Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Method
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Main Characteristics of the Studies Included in the Review
3.3. Publication Bias
3.4. Meta-Analysis on Accuracy of Sleep Parameters Assessed Using CCSTDs Versus PSG
3.4.1. Principal Analysis
3.4.2. Subgroup Analyses
3.5. Accuracy, Sensitivity, and Specificity in Detecting Sleep Epochs by CCSTDs Versus PSG
3.5.1. Sleep and Wake Epoch Identification
3.5.2. Sleep Stage Identification
3.6. Comparison of Sleep Parameters Assessed via CCSTDs Versus Actigraphy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maki, K.A.; Fink, A.M.; Weaver, T.E. Sleep, time, and space-fatigue and performance deficits in pilots, commercial truck drivers, and astronauts. Sleep Adv. A J. Sleep Res. Soc. 2022, 3, zpac033. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.M.; Hsu, C.Y.; Hu, C.J. Exploring relationships between health-related lifestyle habits and fatigue among flight attendants and trainees. Work 2022, 74, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Uji, M.; Tamaki, M. Sleep, learning, and memory in human research using noninvasive neuroimaging techniques. Neurosci. Res. 2022, 189, 66–74. [Google Scholar] [CrossRef]
- Drozdowska, A.; Falkenstein, M.; Lücke, T.; Kersting, M.; Jendrusch, G.; Platen, P.; Sinningen, K. Unfavorable Behaviors in Children Run in Packs! Dietary and Non-Dietary Modulators of Attentional Capacity. Nutrients 2022, 14, 5264. [Google Scholar] [CrossRef]
- David, M.; Vieira, G.R.; de Lima Leoncio, L.M.; Dos Santos Neves, L.; Bezerra, C.G.; de Mattos, M.S.B.; Dos Santos, N.F.; Antunes, R.B.; Silva, D.M.; Araujo, J.F.; et al. Different sleep patterns during the COVID-19 pandemic: Association with mood, exercise and light exposure. Psychol. Health Med. 2022, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Yuksel, D.; Prouty, D.; Baker, F.C.; King, C.; de Zambotti, M. Wearable and mobile technology to characterize daily patterns of sleep, stress, presleep worry, and mood in adolescent insomnia. Sleep Health 2022, 9, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Knufinke, M.; Nieuwenhuys, A.; Geurts, S.A.E.; Most, E.I.S.; Moen, M.H.; Maase, K.; Coenen, A.M.L.; Gordijn, M.C.M.; Kompier, M.A.J. Dim light, sleep tight, and wake up bright—Sleep optimization in athletes by means of light regulation. Eur. J. Sport Sci. 2021, 21, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, K.M.; Carskadon, M.A.; Figueiro, M.G.; Zhu, Y.; Rea, M.S. Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules. Sleep Med. 2011, 12, 685–692. [Google Scholar] [CrossRef]
- He, S.; Yan, Y. Impact of advance light exposure on assembly-line workers’ subjective work alertness and sleep quality. Light. Res. Technol. 2022, 55, 105–128. [Google Scholar] [CrossRef]
- Morrison, S.; Haszard, J.J.; Galland, B.C.; Jackson, R.; Meredith-Jones, K.A.; Elder, D.E.; Taylor, R.W. Where does the time go when children don’t sleep? A randomized crossover study. Obesity 2022, 31, 625–634. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Spence, D.W.; BaHammam, A.S. Polysomnography: An Overview. In Primary Care Sleep Medicine; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–42. [Google Scholar] [CrossRef]
- Ibanez, V.; Silva, J.; Navarro, E.; Cauli, O. Sleep assessment devices: Types, market analysis, and a critical view on accuracy and validation. Expert Rev. Med. Devices 2019, 16, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Lujan, M.R.; Perez-Pozuelo, I.; Grandner, M.A. Past, Present, and Future of Multisensory Wearable Technology to Monitor Sleep and Circadian Rhythms. Front Digit Health 2021, 3, 721919. [Google Scholar] [CrossRef] [PubMed]
