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Abstract: Optical fiber sensors (OFSs) represent an efficient sensing solution in various structural
health monitoring (SHM) applications. However, a well-defined methodology is still missing to quan-
tify their damage detection performance, preventing their certification and full deployment in SHM.
In a recent study, the authors proposed an experimental methodology to qualify distributed OFSs
using the concept of probability of detection (POD). Nevertheless, POD curves require considerable
testing, which is often not feasible. This study takes a step forward, presenting a model-assisted POD
(MAPOD) approach for the first time applied to distributed OFSs (DOFSs). The new MAPOD frame-
work applied to DOFSs is validated through previous experimental results, considering the mode I
delamination monitoring of a double-cantilever beam (DCB) specimen under quasi-static loading
conditions. The results show how strain transfer, loading conditions, human factors, interrogator
resolution, and noise can alter the damage detection capabilities of DOFSs. This MAPOD approach
represents a tool to study the effects of varying environmental and operational conditions on SHM
systems based on DOFSs and for the design optimization of the monitoring system.

Keywords: MAPOD; optical fiber sensors; probability of detection; distributed sensing; structural
health monitoring

1. Introduction

Optical fiber sensors (OFSs) have long proven to outperform conventional strain
gauges and, more in general, equivalent electrical strain sensors. Their advantages compre-
hend long durability, high accuracy, immunity to electromagnetic fields, and multiplexing
capabilities [1]. Moreover, their light weight and small size make OFSs ideal candidates to
be embedded into composite laminates [2–4] and additive manufacturing structures [5].

Distributed OFSs (DOFSs) inherit the advantages of traditional OFSs, such as fiber
Bragg gratings (FBGs) [6,7], but offer the advantage of the increasing number of available
sensing elements.

DOFSs typically rely on three scattering phenomena, namely Raman, Brillouin, and
Rayleigh scattering [8]. Raman scattering is mainly used for temperature measurements,
whereas Brillouin and Rayleigh scattering is mainly employed to measure both strain and
temperature [9]. Brillouin scattering traditionally offers higher sensing ranges and lower
spatial resolutions compared to Rayleigh scattering [8]. For this reason, the former is the
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preferred solution for most civil engineering applications, whereas the latter is the most
suited for monitoring smaller structures typical of aerospace and automotive engineering.

Despite the high potential of this technology, the technology readiness level (TRL) of
DOFSs in SHM is still surprisingly low. From a structural health monitoring (SHM) per-
spective, DOFSs cannot be used without a rigorous methodology that certifies their damage
detection performance. Indeed, the lack of such a certification protocol prevents the suc-
cessful widespread of DOFSs. DOFSs share this problem with other SHM technologies [10],
such as guided Lamb waves (GLW) and acoustic emissions (AEs) [11].

On the other hand, the successful implementations of some mature non-destructive
evaluation (NDE) methods are supported by a rigorous performance assessment framework
based on probability of detection (POD) curves, as described in the MIL-HKBK-1823A [12].
SHM methods must demonstrate an equivalent or superior performance compared to NDE
methods in order to motivate industrial adoption.

The SHM community tried to apply the same approach to SHM, but there are intrinsic
differences between NDE and SHM. First, SHM systems are more difficult and expensive
to manufacture, making reaching a statistically significant number of tests unfeasible.
Second, the permanently installed sensing system in the structure makes the SHM system
susceptible to varying environmental and operational conditions (EOCs). Third, SHM
data suffer from spatial and temporal correlation, which infringes the independence of the
observation hypothesis, a cornerstone for the linear regression models used for building
POD curves [13,14].

Meeker et al. were among the first to present this problem to the SHM community [15].
They proposed handling SHM data with alternative statistical models, such as the length at
detection (LaD) method and the random effect model (REM) [16]. These techniques have
been implemented in a few SHM applications but never for DOFSs.

Falcetelli et al. proposed an experimental methodology based on the LaD method
to qualify the detection performance of DOFSs for delamination detection into double-
cantilever beam (DCB) specimens under quasi-static loading conditions [17]. The results
were promising but simultaneously raised new questions and challenges. For example, is it
possible to upscale the results obtained at a coupon level to a higher-level component using
a building block approach? Is it possible to estimate the effect of varying EOCs on POD
curves for DOFSs? How can we coexist with the scarcity of data typical of SHM systems?

These scientific questions epitomize the motivation behind this paper, the need for a
model-assisted POD (MAPOD) approach applied to DOFSs. In other words, a MAPOD
framework consists of a methodology to construct POD curves with the aid of a numerical
model. In the NDE community, MAPOD approaches have already been developed [18–20],
and there are already software programs [21,22] capable of producing POD curves for
different NDE techniques. For the SHM community, however, this topic is relatively new
and still in its infancy [23]. There are only a few studies that tried to develop such a
MAPOD framework and only for specific SHM techniques mainly based on guided Lamb
waves (GLW) [24,25] and bulk-wave ultrasonic sensors [26]. For acoustic emission (AE)
analyses, modeling a real AE event is difficult due to its broadband nature [27]; therefore,
only experimental approaches based on the Hsu–Nielsen source are used [28,29].

Sbarufatti et al. proposed a MAPOD framework for the performance qualification
of an SHM system based on FBGs for the fatigue crack monitoring of helicopter fuselage
panels and a helicopter tail boom [30,31].

The authors would like to stress that a MAPOD approach has never been applied to
DOFSs and represents the most remarkable element of novelty of this research.

A MAPOD approach for DOFSs needs to account for all factors that influence the
performance of DOFSs. The structure geometry and type of loading are determinant factors
on POD due to the nature of strain sensing. In a recent article [17], the authors demonstrated
that the DOFSs perform better for mode I delamination detection when the structure is
loaded in quasi-static conditions compared to fatigue loading. Indeed, fatigue loading
conditions are usually associated with high noise values. Moreover, delamination growth
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occurs at lower loads than the static case, resulting in a lower signal-to-noise ratio (SNR)
from a DOFS perspective.

Moreover, depending on the laminate characteristics, the strain field in the process
zone can be different [32]. Stutz et al. show that fiber bridging modifies the expected strain
value in the process zone, which affects the damage index used to build POD curves [33].
Therefore, from a MAPOD point of view, having a high-fidelity model of the structure,
loading conditions, and damage is imperative.

