The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms
Abstract
:1. Introduction
1.1. Cosmic Ray Particle Detection
1.2. State-of-the-Art Research Using Off-the-Shelf CMOS Sensors for Cosmic Rays Detection
1.3. Novelty of This Paper
2. Materials and Methods
2.1. Cosmic Ray Particles Detection Using CMOS Sensors
2.2. Hardware Requirements
- The ability to operate in a mode without colour interpolation based on neighbouring pixels. This is usually achieved either by setting the maximum available resolution on the camera or by downloading raw data (RAW mode). In CMOS cameras spatial down sampling may occur due to binning (averaging of neighbour pixels), or via decimation (individual pixels are selected to represent larger blocks of pixels) [31].
- The camera has to be configured to transmit uncompressed data. Many USB cameras transmit data in MJPEG format by default, rendering such images useless for post-pixel-level analysis.
- The camera should download data continuously, thus maximising the observation time [1]. This is accomplished in practice by running the data transfer in video mode rather than post-editing frames. This unfortunately results in reduced data resolution.
2.3. Proposed Hardware for the Long-Term Test of Potential Cosmic Ray Detection Algorithms
2.4. State-of-the-Art Algorithms for Potential Cosmic Rays Detection
- the unknown limit above which we are dealing with potential cosmic ray;
- light recorded by the sensor due to inaccurate shielding of the camera lens.
2.4.1. Single Fixed-Threshold Methods
Algorithm 1: CREDO algorithm [33] for potential cosmic ray detection for mobile devices |
2.4.2. Adaptive Threshold Methods
Algorithm 2: Thomas C. Andersen algorithm for potential cosmic ray detection for mobile devices |
2.5. Prototype Algorithm for a Low-Power Environment for Long-Term and Continuous Potential Cosmic Ray Detection
- It has several loops over the whole image resolution. Without GPU acceleration, which is not always available, the algorithm runs slower on low-power devices, such as smartphones and microcomputers.
- Using fixed-sized blocks with diameter of about is a huge reduction in image resolution. In practice, the number of pixels is reduced 400 times. Furthermore, the fixed spatial position of the blocks might disturb the continuity of events, especially when events are registered at the border between blocks and split between two or even four block. In this case the block score might be below the threshold.
- As will be shown later in Section 3, the moving threshold based on the block score might generate over-detection of potential hits. This is due to the fact that CMOS sensors might be affected by random relatively high-value spot-like noises that, due to their frequency (much higher than expected background radiation), are not caused by cosmic rays hits (see Figure 2 and Figure 3).
Algorithm 3: Our proposed algorithm for potential cosmic ray detection designed for low-power consumption microcomputers. |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plewa, M.I.; Vandenbroucke, J. Detecting cosmic rays using CMOS sensors in consumer devices. In Proceedings of the Academic High Altitude Conference, Chicago, IL, USA, 24 June 2015. [Google Scholar]
- Kumar, R. Tracking Cosmic Rays by CRAYFIS (Cosmic Rays Found in Smartphones) Global Detector. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 1234. [Google Scholar]
- Whiteson, D.; Mulhearn, M.; Shimmin, C.; Cranmer, K.; Brodie, K.; Burns, D. Searching for ultra-high energy cosmic rays with smartphones. Astropart. Phys. 2016, 79, 1–9. [Google Scholar] [CrossRef]
- Cartwright, J. Technology: Smartphone science. Nature 2016, 531, 669–671. [Google Scholar] [CrossRef]
- Góra, D.; Cheminant, K.A.; Alvarez-Castillo, D.; Bratek, Ł.; Dhital, N.; Duffy, A.R.; Homola, P.; Jagoda, P.; Jałocha, J.; Kasztelan, M.; et al. Cosmic-ray extremely distributed observatory: Status and perspectives. Universe 2018, 4, 111. [Google Scholar] [CrossRef]
- Winter, M.; Bourbeau, J.; Bravo, S.; Campos, F.; Meehan, M.; Peacock, J.; Ruggles, T.; Schneider, C.; Simons, A.L.; Vandenbroucke, J. Particle identification in camera image sensors using computer vision. Astropart. Phys. 2019, 104, 42–53. [Google Scholar] [CrossRef]