- Miles, K.H.; Clark, B.; Fowler, P.M.; Miller, J.; Pumpa, K.L. What are the sleep characteristics of elite female athletes? A systematic review with meta-analysis. Biol. Sport 2022, 39, 751–763. [Google Scholar] [CrossRef]
- de Zambotti, M.; Cellini, N.; Menghini, L.; Sarlo, M.; Baker, F.C. Sensors Capabilities, Performance, and Use of Consumer Sleep Technology. Sleep Med. Clin. 2020, 15, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Valero, M.; Clemente, J.; Tse, Z.; Song, W.Z. Smart Sleep Monitoring System via Passively Sensing Human Vibration Signals. IEEE Sens. J. 2021, 21, 14466–14473. [Google Scholar] [CrossRef]
- Kholghi, M.; Szollosi, I.; Hollamby, M.; Bradford, D.; Zhang, Q. A validation study of a ballistocardiograph sleep tracker against polysomnography. J. Clin. Sleep Med. 2022, 18, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Heglum, H.S.A.; Kallestad, H.; Vethe, D.; Langsrud, K.; Sand, T.; Engstrøm, M. Distinguishing sleep from wake with a radar sensor: A contact-free real-time sleep monitor. Sleep 2021, 44, zsab060. [Google Scholar] [CrossRef]
- Hendriks, M.M.S.; van Lotringen, J.H.; Vos-van der Hulst, M.; Keijsers, N.L.W. Bed Sensor Technology for Objective Sleep Monitoring Within the Clinical Rehabilitation Setting: Observational Feasibility Study. JMIR Mhealth Uhealth 2021, 9, e24339. [Google Scholar] [CrossRef]
- Nagatomo, K.; Masuyama, T.; Iizuka, Y.; Makino, J.; Shiotsuka, J.; Sanui, M. Validity of an under-mattress sensor for objective sleep measurement in critically ill patients: A prospective observational study. J. Intensive Care 2020, 8, 16. [Google Scholar] [CrossRef]
- Adkins, K.W.; Goldman, S.E.; Fawkes, D.; Surdyka, K.; Wang, L.L.; Song, Y.N.; Malow, B.A. A Pilot Study of Shoulder Placement for Actigraphy in Children. Behav. Sleep Med. 2012, 10, 138–147. [Google Scholar] [CrossRef]
- Ravindran, K.K.G.; Monica, C.D.; Atzori, G.; Enshaeifar, S.; Mahvash-Mohammadi, S.; Dijk, D.J.; Revell, V. Validation of technology to monitor sleep and bed occupancy in older men and women. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2021, 17, e056018. [Google Scholar] [CrossRef]
- Schütz, N.; Saner, H.; Botros, A.; Pais, B.; Santschi, V.; Buluschek, P.; Gatica-Perez, D.; Urwyler, P.; Müri, R.M.; Nef, T. Contactless Sleep Monitoring for Early Detection of Health Deteriorations in Community-Dwelling Older Adults: Exploratory Study. JMIR Mhealth Uhealth 2021, 9, e24666. [Google Scholar] [CrossRef] [PubMed]
- Lach, H.W.; Lorenz, R.A.; Palmer, J.L.; Koedbangkham, J.; Noimontree, W. Home Monitoring to Track Activity and Sleep Patterns Among Older Adults: A Feasibility Study. Comput. Inform. Nurs. CIN 2019, 37, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X. Effect of the sleep nursing intervention on sleep status and gross motor development of infants. Chin. J. Behav. Med. Brain Sci. 2019, 28, 881–886. [Google Scholar]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; Grp, Q. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Richardson, M.; Garner, P.; Donegan, S. Interpretation of subgroup analyses in systematic reviews: A tutorial. Clin. Epidemiol. Glob. Health 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Zhang, Q.-F.; Tong, Y.-F.; She, C.-P.; Zhang, X.-R.; Song, W.; Wang, L.-M.; Cheng, C.-J. Comparative analysis of polysomnography and micro-sensitive mattress-sleep monitor used for obstructive sleep apnea hypopnea syndrome. Chin. J. Otorhinolaryngol. Head Neck Surg. 2010, 45, 1014–1019. [Google Scholar]