Another important yet often overlooked factor of optical strain sensing is the strain
transfer effect from the structure to the fiber core [34–36]. Indeed, the strain in the structure
under investigation requires a certain fiber length to be transferred entirely to the sensing
element of the optical fiber, the core. This delay results from the shear lag theory and
depends on the mechanical and geometrical properties of the DOFS and the adhesive.
Therefore, the DOFS must be modeled to incorporate the strain transfer effect into the
model [34]. The proposed MAPOD approach links the strain transfer problem to the
damage detection problem, another significant element of novelty in this research. Indeed,
both the strain transfer and damage detection with DOFSs were intensely studied in the
literature, but their reciprocal implications, namely, the effects of the strain transfer in POD
curves, have never been investigated.

Measuring itself brings extra uncertainty in the system depending on the interrogator
unit and the operator experience [37]. This research article analyzes and discusses all these
aspects of the measurement chain.

The article is structured as follows: the section “Material and Methods” displays the
model architecture; the section “The DCB case study” considers the DCB case study to
validate the model; the section “Results” shows how POD curves depend on the model
parameters; the section “Discussion” reflects on the possibility to upscale the MAPOD
methodology to a real aerospace structure; and the section “Conclusions” summarizes the
central aspect of the study and provides suggestions for future research.

2. Materials and Methods
2.1. MAPOD Concept for DOFSs

Several factors affect the performance of DOFSs for damage detection: the structure
geometry and type of loading, the strain transfer from the structure to the fiber core,
and the measurement process [17]. Therefore, each one of these variables should be
adequately modeled in a MAPOD framework. Figure 1 summarizes these steps in a
flowchart, highlighting the main variables affecting the final measured strain.
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First, the model of the structure and damage propagation is required. This model
aims to reconstruct the strain at the DOFS/structure interface. One can leverage an existing
analytical model based on physics; however, finite element analysis (FEA) might be required
for complex geometries. Finally, if the structure or damage propagation is too complex for
modeling, one can rely on data-driven models based on experimental data. Regardless of
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the approach used for modeling the structure, the MAPOD framework requires the user to
define a spatial domain vector x, representing the extent of the segment of DOFS used for
monitoring (see Equation (1)).

x = [x0, · · · , xN ] (1)

The spatial domain is discretized with a user-defined spatial resolution ∆x, which
must be sufficient to resolve the smallest geometrical feature.

Second, the discrepancy between the strain at the DOFS/structure interface and the
DOFS core should not be neglected. This discrepancy can be considered by introducing
strain transfer models [34].

Third, the type of interrogation unit affects the final measured strain and must be
considered. Within the key variables, particular attention should be given to the human
factor, which is often neglected but is of paramount importance. The interrogator resolution
can be determinant in certain conditions as well as the signal-to-noise ratio (SNR).

2.2. Strain Transfer

The strain transfer mechanism plays a crucial role in measurement accuracy. Regard-
less of the working principle, optical fiber sensors measure the deformation of their core,
not the deformation of the structure underneath or around it. Therefore, the strain profile
at the optical fiber core is a distorted version of the original strain profile present in the
structure to be monitored.

The general solution to the strain transfer problem considering a uniform strain field
is given by Equation (2) [34,38–41]:

d2εf

dx2 − k2εf = −k2εs (2)

where εf is the strain vector of the optical fiber core, the symbol εs is the input strain
vector of the structure, and (k) is the shear lag parameter, condensing the mechanical and
geometrical properties of the system.

Equation (2) is a second-order linear non-homogeneous differential equation with
constant coefficients, whose solution is given by Equation (3):

εf(x) = C1e−kx + C2ekx + εs (3)

The integration constants C1 and C2 can be determined by applying the corresponding
boundary conditions. It is possible to simulate the optical fiber response to a step input of
intensity εs, by imposing the following boundary conditions:{

εf(0) = 0
εf(x → +∞) = εs

(4)

It follows that the integration constants are{
C1 = 0
C2 = −εs

(5)

Therefore, the step response of the system is given by Equation (6):

εf(x) = εs

(
1− e−kx

)
(6)

It is convenient to define a characteristic space constant γ, defined as

γ =
1
k

(7)
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In this way, Equation (6) can be rewritten as

εf(x) = εs

(
1− e−

x
λ

)
(8)

Equation (8) resembles the step response of a first-order system where the space
variable x substitutes the time variable t, and the time constant, usually denoted with τ,
is substituted with the characteristic space constant λ, representing the length required to
reach approximately 63% of the strain present in the structure.

Therefore, it is possible to define the positive side (x > 0) of the system transfer
function as

Γ+ (x) =
1
λ

e−
x
λ (9)

Exploiting the symmetry that should have the transfer function (strain can also prop-
agate backward), it is possible to extend the system transfer function to negative values,
which, after normalization, leads to Equation (10):

Γ(x) =
1

2λ
e−

x
λ (10)

This result represents the system response to a unit impulse δ(x) and coincides with
the mechanical transfer function proposed by Billon et al., who modeled the strain profile
response induced by a surface crack [42]. At this point, it is possible to compute the strain
field in the DOFS core, resulting from an arbitrary strain field in the structure εs(x), using
Equation (11):

εf(x) = (Γ⊗ εs)(x) (11)

Moreover, the characteristic space constant λ is assumed to vary across the different
specimens to take into account the inherent variability associated with the limited repeata-
bility of the bonding process and the possible non-homogeneity of the DOFS coating.
Therefore, the characteristic space constant of the ith specimen is sampled from a normal
distribution with a µλ mean and a σλ standard deviation:

λi ∼ N (µλ, σλ) (12)

In a previous study, Falcetelli et al. developed a methodology to compute µλ [34].
This strain transfer model, similar to analogous models available in the literature, requires
accurate knowledge of the geometrical and mechanical properties of the optical fiber, the
adhesive, and the host structure. However, in most cases, these properties are not available
with the required degree of accuracy. Therefore, a more practical approach would be to
assess the value of µλ by performing a tensile test with the DOFS bonded in the specimen
surface and fitting the chosen analytical model.

