Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments
Abstract
:1. Introduction
2. Methods
2.1. Machine Vision Position Tracking
2.2. Design and Operation of Microwave Probes
2.3. Calculation of Phase and Attenuation Coefficients from Dielectric Properties
2.4. 1 mm Thick Reference Material
3. Results
3.1. Dielectric Probe Measurements
3.2. Separation Distance Measurements and Comparison
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Burden of Musculoskeletal Diseases in the United States: Prevalence, Societal and Economic Costs (BMUS), 4th ed.; United States Bone and Joint Initiative (USBJI): Rosemont, IL, USA, 2013; Available online: https://boneandjointburden.org/ (accessed on 1 February 2023).
- Martin, B.I.; Mirza, S.K.; Spina, N.; Spiker, W.R.; Lawrence, B.; Brodke, D.S. Trends in Lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine Surg. 2018, 44, 369–376. [Google Scholar] [CrossRef]
- Cram, P.; Landon, B.E.; Matelski, J.; Ling, V.; Perruccio, A.V.; Paterson, J.M.; Rampersaud, R. Utilization and outcomes for spine surgery in the United States and Canada. Spine 2019, 44, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Bridwell, K.H.; Gupta, M. Bridwell and DeWald’s Textbook on Spinal Fusion Surgery, 4th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2020. [Google Scholar]
- Ponnusamy, K.E.; Iyer, S.; Gupta, G.; Khanna, A.J. Instrumentation of the osteoporotic spine: Biomechanical and clinical consideration. J. Spine 2011, 11, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Mesfin, A.; Komanski, C.B.; Khanna, A.J. Failure of cement-augmented pedicle screws in the osteoporotic spine: A case report. Geriatr. Orthop. Surg. Rehabil. 2013, 4, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Burval, D.J.; McLain, R.F.; Milks, R.; Inceoglu, S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: Biomechanical analysis of pedicle fixation strength. Spine 2007, 32, 1077–1083. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Lane, N.E. Common mistakes in the clinical use of bone mineral density testing. Nat. Clin. Pract. Rheumatol. 2008, 4, 667–674. [Google Scholar] [CrossRef]
- Beck, T. Measuring the structural strength of bones with dual-energy X-ray absorptiometry: Principles, technical limitations, and future possibilities. Osteoporos. Int. 2003, 14, S81–S88. [Google Scholar] [CrossRef]
- Pennington, Z.; Ehresman, J.; Lubelski, D.; Cottrill, E.; Schilling, A.; Ahmed, A.K.; Feghali, J.; Witham, T.F.; Sciubba, D.M. Assessing underlying bone quality in spine surgery patients: A narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. J. Spine 2021, 21, 321–331. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.J.; Wang, R.G.; Liu, D.; Duan, Y.Q.; Liu, Y.J.; Zeng, Y.H.; Zhao, Q.P.; Zhang, Z.P. Three-dimensional Hounsfield units measurement of pedicle screw trajectory for predicating screw loosening in lumbar fusion surgery. Clin. Interv. Aging 2023, 18, 485–493. [Google Scholar] [CrossRef]
- Chen, Z.; Lei, F.; Ye, F.; Zhang, H.; Yuan, H.; Li, S.; Feng, D. Prediction of pedicle screw loosening using an MRI-based vertebral bone quality score in patients with lumbar degenerative disease. World Neurosurg. 2023, 171, e760–e767. [Google Scholar] [CrossRef]
- Lehman, R.A.; Kang, D.G.; Wagner, S.C. Management of osteoporosis in spine surgery. J. Am. Acad. Orthop. Surg. 2015, 23, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, H.C.; Kim, S.I.; Min, H.K.; Ha, K.Y.; Park, H.Y.; Cho, C.H.; Sung, H.S.; Lim, J.H.; Kim, Y.H. Effects of bone cement augmentation for uppermost instrumented vertebra on adjacent disc segment degeneration in lumbar fusions. World Neurosurg. 2023, 171, e31–e37. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.M.; Zhou, T.; Goodwin, D.; Golnabi, A.; Attardo, E.; Paulsen, K.D. Bone dielectric property variation as a function of mineralization at microwave frequencies. Int. J. Biomed. Imaging 2012, 2012, 649612. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.M.; Goodwin, D.; Zhou, T.; Golnabi, A.; Pallone, M.; Geimer, S.D.; Burke, G.; Paulsen, K.D. Clinical microwave tomographic imaging of the calcaneus: Pilot study. IEEE Trans. Biomed. Eng. 2012, 59, 3304–3313. [Google Scholar] [CrossRef]
- Meaney, P.M.; Gregory, A.; Epstein, N.; Paulsen, K.D. Microwave open-ended coaxial dielectric probe: Interpretation of the sensing volume re-visited. BMC Med. Phys. 2014, 14, 1756–6649. [Google Scholar] [CrossRef]
- Meaney, P.M.; Gregory, A.P.; Seppälä, J.; Lahtinen, T. Open-ended coaxial dielectric probe effective penetration depth determination. IEEE Trans. Microw. Theory Tech. 2016, 64, 915–923. [Google Scholar] [CrossRef]
