrong instructions and the feedback from the control terminal is not timely. | |
3–3 User’s residence is monitored by terminal devices and the user does not take control. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, R.; Zhang, X.; Zhang, Y. Privacy Risk Assessment of Smart Home System Based on a STPA–FMEA Method. Sensors 2023, 23, 4664. https://doi.org/10.3390/s23104664
Wang Y, Zhang R, Zhang X, Zhang Y. Privacy Risk Assessment of Smart Home System Based on a STPA–FMEA Method. Sensors. 2023; 23(10):4664. https://doi.org/10.3390/s23104664
Chicago/Turabian StyleWang, Yue, Rui Zhang, Xiaoyi Zhang, and Yalan Zhang. 2023. "Privacy Risk Assessment of Smart Home System Based on a STPA–FMEA Method" Sensors 23, no. 10: 4664. https://doi.org/10.3390/s23104664
APA StyleWang, Y., Zhang, R., Zhang, X., & Zhang, Y. (2023). Privacy Risk Assessment of Smart Home System Based on a STPA–FMEA Method. Sensors, 23(10), 4664. https://doi.org/10.3390/s23104664