- De Chazal, P.; Fox, N.; O’Hare, E.; Heneghan, C.; Zaffaroni, A.; Boyle, P.; Smith, S.; O’Connell, C.; McNicholas, W.T. Sleep/wake measurement using a non-contact biomotion sensor. J. Sleep Res. 2011, 20, 356–366. [Google Scholar] [CrossRef]
- Hashizaki, M.; Nakajima, H.; Tsutsumi, M.; Shiga, T.; Chiba, S.; Yagi, T.; Ojima, Y.; Ikegami, A.; Kawabata, M.; Kume, K. Accuracy validation of sleep measurements by a contactless biomotion sensor on subjects with suspected sleep apnea. Sleep Biol. Rhythm. 2014, 12, 106–115. [Google Scholar] [CrossRef]
- Norman, M.B.; Middleton, S.; Erskine, O.; Middleton, P.G.; Wheatley, J.R.; Sullivan, C.E. Validation of the Sonomat: A contactless monitoring system used for the diagnosis of sleep disordered breathing. Sleep 2014, 37, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, E.; Flanagan, D.; Penzel, T.; Garcia, C.; Frohberg, D.; Heneghan, C. A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects. Sleep Breath. 2014, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pallin, M.; O’Hare, E.; Zaffaroni, A.; Boyle, P.; Fagan, C.; Kent, B.; Heneghan, C.; de Chazal, P.; McNicholas, W.T. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea. J. Sleep Res. 2014, 23, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Abad, J.; Munoz-Ferrer, A.; Cervantes, M.A.; Esquinas, C.; Marin, A.; Martinez, C.; Morera, J.; Ruiz, J. Automatic Video Analysis for Obstructive Sleep Apnea Diagnosis. Sleep 2016, 39, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Terjung, S.; Wang, Y.; Werther, S.; Zaffaroni, A.; Teschler, H.; Weinreich, G. Validation of SleepMinder® for sleep quality evaluation in patients with OSAS. Somnologie 2016, 20, 54–60. [Google Scholar] [CrossRef]
- Norman, M.B.; Pithers, S.M.; Teng, A.Y.; Waters, K.A.; Sullivan, C.E. Validation of the sonomat against PSG and quantitative measurement of partial upper airway obstruction in children with sleep-disordered breathing. Sleep 2017, 40, zsx017. [Google Scholar] [CrossRef]
- Tal, A.; Shinar, Z.; Shaki, D.; Codish, S.; Goldbart, A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J. Clin. Sleep Med. 2017, 13, 517–522. [Google Scholar] [CrossRef]
- Zaffaroni, A.; Doheny, E.P.; Gahan, L.; Ivanov, Y.; Kilroy, H.; O’Mahony, N.; O’Rourke, D. Non-Contact Estimation of Sleep Staging. In Joint Conference of the European Medical and Biological Engineering Conference (EMBEC), Proceedings of the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, 11–15 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 77–80. [Google Scholar]
- Chung, K.-Y.; Song, K.; Cho, S.H.; Chang, J.-H. Noncontact Sleep Study Based on an Ensemble of Deep Neural Network and Random Forests. IEEE Sens. J. 2018, 18, 7315–7324. [Google Scholar] [CrossRef]
- Schade, M.M.; Bauer, C.E.; Murray, B.R.; Gahan, L.; Doheny, E.P.; Kilroy, H.; Zaffaroni, A.; Montgomery-Downs, H.E. Sleep validity of a non-contact bedside movement and respiration-sensing device. J. Clin. Sleep Med. 2019, 15, 1051–1061. [Google Scholar] [CrossRef]
- Tuominen, J.; Peltola, K.; Saaresranta, T.; Valli, K. Sleep parameter assessment accuracy of a consumer home sleep monitoring ballistocardiograph beddit sleep tracker: A validation study. J. Clin. Sleep Med. 2019, 15, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Zaffaroni, A.; Coffey, S.; Dodd, S.; Kilroy, H.; Lyon, G.; O’Rourke, D.; Lederer, K.; Fietze, I.; Penzel, T. Sleep Staging Monitoring Based on Sonar Smartphone Technology. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 2019, pp. 2230–2233. [Google Scholar]