Then, by repeating the procedure several times using different specimens, one can
improve the accuracy of µλ and assess σλ, thus incorporating the variability associated
with the bonding process in the model. It is also interesting to notice that in this MAPOD
model, the shear lag constant is considered constant within the specimen, i.e., λ does
not change along the fiber axis but only between different specimens. This assumption
holds in cases where the bonding or the embedding is homogeneous without particular
geometrical variations along the fiber path. If the fiber is bonded along a longer path,
it is reasonable to assume that changes in λ can also occur within the same specimen.
Nevertheless, in this MAPOD study, it is hypothesized that λ does not change along the
fiber length for simplicity.
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2.3. Interrogator Resolution

The interrogator resolution is another cause of distortion for the strain profile. In
this MAPOD approach, its effect is considered by convolving a rectangular function
(Equation (13)) with the DOFS strain profile:

Πi(x) =
{ 1

∆X , |x| ≤ ∆X
2

0, |x| > ∆X
2

(13)

where the symbol (Πi) denotes a rectangular function having a unitary area and width
equal to the interrogator resolution (∆X). Hence, the theoretical measured strain profile,
εT

m, is given by Equation (14):
εT

m(x) =
(
Πi ⊗ εf

)
(x) (14)

In Equation (14), the superscript (T) highlights that the measurement is only theoreti-
cal, i.e., performed without noise.

2.4. Human Factors
2.4.1. Hot-Touch Error

The first step in DOFS experiments is to locate a certain spatial coordinate in the optical
fiber. Indeed, one must correlate the spatial frame of reference in the interrogator software
with specific physical points in the DOFS. This is usually done by applying the so-called
hot touch, a concentrated heat source, and reading the coordinate of the induced peak in the
strain profile in the software. Ideally, the heat source should be infinitely narrow, but in
reality, it is not, thus introducing an error in the coordinate locations along the fiber.

In this preliminary stage of the MAPOD framework, this uncertainty source is incor-
porated into the model using Equation (15) by shifting the x vector for each specimen by a
quantity εht, leading to a new translated spatial domain vector (x’):

x’ = x + εht1N (15)

where εht ∼ N (0, σht) is sampled from a normal distribution with a zero mean and a user-
defined standard deviation (σht), and 1N is a vector of length N + 1 of ones (Equation (16)):

1N = [10, . . . , 1N] (16)

2.4.2. Bonding Error

The bonding error is the second type of human factor uncertainty source capable of
affecting the system response. It is crucial to identify the start and the end of the bonded
region in the DOFS. Here, an additional uncertainty source can be present, even assuming a
perfect hot-touch procedure is accomplished. Indeed, bonding is never perfect, and the glue
can infiltrate underneath the DOFS and thus extend the bonded region by a few millimeters.
Moreover, this adhesive leakage, being an undesired effect, is often irregular, leading to
unpredictable strain profiles in the transient region on the onset of bonding. Therefore,
this uncertainty source must be incorporated into the model and strictly relates to the
researcher’s expertise and the available equipment.

In the bonded region, the strain transfer is governed by the equations described in
Section 2.2. On the other hand, the strain transfer is posed to zero in the regions outside the
bonded area. The bonding error is simply taken into account by increasing or decreasing
the bonded region size. In this MAPOD framework, the distance between the onset of the
bonded region and the initial crack tip is defined by the d parameter as follows:

d = dm + εd (17)
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where dm and εd are the mean and random components of d. Specifically, εd is sam-
pled from a normal probability distribution with a zero mean and a σbε bonding error
standard deviation.

εd ∼ N (0, σbε) (18)

2.5. Environmental Noise

Noise is modeled by constructing a strain noise vector (Z), defined as

Z = [z1, · · · , zN ] (19)

The ith element (zi) is defined as

zi ∼ N (0, σz) (20)

where N (0, σz) denotes a normal distribution with a zero mean and a standard deviation
equal to σz. One can assess σz by performing a series of repeated measurements with no
load applied to the specimen.

Finally, the real measured strain (εm), which also takes into account the effect of
noise, is obtained by simply superimposing the strain noise vector (Z) to the theoretically
measured strain profile εT

m, as outlined in Equation (21):

εm(x) = εT
m + Z (21)

3. The DCB Case Study

Delamination is one of the most common and dangerous damage mechanisms in
composite structures, and DCBs are representative structures of many different components.
Thanks to well-defined standards describing the experimental procedure [43], DCBs are
relatively easy to manufacture and test, which is crucial to validate the MAPOD model.

3.1. Experimental Setup

The DCB specimens are manufactured according to the ASTM D5528 standard [43]
employing AS4 HexPly 8552® unidirectional carbon prepreg [44]. The DOFS used in the
study is a single-core optical fiber with ORMOCER® coating [45]. The fiber is bonded on
the surface of the specimen using a cyanoacrylate adhesive (ThreeBond 1742® [46]). In the
experiment, three DOFS segments are bonded on the top surface to augment the available
data collected in the static test.

Figure 2 illustrates the specimen geometry and the relative DOFS installation layout
used for the DCB static test.
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The fibers are interrogated with the ODiSI-B [47] measuring system, which uses
swept-wavelength coherent interferometry to estimate Rayleigh backscattering [48–50].
The spatial resolution and the sampling frequency of the sensing unit are 0.65 mm and
23.8 Hz, respectively. The DCB specimen is fixed on a Zwick—20 kN tensile test machine,
and the load is applied with a displacement rate of 1 mm/min. The true crack length is
estimated by exploiting its linear relationship with the cube root of the compliance value.
The linear model is fitted by observing the delamination size from a 9-megapixel camera
placed in front of the tensile test machine at different compliance values. Further details on
the experimental setup can be found in Falcetelli et al. [17].

3.2. DCB Parametric Model

This section introduces a simplified DCB model, based on the experimental data
derived in the previous section, to validate the proposed MAPOD methodology. Figure 3
describes the specimen geometry and the relative DOFS position.
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In the parametric model, it is not necessary to consider three fiber segments on the
DCB surface since the only limitation in the amount of synthetically generated data is the
computational cost involved in the simulation. Therefore, it was decided to consider only a
single DOFS segment bonded in the longitudinal direction at the center of the specimen to
simplify the model.

The objective in this phase is to derive the strain distribution on the surface of the DCB
specimen, εs, which is then fed into the strain transfer model.

Considering the two DCB arms as cantilever beams and referring to the Euler–Bernoulli
theory, it is possible to compute the bending moment about the z-axis (perpendicular to the
paper and pointing outward in Figure 3) as a function of the distance from the crack tip [51]:

Mz = Px (22)

Equation (22) holds for x ∈ [0, a] since Mz must be null after the crack tip at x = a,
where a denotes the crack length.