- Meaney, P.M.; Gregory, A.; Lahtinen, T.; Paulsen, K.D. Comments on ‘Investigation of histology region dielectric measurements of heterogeneous tissues’. IEEE Trans. Antennas Propag. 2020, 68, 615–616. [Google Scholar] [CrossRef]
- Rajapakse, C.S.; Padalkar, M.; Yang, H.; Ispiryan, M.; Pleshko, N. Non-destructive NIR spectral imaging assessment of bone water: Comparison to MRI measurements. Bone 2017, 103, 116–124. [Google Scholar] [CrossRef]
- Meaney, P.M.; Rydholm, T.; Brisby, H. A transmission-based dielectric property probe for clinical applications. Sensors 2018, 18, 3484. [Google Scholar] [CrossRef]
- Hill, C.R. Physical Principles of Medical Ultrasound; John Wiley & Sons: London, UK, 1986; pp. 118–190. [Google Scholar]
- Salah-Ud-Din, S.; Meaney, P.M.; Porter, E.; O’Halloran, M. Investigation of abscissa scales for dielectric measurements of biological tissues. Biomed. Phys. Eng. Express 2017, 3, 015020. [Google Scholar]
- Balanis, C. Antenna Theory, 4th ed.; Wiley-Interscience: New York, NY, USA, 2016. [Google Scholar]
- Skolnik, M. Introduction to Radar Systems, 3rd ed.; Tata McGraw-Hill Publishing Company: New Delhi, India, 2002. [Google Scholar]
- Sierpowska, J. Electrical and Dielectric Characterization of Trabecular Bone Quality. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 2007. [Google Scholar]
- Kuric, I.; Kandera, M.; Klarak, J.; Ivanov, V.; Wiecek, D. Visual product inspection based on deep learning methods. In Proceedings of the Grabchenko’s International Conference on Advanced Manufacturing Processes, Odessa, Ukraine, 10–13 September 2019; pp. 148–156. [Google Scholar]
- Tlach, V.; Kuric, I.; Sagova, Z.; Zajacko, I. Collaborative assembly task realization using selected type of a human-robot interaction. Transp. Res. Procedia 2019, 40, 541–547. [Google Scholar] [CrossRef]
- Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016; pp. 4193–4198. [Google Scholar]
- Krogius, M.; Haggenmiller, A.; Olson, E. Flexible layouts for fiducial tags. In Proceedings of the International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019; pp. 1898–1903. [Google Scholar]
- Pfrommer, B.; Daniilidis, K. TagSLAM: Robust SLAM with fiducial markers. arXiv 2019, arXiv:1910:00679. [Google Scholar]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source robot operating system. CRA Workshop Open. Source Softw. 2009, 3, 5. [Google Scholar]
- Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes. In Proceedings of the2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 4304–4311. [Google Scholar]
- Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [Google Scholar] [CrossRef]
- Keysight Technologies. De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Application Note 5980-2784EN; Keysight Technologies: Santa Rosa, CA, USA, 2010. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fortin, J.B.; Lu, T.-M. Chemical Deposition Polymerization: The Growth and Properties of Parylene Thin Films; Kluwer Academic Publishers: New York, NY, USA, 2004. [Google Scholar]
- IEEE International Committee on Electromagnetic Safety Technical Committee 95∗. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz; IEEE Access: New York, NY, USA, 2019. [Google Scholar]
- Irastorza, R.M.; Blangino, E.; Carlevaro, C.M.; Vericat, F. Modeling of the dielectric properties of trabecular bone samples at microwave frequency. Med. Biol. Eng. Comput. 2014, 52, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.M.; Geimer, S.D.; diFlorio-Alexander, R.; Augustine, R.; Raynolds, T. Side-by-side open-ended coaxial dielectric probes for sarcopenia assessment. Sensors 2022, 22, 748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meaney, P.; Augustine, R.; Welteke, A.; Pfrommer, B.; Pearson, A.M.; Brisby, H. Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments. Sensors 2023, 23, 4819. https://doi.org/10.3390/s23104819
Meaney P, Augustine R, Welteke A, Pfrommer B, Pearson AM, Brisby H. Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments. Sensors. 2023; 23(10):4819. https://doi.org/10.3390/s23104819
Chicago/Turabian StyleMeaney, Paul, Robin Augustine, Adrian Welteke, Bernd Pfrommer, Adam M. Pearson, and Helena Brisby. 2023. "Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments" Sensors 23, no. 10: 4819. https://doi.org/10.3390/s23104819
APA StyleMeaney, P., Augustine, R., Welteke, A., Pfrommer, B., Pearson, A. M., & Brisby, H. (2023). Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments. Sensors, 23(10), 4819. https://doi.org/10.3390/s23104819