- Feng, C.; Zhang, H.; Han, Y.; Jin, X.; Yang, F.; Zou, J.; Wang, Y.; Li, Y. Application of impulse-radio ultra-wideband radar as a non-contact portable monitoring device for the diagnosis of obstructive sleep apnea. J. Clin. Otorhinolaryngol. Head Neck Surg. 2020, 34, 634–638. [Google Scholar] [CrossRef]
- Miyata, S.; Otake, H.; Ando, M.; Okuda, M.; Fujishiro, H.; Iwamoto, K.; Noda, A.; Sone, M.; Ozaki, N. Patient characteristics affecting accurate detection of sleep apnea using a bed sheet-type portable monitor. Sleep Breath. 2020, 24, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.D.; Rentz, L.E.; Forsey, J.; Ramadan, J.; Markwald, R.R.; Finomore, V.S., Jr.; Galster, S.M.; Rezai, A.; Hagen, J.A. Evaluations of Commercial Sleep Technologies for Objective Monitoring During Routine Sleeping Conditions. Nat. Sci. Sleep 2020, 12, 821–842. [Google Scholar] [CrossRef]
- Toften, S.; Pallesen, S.; Hrozanova, M.; Moen, F.; Grønli, J. Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy®). Sleep Med. 2020, 75, 54–61. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef]
- Edouard, P.; Campo, D.; Bartet, P.; Yang, R.Y.; Bruyneel, M.; Roisman, G.; Escourrou, P. Validation of the Withings Sleep Analyzer, an under-the-mattress device for the detection of moderate-severe sleep apnea syndrome. J. Clin. Sleep Med. 2021, 17, 1217–1227. [Google Scholar] [CrossRef]
- Ellender, C.M.; Zahir, S.F.; Meaklim, H.; Joyce, R.; Cunnington, D.; Swieca, J. Prospective cohort study to evaluate the accuracy of sleep measurement by consumer-grade smart devices compared with polysomnography in a sleep disorders population. BMJ Open 2021, 11, e044015. [Google Scholar] [CrossRef]
- Xue, J.B.; Zhao, R.; Li, J.; Zhao, L.; Zhou, B.; Dong, X.S.; Han, F. Validation of a contact-free sleep apnea monitor in adults with obstructive sleep apnea. Chin. J. Tuberc. Respir. Dis. 2021, 44, 880–885. [Google Scholar]
- Hsiou, D.A.; Gao, C.; Matlock, R.C.; Scullin, M.K. Validation of a nonwearable device in healthy adults with normal and short sleep durations. J. Clin. Sleep Med. 2022, 18, 751–757. [Google Scholar] [CrossRef]
- Menghini, L.; Cellini, N.; Goldstone, A.; Baker, F.C.; de Zambotti, M. A standardized framework for testing the performance of sleep-tracking technology: Step-by-step guidelines and open-source code. Sleep 2021, 44, zsaa170. [Google Scholar] [CrossRef] [PubMed]
- Kogure, T.; Shirakawa, S.; Shimokawa, M.; Hosokawa, Y. Automatic sleep/wake scoring from body motion in bed: Validation of a newly developed sensor placed under a mattress. J. Physiol. Anthropol. 2011, 30, 103–109. [Google Scholar] [CrossRef]
- Paquet, J.; Kawinska, A.; Carrier, J. Wake detection capacity of actigraphy during sleep. Sleep 2007, 30, 1362–1369. [Google Scholar] [CrossRef]
- Sivertsen, B.; Omvik, S.; Havik, O.E.; Pallesen, S.; Bjorvatn, B.; Nielsen, G.H.; Straume, S.; Nordhus, I.H. A comparison of actigraphy and polysomnography in older adults treated for chronic primary insomnia. Sleep 2006, 29, 1353–1358. [Google Scholar] [CrossRef]
- Zhang, Y. Sensing, computing and intervention for sleep health. Chin. Sci. Bull. 2021, 67, 27–36. [Google Scholar] [CrossRef]
- Lai, J.L.; Yang, Z.C.; Guo, B.N. A Two-Stage Low-Complexity Human Sleep Motion Classification Method Using IR-UWB. IEEE Sens. J. 2021, 21, 20740–20749. [Google Scholar] [CrossRef]
- Montgomery-Downs, H.E.; Insana, S.P.; Bond, J.A. Movement toward a novel activity monitoring device. Sleep Breath. 2012, 16, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef]
- Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [Google Scholar] [CrossRef]
- Tryon, W.W. Issues of validity in actigraphic sleep assessment. Sleep 2004, 27, 158–165. [Google Scholar] [CrossRef]
- Martin, J.L.; Hakim, A.D. Wrist actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.; Bernier, A.; Paquet, J.; Simard, V.; Carrier, J. Validating actigraphy as a measure of sleep for preschool children. J. Clin. Sleep Med. 2013, 9, 701–706. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.; Benedito-Silva, A.A.; Pires, M.L.; Poyares, D.; Tufik, S.; Calil, H.M. Further validation of actigraphy for sleep studies. Sleep 2003, 26, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Jean-Louis, G.; Kripke, D.F.; Cole, R.J.; Assmus, J.D.; Langer, R.D. Sleep detection with an accelerometer actigraph: Comparisons with polysomnography. Physiol. Behav. 2001, 72, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Jean-Louis, G.; Kripke, D.F.; Mason, W.J.; Elliott, J.A.; Youngstedt, S.D. Sleep estimation from wrist movement quantified by different actigraphic modalities. J. Neurosci. Methods 2001, 105, 185–191. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Walsh, C.M.; Traylor, J.; Westin, A.M. Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep 2012, 35, 159–166. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Wong, P.; Biggs, S.N.; Traylor, J.; Kim, J.Y.; Bhattacharjee, R.; Narang, I.; Marcus, C.L. Validation of Actigraphy in Middle Childhood. Sleep 2016, 39, 1219–1224. [Google Scholar] [CrossRef]
- Pollak, C.P.; Tryon, W.W.; Nagaraja, H.; Dzwonczyk, R. How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep 2001, 24, 957–965. [Google Scholar] [CrossRef]
- Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef]
- Shin, M.; Swan, P.; Chow, C.M. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep Sci. 2015, 8, 9–15. [Google Scholar] [CrossRef]
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.M.; Lentz, M.; Kieckhefer, G.M.; Landis, C.A. Polysomnography and actigraphy concordance in juvenile idiopathic arthritis, asthma and healthy children. J. Sleep Res. 2012, 21, 113–121. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sport. Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef] [PubMed]
- Hedner, J.; Pillar, G.; Pittman, S.D.; Zou, D.; Grote, L.; White, D.P. A Novel Adaptive Wrist Actigraphy Algorithm for Sleep-Wake Assessment in Sleep Apnea Patients. Sleep 2004, 27, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Blood, M.L.; Sack, R.L.; Percy, D.C.; Pen, J.C. A comparison of sleep detection by wrist actigraphy, behavioral response, and polysomnography. Sleep 1997, 20, 388–395. [Google Scholar] [PubMed]
- Jean-Louis, G.; von Gizycki, H.; Zizi, F.; Fookson, J.; Spielman, A.; Nunes, J.; Fullilove, R.; Taub, H. Determination of sleep and wakefulness with the actigraph data analysis software (ADAS). Sleep 1996, 19, 739–743. [Google Scholar] [PubMed]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Morgenthaler, T.; Alessi, C.; Friedman, L.; Owens, J.; Kapur, V.; Boehlecke, B.; Brown, T.; Chesson, A., Jr.; Coleman, J.; Lee-Chiong, T.; et al. Practice Parameters for the Use of Actigraphy in the Assessment of Sleep and Sleep Disorders: An Update for 2007. Sleep 2007, 30, 519–529. [Google Scholar] [CrossRef]
- Hauri, P.J.; Wisbey, J. Wrist actigraphy in insomnia. Sleep 1992, 15, 293–301. [Google Scholar] [CrossRef]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2018, 14, 1231–1237. [Google Scholar] [CrossRef]