The applied load, P, decreases with the delamination length according to a function
that can be determined experimentally or through FEM simulations [52]. In this case,
P(a) was determined by a third-degree polynomial regression (Equation (23)) using the
experimental static test data of the DOFS with ORMOCER® coating [17].
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P(a) = c0 + c1a + c2a2 + c3a3 + εp (23)

The random component εP accounts for the impossibility of reproducing the exact
loading condition across different specimens:

εp ∼ N
(
0, σp

)
(24)

where σp represents the standard deviation of the normal distribution with a mean equal to
zero. Its value can be assessed from the analysis of previous experimental activity or based
on the expected operational loading conditions for a given application.

Applying Navier’s formula (Equation (25)) to the upper arm of the DCB shown in
Figure 3, one can find the stress distribution along the x-axis, σx:

σx =
Mz

Iz
y (25)

where y is the spatial coordinate along the thickness direction, and Iz denotes the moment
of inertia about the z-axis (perpendicular to the paper pointing outward in Figure 3). The
moment of inertia for a rectangular cross-section with a width and height equal to w and h,
respectively, can be computed as follows:

Iz =
wh3

12
(26)

Moreover, the specimen width and thickness could vary across the different specimens
due to the variability in the manufacturing process. The variability can be estimated by
measuring the specimens under test with a caliper. In this case study, the width and
thickness variabilities were considered negligible compared to other uncertainty sources.

Finally, the strain on the DCB surface, εx, can be obtained by dividing the stress
distribution along the x-axis, σx, by the flexural modulus Ex:

εx =
σx

Ex
(27)

The flexural modulus was computed using the following Equation (28), referring to
the ASTM D5528 standard [43]:

Ex =
64(a + |∆|)3

Cw(2h)3 (28)

where C denotes the compliance and is defined as the ratio between the load point deflec-
tion, δ, and the applied load, P. On the other hand, ∆ is a crack length correction used to
account for the possible rotation at the crack tip. Its value corresponds to the abscissa where
the least squares regression of the cube root of compliance, 3

√
C, against the delamination

length, a, is equal to zero.
Then, the expected strain distribution along the x-axis at the specimen surface is

obtained by substituting the value of σx, obtained posing y = h/2 in Equation (25) into
Equation (27):

εx =
Mz

Ex Iz

h
2

(29)

3.3. Delamination Modeling from a MAPOD Perspective

The proposed MAPOD approach simulates delamination growth in a DCB specimen
of length L, for a user-defined number of cracks, nc, starting from a user-defined initial
crack length, a0, to a user-defined final crack length, a f . It is assumed that every crack
length measurement is taken after a certain delamination length increment, ∆a. The true
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crack length, atrue, is usually visually estimated, thus introducing uncertainty in the model.
Therefore, it is further assumed that ∆a is composed of a mean constant value, ∆am, and a
random error, εa:

∆a = ∆am + εa (30)

where εa follows a normal probability distribution with a zero mean and a standard
deviation σa:

εa ∼ N (0, σa) (31)

The σa value is challenging to assess and depends on many factors, such as the loading
type, the geometry, and the material properties. Therefore, the best option is to evaluate
σa using data from a pilot study experiment.

On the other hand, ∆am can be computed as

∆am =
a f − a0

nc − 1
(32)

Then, the model generates a vector of crack lengths, a, which is defined in Equation (33):

a = am + εa (33)

where am and εa are the mean and random vectors of crack lengths defined in
Equations (34) and (35), respectively:

am =
[

a0, a0 + ∆am, · · · , a0 + nc∆am = a f

]
(34)

εa = [εa1, · · · , εanc ] (35)

In this case, the spatial domain, x ∈ [0, L], is discretized with a user-defined spatial
resolution, ∆x, which must be sufficiently smaller than the average delamination increment,
and thus it must be that ∆x � ∆am. This implies that the spatial domain vector, x, defined
in Equation (1), has N + 1 elements, with N = L/∆x.

4. Results
4.1. Model Validation

Table 1 shows the parameter configuration for the following demonstrative example,
classifying the sources of uncertainty into within- and between-specimen variability (if the
parameters are just model settings, they belong to neither of the two classes).

Table 1. MAPOD parameter setting.

Variable Value Within-Specimen
Variability

Between-Specimen
Variability

N 13 No No
L [mm] 135 No No
h [mm] 2.4 No No
w [mm] 25 No No

nc 20 No No
a0 [mm] 35 No No
a f [mm] 48 No No
σa [mm] 0.05 Yes No
σz [µε] 3 Yes No

µλ [mm] 1.7 No Yes
σλ [mm] 0.17 No Yes
∆x [mm] 0.65 No No
σht [mm] 1 No Yes
σbε [mm] 0.5 No Yes
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Figure 4 shows the model outputs for the strain profile at the DOFS/DCB interface
(top), the DOFS core (middle), and the interrogator-measured strain (bottom). Every line
symbolizes the strain profile given at a specific crack length value, highlighted by the color
bar on the right-hand side. The vertical dashed line shows the onset of the bonded region
of the DOFS. It is possible to notice that since the DOFS is bonded 5 mm apart from the
initial crack length, the fiber is not sensitive to damage at the initial phase of delamination
growth. Once delamination reaches the bonded region and eventually grows underneath
the DOFS, the measured strain profiles bend downward. The black star-shaped markers in
the bottom subplot of Figure 4 indicate the absolute minimum of the strain profile, where
the crack tip is expected to be located [32,53].
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Figure 4. Simulation of strain profiles for different delamination lengths at the DCB surface (top),
DOFS core (middle), and interrogator (bottom). The black star-shaped markers indicate the absolute
minimum of the strain profile, where the crack tip is expected to be located.