- Bourbeau, J.; Campos, F. Particle Identification in Smartphone Camera Images Using the Distributed Electronic Cosmic-ray Observatory. ICRC 2019 2019. [Google Scholar] [CrossRef]
- Niedzwiecki, M.; Rzecki, K.; Marek, M.; Homola, P.; Smelcerz, K.; Castillo, D.A.; Smolek, K.; Hnatyk, B.; Zamora-Saa, J.; Mozgova, A.; et al. Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras. arXiv 2019, arXiv:1909.01929. [Google Scholar]
- Albin, E.; Whiteson, D. Feasibility of correlated extensive air shower detection with a distributed cosmic ray network. arXiv 2021, arXiv:2102.03466. [Google Scholar]
- Takano, W.; Hibino, K. Observing Ultra-High Energy Cosmic Rays using Camera Image Sensors. In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Berlin, Germany, 12–23 July 2021. [Google Scholar]
- Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; Sośnicki, T.; Stuglik, S.; Frontczak, M.; Homola, P.; Alvarez-Castillo, D.E.; et al. Zernike moment based classification of cosmic ray candidate hits from CMOS sensors. Sensors 2021, 21, 7718. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Andersen, T.; Budnev, N.M.; Alvarez-Castillo, D.E.; Cheminant, K.A.; et al. CNN-based classifier as an offline trigger for the CREDO experiment. Sensors 2021, 21, 4804. [Google Scholar] [CrossRef]
- Hachaj, T.; Piekarczyk, M.; Bibrzycki, Ł. Deep Neural Network Architecture for Low-Dimensional Embedding and Classification of Cosmic Ray Images Obtained from CMOS Cameras. In Proceedings of the Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, 8–12 December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 307–316. [Google Scholar]
- Hachaj, T.; Bibrzycki, Ł.; Piekarczyk, M. Recognition of cosmic ray images obtained from CMOS sensors used in mobile phones by approximation of uncertain class assignment with deep convolutional neural network. Sensors 2021, 21, 1963. [Google Scholar] [CrossRef]
- Larson, L.R.; Cooper, C.B.; Futch, S.; Singh, D.; Shipley, N.J.; Dale, K.; LeBaron, G.S.; Takekawa, J.Y. The diverse motivations of citizen scientists: Does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 2020, 242, 108428. [Google Scholar] [CrossRef]
- Solano, E.; Rodrigo, C.; Pulido, R.; Carry, B. Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory. Astron. Nachrichten 2014, 335, 142–149. [Google Scholar] [CrossRef]
- Boezio, M.; Munini, R.; Picozza, P. Cosmic ray detection in space. Prog. Part. Nucl. Phys. 2020, 112, 103765. [Google Scholar] [CrossRef]
- Aloisio, R. Ultra High Energy Cosmic Rays an overview. J. Phys. Conf. Ser. 2023, 2429, 012008. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. The Pierre Auger cosmic ray observatory. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2015, 798, 172–213. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and online systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Avrorin, A.; Avrorin, A.; Aynutdinov, V.; Bannash, R.; Belolaptikov, I.; Brudanin, V.; Budnev, N.; Danilchenko, I.; Demidov, S.; Domogatsky, G.; et al. Baikal-GVD. In Proceedings of the EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 136, p. 04007. [Google Scholar]
- Stasielak, J.; Malecki, P.; Naumov, D.; Allakhverdian, V.; Karnakova, A.; Kopański, K.; Noga, W.; Collaboration, B.G. High-energy neutrino astronomy—baikal-gvd neutrino telescope in lake baikal. Symmetry 2021, 13, 377. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; et al. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones. J. Instrum. 2016, 11, P04019. [Google Scholar] [CrossRef]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-ray extremely distributed observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Swaney, J.; Mulhearn, M.; Pratt, C.; Shimmin, C.; Whiteson, D. Measurement of Smartphone Sensor Efficiency to Cosmic Ray Muons. arXiv 2021, arXiv:2107.06332. [Google Scholar] [CrossRef]
- Karbowiak, M.; Wibig, T.; Alvarez Castillo, D.; Beznosko, D.; Duffy, A.R.; Góra, D.; Homola, P.; Kasztelan, M.; Niedźwiecki, M. Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project. Appl. Sci. 2021, 11, 1185. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; Bravo Gallart, S.; Karn, P.; Meehan, M.; Plewa, M.; Ruggles, T.; Schultz, D.; Peacock, J.; Simons, A. Detecting particles with cell phones: The Distributed Electronic Cosmic-ray Observatory. In Proceedings of the 34th International Cosmic Ray Conference, Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar]