- Khosla, S.; Deak, M.C.; Gault, D.; Goldstein, C.A.; Hwang, D.; Kwon, Y.; O’Hearn, D.; Schutte-Rodin, S.; Yurcheshen, M.; Rosen, I.M.; et al. Consumer Sleep Technology: An American Academy of Sleep Medicine Position Statement. J. Clin. Sleep Med. 2018, 14, 877–880. [Google Scholar] [CrossRef] [PubMed]
The First Author (Year) | Country | Device | Sensors | Reference and Comparison | Participants | Investigative Details | ||||
---|---|---|---|---|---|---|---|---|---|---|
Total Number (Female Number) | Age (Years), Mean (SD), and/or Range | Type | (Duration) Study Site | Tracker Placement | Bed-Time | |||||
Zhang (2010) [30] | China | MMSM (RS-611) | Pressure | PSG | 40 (5) | 29–71 | OSAHS 1 | (2 nights) Sleep lab | Under-mattress | Habitual |
De Chazal (2011) [31] | Ireland | SleepMinder | Radiofrequency | PSG | 113 (19) | 53 (13) | Healthy, sleep apnoea | (1 night) Sleep lab | Bedside table | Habitual 2 |
50 (3) | 50 (14) | AHI ≤ 15 | ||||||||
63 (16) | 57 (12) | AHI > 15 | ||||||||
Hashizaki (2014) [32] | Japan | SleepMinder | Radiofrequency | PSG | 148 (35) | 43.7 (12.1) ≥18 | AHI ≤ 15 & AHI > 15 | (1 night) Sleep lab | Bedside table | Habitual 2 |
49 (14) | 37.7 (11.6) ≥18 | AHI ≤ 15 | ||||||||
99 (21) | 46.7 (11.2) ≥18 | AHI > 15 | ||||||||
Norman (2014) [33] | Australia | Sonomat | Piezoelectric | PSG | 62 (25) | 26 (16) ≥18 | OSA and Healthy | (1 night) Sleep lab/home | Under-mattress | Habitual 2 |
O’Hare (2014) [34] | Ireland | SleepMinder | Radiofrequency | PSG | 20 (9) | 30 (6) ≥18 | Healthy | (1 night) Sleep lab | Bedside table | 22:30–6:30 |
SleepDesign (HSL-101) | Radiofrequency | |||||||||
Pallin (2014) [35] | Ireland | SleepMinder | Radiofrequency | PSG & actigraphy | 103 (19) | 55 (14) | OSA 3, non-OSA | (1 night) Sleep lab | Bedside table | Habitual 2 |
Abad (2016) [36] | Spain | SleepWise | Infrared camera | PSG | 50 | 53.1 (14.0) >18 | Healthy, Mild OSA, Moderate OSA, Severe OSA | (1 night) Sleep lab | Bedside (60 cm above thorax) | Habitual 2 |
Terjung (2016) [37] | Germany | SleepMinder | Radiofrequency | PSG | 57 (11) | 57.1 (13.4); 32–84 | Healthy, OSA and PLM 4 | (1 night) Sleep lab | Bedside table | Habitual 2 |
Norman (2017) [38] | Australia | Sonomat | Piezoelectric | PSG | 76 (30) | 5.8 (2.8) 2–17 | Suspected SDB 5 | (1 night) Sleep lab | Under-mattress | Habitual 2 |
Tal (2017) [39] | Israel | EarlySense | Piezoelectric | PSG | 43 (9) | 45.9 (14.4) 17–72 | Suspected SDB | (1 night) Sleep lab | Under-mattress | Habitual 2 |
7 (4) | 31.2 (10.8) 24–65 | Healthy | (2–3 nights) Home | |||||||
13 (5) | 40.0 (10) 29–59 | Healthy | (2–3 nights) Home | |||||||
Zaffaroni (2017) [40] | Ireland | ResMed S+ | Radiofrequency | PSG | 18 (10) | 32.6 (10.9) >18 | AHI ≤ 15 | (1 night) Sleep lab | Bedside table | Habitual 2 |
Chung (2018) [41] | Korea | ResMed S+ | Radiofrequency | PSG | 8 (1) | 45.0 (14.6) | Suspected OSA | (1 night) Sleep lab | Bedside table | 23:00–5:00 |
Schade (2019) [42] | USA | ResMed S + V1 | Radiofrequency | PSG & actigraphy | 27 (11) (V1 = 27, V2 = 22) | 29.1 (11.7) ≥18 | Healthy | (1 night) Sleep lab | Bedside table | Habitual–6:00 |
ResMed S + V2 | Radiofrequency | |||||||||
Tuominen (2019) [43] | Finland | Beddit Sleep Tracker | Piezoelectric | PSG | 10 (5) | 24.5 (2.51) 18–30 | Healthy | (2 nights) Sleep lab | Under-mattress | Habitual 2 |
Zaffaroni (2019) [44] | Ireland | ResMed S+ | Radiofrequency | PSG | 62(31) | 46.9(15.9) ≥18 | AHI < 5, PLM < 30/h | (1 night) Sleep lab | Bedside table | Habitual 2 |