In Figure 5, experimental data (left) are compared with the results predicted by the
model (right). From a qualitative perspective, it is possible to notice that experimental
data show a higher degree of variability along the DOFS axis. Several factors can cause
the difference. First, the proposed DCB model is still a simplified version of the real DCB,
which would require a higher level of modeling to achieve more accurate results. For
example, the model does not consider the possibility of having a curved crack front, which
is common in DCB specimens. One might also note that the process zone can affect the
strain at the specimen surface, but all these considerations are outside the scope of this
paper. Second, the mechanical transfer function, Γ, used to predict the strain transfer does
not vary with the x coordinate. This assumption neglects the presence of occasional defects
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in the bonding. These fluctuations in Γ might also be due to the intrinsic flaws present in
the coating of the fiber.
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Figure 5. Measured strain profiles in DCB quasi-static test [17]: experimental data (left) and MAPOD
predicted result (right). The black star-shaped markers indicate the absolute minimum of the strain
profile, where the crack tip is expected to be located.

The model validation continues through Section 4.1.1, where the experimental POD
curve is compared with the MAPOD curve.

4.1.1. Length at Detection Method and MAPOD Curve

As stated in the introduction section, the derivation of POD or MAPOD curves in SHM
is substantially different from the NDE case due to the spatial and temporal correlation
typical of SHM systems.

In NDE, every specimen returns a single point in the traditional â vs.a or equivalent
model: â vs. a, â vs. log(a), log(â)vs. a, and log(â)vs. log(a). In other words, every point
corresponds to a measurement taken from a certain specimen, guaranteeing statistical
independence. On the other hand, in SHM, every specimen returns a series of spatial- and
time-correlated data since the permanently installed sensor continuously monitors the
damage evolution.

Therefore, the application of the â vs. a method (or the hit/miss method in the case
of binary data), as initially conceived in the MIL-HKBK-1823A [12] for NDE applications,
would lead to inconsistent results. Among the available statistical methods to handle SHM
data, the LaD offers an intuitive and easy-to-implement approach. The alternative REM-
based methodology has the advantage of using data more efficiently but at the expense of
increasing the complexity of the algorithm and the computational burden [15]. Therefore,
in this preliminary development of the MAPOD framework for DOFSs, the LaD is selected
as the most appropriate approach.

In the LaD method, a certain damage index (DI) is plotted against a certain damage-
related feature, in this case, the delamination length. However, differently from the tradi-
tional â vs. a approach, the procedure is repeated for every specimen, leading to a number
of regression lines equal to the number of specimens considered in the analysis.

The LaD method can handle spatial and temporal correlated data because it considers
only the measurements in correspondence with the first detection, which is the intersection
of every line with the user-defined threshold. Therefore, the threshold line contains a
population of crack/delamination lengths at detection which is usually assumed to follow
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a normal or log-normal probability distribution. Therefore, assuming that the population is
normally distributed, it is possible to compute the POD curve as follows:

POD(a) = Φnorm

(
a− x

s

)
(36)

where Φnorm denotes the standard normal distribution cumulative distribution function,
and x and s are the sample mean and standard deviation, respectively.

The lower confidence bound can be computed with the one-sided tolerance interval
(OSTI) approach [54]:

T = x + KN,γ,α·s (37)

where T and KN,γ,α are the tolerance interval and factor, respectively. The tolerance factor
depends on the sample size (in this case, the number of specimens, N), the confidence
level (γ), and the detection level (1− α). A standard procedure to compute its value
exploits the properties of the non-central t-distribution [15].

The LaD method requires defining a proper DI. The DI definition depends on the
sensor technology and the type of damage to be monitored. For example, in certain cases,
to obtain a DI, one can leverage multi-sensor data fusion [55,56] or more complex strategies
based on deep learning [57]. In this study, involving delamination monitoring using DOFSs,
it is logical to consider some damage-induced strain feature as DI. The most straightforward
choice is to define the DI related to a certain crack length as the strain value recorded at
the absolute minimum of each strain profile. Referring to Figure 5, this translates into
considering the strain values in correspondence with the black star-shaped markers as a DI.

Then, one can take the absolute value and obtain a monotonically increasing DI as
described by Equation (38):

DI(a) = ln|min[εm(a)]| (38)

For validation purposes, the same threshold value was used as in the previous ex-
perimental study [17] of exp(6.1) µε. Applying the LaD method using the DI defined in
Equation (38) returns the plot shown in Figure 6.
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Every regression line is associated with a different specimen and has its own slope
and intercept, reflecting between-specimen variability. At the same time, data belonging to
the same specimen are scattered around the mean value represented by the regression line,
showing within-specimen variability (see Table 1).

Assuming that the crack lengths at detection are normally distributed, it is possible to
obtain the corresponding POD curve (see Figure 7) by computing the cumulative function
of the LaD distribution. The distance of the lower 95% confidence bound (blue dashed line)
from the POD curve (solid black line) reflects system uncertainty. High uncertainty values
in the model parameters will result in a lower 95% confidence bound far away from the
original POD curve.
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Figure 7. POD and its lower 95% confidence bound for simulated data.

One can verify the normality assumption of the LaD method with the so-called
Anderson–Darling test (Figure 8). The null hypothesis (H0) assumes that the data are
normally distributed and should be rejected if, for a given significance level (α), the critical
value is lower than the Anderson–Darling statistics (A2). With α = 0.05 and N = 13, the
critical value equals 0.679. The A2 statistics for the simulated LaD data plotted is 0.329.
Thus, according to the normality test, H0 should not be rejected and the crack lengths at
detection can be considered normally distributed.

Sensors 2023, 23, 4813 15 of 26 
 

 

 

Figure 7. POD and its lower 95% confidence bound for simulated data. 

One can verify the normality assumption of the LaD method with the so-called An-

derson–Darling test (Figure 8). The null hypothesis (𝐻0) assumes that the data are nor-

mally distributed and should be rejected if, for a given significance level (𝛼), the critical 

value is lower than the Anderson–Darling statistics (A2). With 𝛼 =  0.05 and 𝑁 =  13, 

the critical value equals 0.679. The A2 statistics for the simulated LaD data plotted is 0.329. 

Thus, according to the normality test, 𝐻0 should not be rejected and the crack lengths at 

detection can be considered normally distributed. 

 

Figure 8. Normality Test for the LaD method. 

Finally, Table 2 compares the experimental and MAPOD values for 𝑎90 (the crack 

length value having a 90% probability of being detected) and 𝑎90/95 (the crack length 

value having a 90% probability of being detected with 95% confidence). The relative error 

for 𝑎90 is −3.87 %, whereas the relative error for 𝑎90/95 is +1.76 %, demonstrating the 

accuracy of the proposed model. 