- Hansen, S.; Jordan, T.; Kiper, T.; Claes, D.; Snow, G.; Berns, H.; Burnett, T.; Gran, R.; Wilkes, R. Low-cost data acquisition card for school-network cosmic ray detectors. IEEE Trans. Nucl. Sci. 2004, 51, 926–930. [Google Scholar] [CrossRef]
- Hazucha, P.; Svensson, C.; Wender, S. Cosmic-ray soft error rate characterization of a standard 0.6-/spl mu/m CMOS process. IEEE J. Solid-State Circuits 2000, 35, 1422–1429. [Google Scholar] [CrossRef]
- Tykhonov, A.; Kotenko, A.; Coppin, P.; Deliyergiyev, M.; Droz, D.; Frieden, J.M.; Perrina, C.; Putti-Garcia, E.; Ruina, A.; Stolpovskiy, M.; et al. A deep learning method for the trajectory reconstruction of cosmic rays with the DAMPE mission. Astropart. Phys. 2023, 146, 102795. [Google Scholar] [CrossRef]
- Swaney, J.; Shimmin, C.; Whiteson, D. Data Acquisition System for a Distributed Smartphone Cosmic Ray Observatory. J. Astron. Instrum. 2021, 10, 2150016. [Google Scholar] [CrossRef]
- Meehan, M.; Bravo, S.; Campos, F.; Peacock, J.; Ruggles, T.; Schneider, C.; Simons, A.L.; Vandenbroucke, J.; Winter, M. The particle detector in your pocket: The Distributed Electronic Cosmic-ray Observatory. arXiv 2017, arXiv:1708.01281. [Google Scholar] [CrossRef]
- Bibrzycki, Ł.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo, D.E.A.; et al. Towards A Global Cosmic Ray Sensor Network: CREDO Detector as the First Open-Source Mobile Application Enabling Detection of Penetrating Radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Cuciuc, M. Suitability of the Raspberry Pi camera for cosmic ray detection and measurement. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 10–17 November 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Kajino, F.; Ide, I.; Ide, R.; Tameda, Y.; Shinozaki, K.; Bertaina, M.; Cellino, A.; Casolino, M.; Ebisuzaki, T.; Takizawa, Y.; et al. Study for Moving Nuclearites and Interstellar Meteoroids using High Sensitivity CMOS Camera. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; p. 525. [Google Scholar] [CrossRef]
- Kyratzis, D. HERD: The High Energy cosmic-Radiation Detector. Il Nuovo C 2020, 43, 1–10. [Google Scholar] [CrossRef]
- Xu, M. The High Energy Cosmic Radiation Facility onboard China’s Space Station. Nucl. Part. Phys. Proc. 2016, 279–281, 161–165. [Google Scholar] [CrossRef]
- Arqueros, F.; Hörandel, J.R.; Keilhauer, B. Air fluorescence relevant for cosmic-ray detection—Summary of the 5th fluorescence workshop, El Escorial 2007. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2008, 597, 1–22. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’S J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Cao, Y.; Zhang, X. An on-chip hot pixel identification and correction approach in CMOS imagers. In Proceedings of the 2011 International SoC Design Conference, ISOCC 2011, Jeju, Republic of Korea, 17–18 November 2011. [Google Scholar] [CrossRef]
- Yu, J.; Collins, D.; Yasan, A.; Bae, S.; Ramaswami, S. Hot pixel reduction in CMOS image sensor pixels. In Proceedings of the Conference: Digital Photography VI, Part of the IS&T-SPIE Electronic Imaging Symposium, San Jose, CA, USA, 18–19 January 2010; Volume 7537, p. 753704. [Google Scholar] [CrossRef]
- Nakamura, K. Review of Particle Physics. J. Phys. G Nucl. Part. Phys. 2010, 37, 075021. [Google Scholar] [CrossRef]
- Autran, J.L.; Munteanu, D.; Saoud, T.S.; Moindjie, S. Characterization of atmospheric muons at sea level using a cosmic ray telescope. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2018, 903, 77–84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachaj, T.; Piekarczyk, M. The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms. Sensors 2023, 23, 4858. https://doi.org/10.3390/s23104858
Hachaj T, Piekarczyk M. The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms. Sensors. 2023; 23(10):4858. https://doi.org/10.3390/s23104858
Chicago/Turabian StyleHachaj, Tomasz, and Marcin Piekarczyk. 2023. "The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms" Sensors 23, no. 10: 4858. https://doi.org/10.3390/s23104858
APA StyleHachaj, T., & Piekarczyk, M. (2023). The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms. Sensors, 23(10), 4858. https://doi.org/10.3390/s23104858