Feng (2020) [45] | China | IR-UWB | Radiofrequency | PSG | 40 (11) | 38.3 (9.67) 16~60 | OSA, non-OSA | (1 night) Sleep lab | Bedside table | —— |
Miyata (2020) [46] | Japan | SD102 HSAT sleep recorder | Pressure | PSG | 189 (56) | 56.1 (18.3) ≥20 | OSA, PLMs, Central sleep apnea | (1 night) Sleep lab | Under-mattress | Habitual 2 |
Nagatomo (2020) [20] | Japan | Nemuri SCAN | Pressure | PSG | 11 (3) | 71 (2.82) ≥20 | Perioperative, septic shock | (1 day) ICU | Under-mattress | 21:00–05:99 6 |
Stone (2020) [47] | USA | Beddit Sleep Monitor 3.0 | Piezoelectric | PSG | 5 (3) | 27.8 (7.7) 22–41 | Healthy | (average 19.6 nights) Home | Under-mattress | Habitual 2 |
Toften (2020) [48] | Norway | Somnofy | Radiofrequency | PSG | 71 (43) | 28.9 (9.7) 19–61 | Healthy | (1 night) Clinic bedrooms and home | Nightstand and wall | Habitual 2 |
Chinoy (2021) [49] | USA | EarlySense Live | Piezoelectric | PSG & actigraphy | 34 (22) | 28.1 (3.9) 18–35 | Healthy | (3 nights) Sleep lab | Under-mattress | Habitual |
ResMed S+ | Radiofrequency | Bedside table | ||||||||
SleepScore Max | Radiofrequency | |||||||||
Edouard (2021) [50] | France | Withings Sleep Analyzers (WSA) | Pressure | PSG | 118 (67) | 49.3 (12.1) 18–70 | Healthy, OSA, comorbidities, epilepsy | (1 night) Sleep lab | Under the mattress | —— |
Ellender (2021) [51] | Australia | Beddit | Piezoelectric | PSG | 54 (31) (42 Beddit, 29 ResMed S+) | 48.09 (18.05) >18 | OSA, insomnia, central hypersomnolence disorder | (1 night) Sleep lab | Under-mattress | —— |
ResMed S+ | Radiofrequency | Bedside | —— | |||||||
Xue (2021) [52] | China | UWB Radar Sleep Monitoring System | Radiofrequency | PSG | 198 (78) | 45.5 (4.05) ≥18 | Healthy, OSA | (1 night) Sleep lab | Bedside table | 22:00–6:00 |
Hsiou (2022) [53] | USA | Beddit 3.0 | Piezoelectric | PSG & actigraphy | 35 (27) | 18.97 (0.95) ≥18 | Healthy | (1 night) Sleep lab | Under the bedsheet | 22:30–7:00 h; 1:30–7:00 h |
Beddit 3.5 | Piezoelectric | |||||||||
Kholghi (2022) [17] | Australia | EMFIT Quantified Sleep (QS) | Pressure | PSG | 33 (15) | 53.7 (16.5) 18–80 | Healthy; OSA, PLM | (1 night) Sleep lab | Under the mattress or mattress topper | Habitual 2 |
Outcome | N | n | Pooled Mean | 95% CI | I2 (p) | Z (p) |
---|---|---|---|---|---|---|
TST (min) | 35 | 1873 | 19.55 | 12.22, 26.88 | 88.2% (0.000) | 5.23 (0.000) |
SOL (min) | 17 | 796 | −4.61 | −6.56, −2.66 | 51.1% (0.008) | −4.63 (0.000) |
WASO (min) | 16 | 846 | −12.07 | −18.75, −5.38 | 56.1% (0.003) | −3.54 (0.000) |
SE (%) | 28 | 1391 | 2.88 | 1.58, 4.17 | 34.2% (0.041) | 4.36 (0.000) |
Light Sleep (min) | 10 | 417 | 5.62 | −12.81, 24.06 | 86.8% (0.000) | 0.60 (0.550) |
Deep Sleep (min) | 10 | 417 | 11.07 | 0.37, 21.76 | 75.3% (0.000) | 2.03 (0.043) |
REM (min) | 10 | 417 | 3.44 | −14.81, 21.68 | 95.3% (0.000) | 0.37 (0.712) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, H.; Yan, Y.; He, S.; Zhao, P.; Zhang, B. Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis. Sensors 2023, 23, 4842. https://doi.org/10.3390/s23104842
Zhai H, Yan Y, He S, Zhao P, Zhang B. Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis. Sensors. 2023; 23(10):4842. https://doi.org/10.3390/s23104842
Chicago/Turabian StyleZhai, Huifang, Yonghong Yan, Siqi He, Pinyong Zhao, and Bohan Zhang. 2023. "Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis" Sensors 23, no. 10: 4842. https://doi.org/10.3390/s23104842
APA StyleZhai, H., Yan, Y., He, S., Zhao, P., & Zhang, B. (2023). Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis. Sensors, 23(10), 4842. https://doi.org/10.3390/s23104842