Figure 8. Normality Test for the LaD method.



Sensors 2023, 23, 4813 15 of 24

Finally, Table 2 compares the experimental and MAPOD values for a90 (the crack
length value having a 90% probability of being detected) and a90/95 (the crack length value
having a 90% probability of being detected with 95% confidence). The relative error for
a90 is −3.87 %, whereas the relative error for a90/95 is +1.76 %, demonstrating the accuracy
of the proposed model.

Table 2. Comparison of experimental and simulated a90 and a90/95.

Variable Experiment MAPOD Relative Error (%)

N 13 13
a90 [mm] 4.93 4.74 −3.87

a90/95 [mm] 5.56 5.66 +1.76

4.2. Sensitivity Analysis

In this section, the objective is to perform a preliminary qualitative analysis of the
effect of the most important variables on the a90 and a90/95 generated through the MAPOD
curves. The threshold definition is crucial in this analysis and can significantly affect the
result. The threshold value must guarantee a constant probability of false alarm (PFA). In
the literature, no standard methodology defines the threshold for the LaD method. Here,
the threshold was defined according to Equation (39):

th = max
(
ε

j
m(x = d)

)
+ 3σz; j = 1, · · · , N (39)

where, εj
m(x = d) represents the vector containing the measured strain values at the onset

of the bonded region for each specimen. Therefore, th is chosen by adding three noise
standard deviations to the highest measured strain values between the tested samples
at the onset of the bonded region. This definition is noise-dependent, which is coherent
with maintaining a constant PFA, and prevents the possibility of obtaining negative crack
lengths at detection.

Table 3 shows the parameter settings used in the sensitivity analysis. The data structure
〈−|−|−〉 symbolizes that the parameter is linearly swept from an initial value (first field) to
a final value (second field) on a logarithmic scale with a certain number of elements (third
field). For example, µλ = 〈0.001|20|100〉means that µλ is linearly swept on a logarithmic
scale from 0.001 mm to 20 mm considering 100 elements.

Table 3. Parameter setting for the sensitivity analysis.

Variable Case 1 Case 2 Case 3 Case 4 Case 5

N 20 20 20 20 20
L [mm] 135 135 135 135 135
h [mm] 2.4 2.4 2.4 2.4 2.4
w [mm] 25 25 25 25 25

nc 20 20 20 20 20
a0 [mm] 35 35 35 35 35
a f [mm] 48 48 48 48 48
σa [mm] 0.05 0.05 0.05 0.05 0.05
σz [µε] 〈0.1|500|100〉 3 [3, 10, 30] 3 3

µλ [mm] 1.7 〈0.001|20|100〉 1.7 1.7 1.7
σλ [mm] 0.17 0.17 0.17 0.17 0.17
∆x [mm] 0.65 0.65 〈0.01|100|100〉 0.65 0.65
σht [mm] 1 1 1 〈0.01|7|100〉 1
σbε [mm] 0.5 0.5 0.5 0.5 〈0.1|5|100〉
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4.2.1. Noise Effect (Case 1)

Figure 9 illustrates the effect of measurement noise on the detection performance. The
results show that the effect of noise is observable only for standard deviation values higher
than 50 µε. This result might seem counterintuitive since 50 µε is a relatively high value for
common applications, and one would expect a degradation of the performance starting
from lower values of σz. However, to comprehend the result, one must distinguish between
detection and localization performance and how the DI and the threshold value are defined.
Indeed, in terms of localization, the performance is compromised even at lower σz values,
because the minimum peaks in the strain profile would be scattered along the fiber length
and mainly attributed to noise. However, the system is much more robust in terms of
crack detection. Indeed, the DI (see Equation (38)) considers only the strain value in the
minimum of a given strain profile, not its location. This definition allows the model to
find a relation between the DI and a even in particularly noisy conditions. The limit of
50 µε depends on the specific application of and especially on the damage-induced strain.
In this DCB case study, below 50 µε, the SNR is still high enough to make a detection.
However, if the damage-induced strain is low, the effect of noise would be much more
disruptive even at lower values. It is important to highlight that the threshold definition
is of paramount importance. According to Equation (39), the threshold increases with
σz, and this guarantees a constant PFA. With a fixed threshold value, we would witness
the paradoxical and fictitious improvement of the detection performance caused by a
corresponding increase in the PFA.
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4.2.2. Strain Transfer Effect (Case 2)

The shear lag constant effect on the detection capabilities is highlighted in Figure 10.
When 0.001 mm < λ < 1 mm, a90 and a90/95 show a steady value of around 4 mm. Then,
for λ > 1 mm, it is possible to observe a sudden increase in a90 and a90/95. This means that
stiffer DOFSs, characterized by low λ values, have better detection performance, but the
benefit is negligible for λ values lower than 1 mm.
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This analysis can also be used to implement a degradation model of the DOFS coupling
with the structure. Indeed, different values of λ can correspond to different adhesives but
also subsequent moments in time of the same adhesive undergoing aging.

4.2.3. Interrogator Resolution Effect (Case 3)

Figure 11 is composed of three subplots, representing the effect of the interrogator
resolution ∆x at three different noise levels: σz = 3 µε, σz = 10 µε, and σz = 30 µε.
In principle, an ideal interrogator with an infinite spatial resolution ( ∆x → 0) should
provide the best performance. Figure 11 confirms this belief but only to a certain extent,
depending on the noise level. At low noise levels (σz = 3 µε), the resolution effect on a90
and a90/95 is negligible. Indeed, even if a poor resolution flattens the measured strain profile,
the SNR is still high enough to ensure comparable detection performance. Once again,
similarly to what emerged in Section 4.2.1, one must distinguish detection performance
from localization performance. At a higher noise level (σz = 10 µε), the effect of the
interrogator resolution is observable. Finally, as the noise level increases even further
(σz = 30 µε), the critical SNR is reached at even lower values of ∆x. This kind of simulation
can be beneficial to the engineer in selecting the right interrogator in the preliminary design
phase of the SHM system. Indeed, considering all the available information about the other
model parameters, the SHM system equipped with such an interrogator should satisfy
specific requirements for a90 and a90/95.

4.2.4. Hot-Touch Error Effect (Case 4)

The hot-touch standard deviation reflects one of the human factor effects on the de-
tection performance. It is important to point out that in a noisy environment, performing
a satisfactory hot-touch procedure is extremely difficult. Hot-touch standard deviation
values greater than 1 mm in real operational conditions are relatively common. However,
Figure 12 suggests that σht can deeply change the detection performance of the system
starting from σht = 1 mm. As pointed out for the previous cases, this value can change
depending on the other model parameters, but it is fundamental to notice how a proce-
dure that is often considered of minor importance can have a considerable impact on a90
and a90/95.
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4.2.5. Bonding Error Effect (Case 5)

The bonding error is a second possible human factor issue that can potentially affect
the performance of the system. The semi-logarithmic plot illustrated in Figure 13 shows
that a lack of repeatability in the bonding procedure could lead to a detrimental effect. It is
important to notice that this deterioration of the detection performance can start already at
relatively low values of σb, even lower than 1 mm. The result is somewhat expected since
an error in the starting point of the bonded region would inevitably anticipate or delay the
strain transfer process. As a consequence, data will be more scattered, the threshold will
increase, and the result POD curve will produce higher a90 and a90/95 values.
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5. Discussion
Upscaling of the MAPOD Methodology to a Real Aerospace Structure

From a practical perspective, assessing the upscaling capabilities of the presented
MAPOD framework is crucial. In other words, it is essential to understand whether it is
possible to transpose the MAPOD curves to a higher structural component in a building
block approach.

Referring to the flowchart of the proposed MAPOD approach (see Figure 1), one
can notice that the interrogator block receives as input the results of the strain transfer
block, and the strain transfer block receives as inputs the outputs of the structure/damage
block. Therefore, upscaling the presented MAPOD framework to a more complex and
representative structural item would impact only the first block, which is highly desirable.

Therefore, applying the presented MAPOD framework to a more realistic case im-
plies substituting the first block (DCB model described in Section 3) with another block
representing the new structure.

For example, debonding and delamination can occur in stiffened panels at the skin–
stringer interface or between adjacent layers having different fiber orientations [58]. In this
case, one could directly model the stiffened composite panel using finite element analysis
(FEA) or by whatever model that can return as outputs the strain values at the DOFS/
structure interface in the presence of damage.

Several studies have investigated debonding and delamination in stiffened composite
panels for aerospace applications in a damage tolerance scenario with DOFSs [59,60] and
FBGs [61], considering damage sizes in the 40–80 mm range. In this study, it is shown that in
a DCB specimen, it is possible to achieve a90/95 of 5.66 mm (see Table 2). However, a direct
transposition of this result to a full-scale composite panel would be misleading. Indeed, in a
skin–stringer debonding scenario, delamination can occur at different mode-mixity [62,63],
and the DOFS sensitivity can differ for different opening modes.

A solution would be developing MAPOD curves at a specimen level for different open-
ing modes and opening mode-mixity. Then, using a building block approach [64], one could
transpose the results to a higher-level component, selecting the MAPOD curve obtained in
the scenario that better approximates the expected strain field near the damaged location.

The authors believe that upscaling POD and MAPOD curves is crucial for concrete and
sustainable deployment of SHM in primary composite structures and certainly deserves
further investigation.

6. Conclusions

This study focuses on the development of a MAPOD framework for DOFSs. This
framework has never been established for DOFSs, only for a few SHM technologies such
as GLW, bulk-wave ultrasonic sensors, and FBGs. From a methodological perspective,
the modeling was divided into three blocks: the structure and damage model, the strain
transfer model, and the sensing unit model. Each block receives as input several uncertainty
sources, which were analyzed and modeled. The model was validated with previously
collected data on an equivalent case study, showing comparable a90 and a90/95 values. The
results of the sensitivity analysis highlight the main variables affecting POD curves and,
specifically, a90 and a90/95. These variables are the noise, the strain transfer space constant,
the interrogator resolution, and the human factors (hot-touch and bonding errors).

Table 4 summarizes the sensitivity analysis results. For each case, it is shown the value
obtained in correspondence with a90/95 equal to 10 mm and in correspondence with a 10%
raise (↑↑ ) of a90/95 with respect to its initial steady state value. Assuming that 10 mm is
the maximum allowed delamination size for a given application, the first value can be
considered the critical parameter threshold that should not be exceeded. On the other
hand, the second value symbolizes the threshold below which the parameter does not affect
the MAPOD curve. In other words, any effort to reduce its value does not produce any
improvement in terms of a90/95.
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Table 4. Summary of the sensitivity analysis results.

Condition σz [µε] µλ [mm] ∆x [mm] σht [mm] σbε [mm]

a90/95 = 10 117.4 7.2 [>100, >100, 92.4] 5.1 2.7
a90/95 ↑↑ 10% 49.9 0.9 [>100, 41.1, 13.5] 0.9 0.3

The impact of noise on damage detection is negligible until the SNR falls below a
critical value. The MAPOD approach for the selected case study showed that the sys-
tem is robust against noise standard deviation values below approximately 50 µε. The
strain transfer analysis highlighted that a90 and a90/95 significantly increase for space
constant (λ) values higher than approximately 1 mm. This result is the first of its kind
since the strain transfer problem has never been analyzed in an SHM damage detection
probabilistic framework. The effect of the interrogator resolution (∆x) was negligible for
low values of noise (σz = 3 µε), but its effect has been observed for higher noise values
(σz = 10 µε and σz = 30 µε). The human factors, namely the hot-touch and bonding er-
rors, were also analyzed. These kinds of uncertainty sources have never been analyzed
before this research and were revealed to be key variables with a significant impact on
a90 and a90/95.

This research has unfolded only some aspects of SHM systems based on DOFSs
applied to composite structures undergoing mode I static loading conditions. The model
should be further refined to model even more uncertainty sources, such as a variable strain
transfer function along the optical fiber length, or to simulate other loading conditions
(such as fatigue) or crack opening modes (mode II and mode III).

The proposed approach could be used for modeling changing EOCs and simulating
their effect on POD curves. For instance, increasing the strain transfer constant λ in time
would reproduce a degradation of the strain transfer properties expected with the aging of
the adhesive or the optical fiber coating.

This MAPOD framework appears promising to study not only detection but also
localization and sizing problems. The extension of this approach to the subsequent steps of
the SHM paradigm would lead to the development of the model-assisted probability of
localization and sizing (MAPOL and MAPOS). The application of the presented approach
to MAPOL and MAPOS will be the subject of future studies.
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51. Škec, L.; Alfano, G.; Jelenić, G. Enhanced Simple Beam Theory for Characterising Mode-I Fracture Resistance via a Double
Cantilever Beam Test. Compos. Part B Eng. 2019, 167, 250–262. [CrossRef]

52. Cristiani, D.; Sbarufatti, C.; Giglio, M. Damage Diagnosis and Prognosis in Composite Double Cantilever Beam Coupons by
Particle Filtering and Surrogate Modelling. Struct. Health Monit. 2021, 20, 1030–1050. [CrossRef]

53. Truong, H.T.X.; Martinez, M.J.; Ochoa, O.O.; Lagoudas, D.C. Mode I Fracture Toughness of Hybrid Co-Cured Al-CFRP and
NiTi-CFRP Interfaces: An Experimental and Computational Study. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105925. [CrossRef]

https://doi.org/10.4050/JAHS.62.042008
https://doi.org/10.1016/j.tafmec.2022.103501
https://doi.org/10.1016/j.compscitech.2010.12.016
https://doi.org/10.3390/s20113100
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(385)
https://doi.org/10.1016/j.autcon.2022.104262
https://doi.org/10.3139/120.110433
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:12(1343)
https://doi.org/10.1117/1.2173659
https://doi.org/10.3390/s110706926
https://www.ncbi.nlm.nih.gov/pubmed/22163993
https://doi.org/10.1016/j.sna.2018.11.019
https://doi.org/10.1088/0964-1726/24/11/115001
https://www.hexcel.com/user_area/content_media/raw/HexPly_8552_eu_DataSheet.pdf
https://www.hexcel.com/user_area/content_media/raw/HexPly_8552_eu_DataSheet.pdf
https://fbgs.com/technology/ormocer-coating/
https://threebond-europe.com/products/tb1742/
https://doi.org/10.1016/j.compositesb.2018.11.099
https://doi.org/10.1177/1475921720960067
https://doi.org/10.1016/j.compositesa.2020.105925


Sensors 2023, 23, 4813 24 of 24

54. Roach, D. Real Time Crack Detection Using Mountable Comparative Vacuum Monitoring Sensors. Smart Struct. Syst. 2009,
5, 317–328. [CrossRef]

55. Kralovec, C.; Schagerl, M. Review of Structural Health Monitoring Methods Regarding a Multi-Sensor Approach for Damage
Assessment of Metal and Composite Structures. Sensors 2020, 20, 826. [CrossRef]

56. Hall, D.L.; Llinas, J. An Introduction to Multisensor Data Fusion. Proc. IEEE 1997, 85, 6–23. [CrossRef]
57. Cristiani, D.; Falcetelli, F.; Yue, N.; Sbarufatti, C.; Di Sante, R.; Zarouchas, D.; Giglio, M. Strain-Based Delamination Prediction in

Fatigue Loaded CFRP Coupon Specimens by Deep Learning and Static Loading Data. Compos. Part B Eng. 2022, 241, 110020.
[CrossRef]

58. Ricci, F.; Monaco, E.; Boffa, N.D.; Maio, L.; Memmolo, V. Guided Waves for Structural Health Monitoring in Composites: A
Review and Implementation Strategies. Prog. Aerosp. Sci. 2022, 129, 100790. [CrossRef]

59. Ciminello, M.; Boffa, N.D.; Concilio, A.; Galasso, B.; Romano, F.; Monaco, E. Damage Detection of CFRP Stiffened Panels by
Using Cross-Correlated Spatially Shifted Distributed Strain Sensors. Appl. Sci. 2020, 10, 2662. [CrossRef]

60. Ciminello, M.; Concilio, A.; Galasso, B.; Pisano, F.M. Skin–Stringer Debonding Detection Using Distributed Dispersion Index
Features. Struct. Health Monit. 2018, 17, 1245–1254. [CrossRef]

61. Ciminello, M.; Sikorski, B.; Galasso, B.; Pellone, L.; Mercurio, U.; Concilio, A.; Apuleo, G.; Cozzolino, A.; Kressel, I.;
Shoham, S.; et al. Preliminary Results of a Structural Health Monitoring System Application for Real-Time Debonding Detection
on a Full-Scale Composite Spar. Sensors 2023, 23, 455. [CrossRef] [PubMed]

62. Bisagni, C.; Brambilla, P.; Dávila, C.G. Modeling Delamination in Postbuckled Composite Structures under Static and Fatigue Loads;
NASA: Washington, DC, USA, 2013; pp. 1035–1049.

63. Raimondo, A.; Bisagni, C. Fatigue Analysis of a Post-Buckled Composite Single-Stringer Specimen Taking into Account the Local
Stress Ratio. Compos. Part B Eng. 2020, 193, 108000. [CrossRef]

64. Kootte, L.; Bisagni, C. A Methodology to Investigate Skin-Stringer Separation in Postbuckled Composite Stiffened Panels.
In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6 January 2020; American Institute of Aeronautics and
Astronautics: Orlando, FL, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.12989/sss.2009.5.4.317
https://doi.org/10.3390/s20030826
https://doi.org/10.1109/5.554205
https://doi.org/10.1016/j.compositesb.2022.110020
https://doi.org/10.1016/j.paerosci.2021.100790
https://doi.org/10.3390/app10082662
https://doi.org/10.1177/1475921718758980
https://doi.org/10.3390/s23010455
https://www.ncbi.nlm.nih.gov/pubmed/36617052
https://doi.org/10.1016/j.compositesb.2020.108000

	Introduction 
	Materials and Methods 
	MAPOD Concept for DOFSs 
	Strain Transfer 
	Interrogator Resolution 
	Human Factors 
	Hot-Touch Error 
	Bonding Error 

	Environmental Noise 

	The DCB Case Study 
	Experimental Setup 
	DCB Parametric Model 
	Delamination Modeling from a MAPOD Perspective 

	Results 
	Model Validation 
	Length at Detection Method and MAPOD Curve 

	Sensitivity Analysis 
	Noise Effect (Case 1) 
	Strain Transfer Effect (Case 2) 
	Interrogator Resolution Effect (Case 3) 
	Hot-Touch Error Effect (Case 4) 
	Bonding Error Effect (Case 5) 


	Discussion 
	Conclusions 
	References

