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Abstract: Underwater video object detection is a challenging task due to the poor quality of under-
water videos, including blurriness and low contrast. In recent years, Yolo series models have been
widely applied to underwater video object detection. However, these models perform poorly for
blurry and low-contrast underwater videos. Additionally, they fail to account for the contextual
relationships between the frame-level results. To address these challenges, we propose a video object
detection model named UWV-Yolox. First, the Contrast Limited Adaptive Histogram Equalization
method is used to augment the underwater videos. Then, a new CSP_CA module is proposed
by adding Coordinate Attention to the backbone of the model to augment the representations of
objects of interest. Next, a new loss function is proposed, including regression and jitter loss. Finally,
a frame-level optimization module is proposed to optimize the detection results by utilizing the
relationship between neighboring frames in videos, improving the video detection performance. To
evaluate the performance of our model, We construct experiments on the UVODD dataset built in
the paper, and select mAP@0.5 as the evaluation metric. The mAP@0.5 of the UWV-Yolox model
reaches 89.0%, which is 3.2% better than the original Yolox model. Furthermore, compared with
other object detection models, the UWV-Yolox model has more stable predictions for objects, and our
improvements can be flexibly applied to other models.

Keywords: underwater video; object detection; coordinate attention; loss function; frame-level
optimization

1. Introduction

Underwater video object detection refers to recognizing objects in videos. With
the rapid development of deep learning, more and more researchers are applying deep
learning to solve the problem of object detection, effectively improving the accuracy and
robustness [1].

In underwater environments, images are often blurry and the contrast is reduced due
to the absorption, reflection, and refraction of light, which ultimately reduces the accuracy
of detection. To address these challenges, one approach is to indirectly improve detection
performance by enhancing the quality of underwater images [2–7]. Another approach used
to optimize the detection performance is to improve the object detection model [8–10].

Compared to image-level object detection, video-level object detection contains richer
temporal and spatial information. Common video object detection methods can be divided
into four categories [11]. (1) The first is to convert video object detection into image object
detection. The spatial information from the videos is then used to optimize the detection
results, which is called post-processing, such as the Seq-NMS method [12]. (2) The second
is to integrate the spatial and temporal information into the video object detection network
and learn relevant information during model training [13,14]. (3) The third is based on
feature filtering, where the model focuses on the relative key features and suppresses or
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discards unnecessary calculations [15]. (4) The fourth is to use efficient neural networks for
video object detection [16], improving the detection accuracy and speed through special
network designs.

Most existing research on object detection focuses on non-underwater scenes or un-
derwater image object detection. However, existing object detection models have limited
detection capabilities for underwater videos with blurry images and low contrast. For
objects with blur and low contrast, it is difficult for the model to obtain their detailed
features, so they are often undetected or detected as other categories, which reduces the
accuracy and recall of detection. In addition, they cannot also utilize the relationships
between adjacent frames in the videos. The detection results of the same object between
adjacent frames often have large differences in confidence and experience a serious jitter
phenomenon, which affects the overall effect of video detection. As a result, their detection
performance is unsatisfactory for underwater videos. Therefore, we propose an improved
Yolox video object detection model named UWV-Yolox.

Considering the low contrast of the underwater video, we believe that enhancing the
contrast of the input is conducive to recovering the feature of the object, so we first use
the Contrast Limited Adaptive Histogram Equalization method to enhance the contrast
of the input. Second, our intuition is that augmenting the representations of the objects of
interest in the model is beneficial for learning more feature information about the object.
Therefore, we integrate the coordinate attention module [17] into the backbone module to
propose the CSP_CA module, which integrates the location information into the feature
map. The loss function is used to evaluate the gap between the predicted object and the
ground truth object. In order to reduce the gap, we propose a new jitter loss function and
CIOUlog regression loss. The jitter loss utilizes the change in object position acceleration
of the adjacent frames in the video to suppress jitters. The CIOUlog regression loss uses
overlapping area, position, and shape into consideration to make the predicted objects
similar to the ground truth objects. Finally, for the same object detected in the video, we
consider that good detection results can optimize the poor results. Thus, we propose a
frame-level optimization module, which links tubelets for re-scoring and re-coordinating.

Our main contributions are as follows:

1. We use the Contrast Limited Adaptive Histogram Equalization method to enhance the
contrast of underwater videos, making the model more suitable for underwater detec-
tion. We also propose a new CSP_CA module by integrating Coordinate Attention to
augment the representations of the objects of interest;

2. We propose a new loss function, which includes classification loss, regression loss,
confidence loss, and jitter loss, to improve the model’s performance in video detection;

3. We propose a frame-level optimization module, which uses tubelet linking, re-scoring,
and re-coordinating to optimize the model’s results in video object detection.

The rest of this paper is organized as follows. Section 2 shows the research related
to underwater video object detection. Section 3 introduces the methods of the proposed
UWV-Yolox model. Section 4 presents the experiments conducted on the UVODD dataset
built in this paper to validate the effectiveness of the proposed underwater object detection
model. Section 5 provides the conclusion of this paper.

2. Related Work
2.1. Image-Level Underwater Object Detection

One way to improve detection performance is to enhance the quality of the underwater
images. Karel et al. proposed Adaptive Histogram Equalization (AHE) and Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) for contrast enhancement, respectively [2].
In 2007, Kashif et al. proposed a sliding stretch-based method to enhance images [3].
In 2018, Huang et al. proposed a relative global histogram stretching method based on
adaptive parameter acquisition to correct the contrast and color of images [4].

The above are traditional image augmentation methods. In recent years, deep learning
has been applied to image augmentation. Li et al. used Convolution Neural Network
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(CNN) to construct an image dehazing model in 2017, which can generate augmented
images end-to-end [5]. In 2021, Fu et al. proposed a dehazing network using a 2D discrete
wavelet transform to enhance images [6]. In 2022, Liu et al. proposed a Cycle Generative
Adversarial Network (Cycle-GAN), which achieved image dehazing under unsupervised
training [7].

Another way to optimize the detection performance is to improve the object detection
model. In 2021, Zhang et al. proposed a Yolov4-based lightweight underwater object
detection method and multi-scale attentional feature fusion module to trade off accuracy
and speed [8]. In the same year, Zhang et al. fused Yolov4 and FaceNet models for feature
extraction and prediction to improve the recognition of fish underwater [9]. In 2022, Li et al.
proposed an improved Ghost-Yolov5 network based on an attention mechanism, using
Ghostconvolution from ChostNet to replace the convolution kernels in Yolov5 and adding
an attention mechanism to the feature extraction network [10].

These image-level object detection methods have improved detection accuracy, but
they only consider the information from single images. For video object detection, there is
still rich spatiotemporal information that has not been fully utilized.

2.2. Video-Level Object Detection

In 2016, Kang et al. proposed a complete framework for the VID task based on image-
based object detection and object tracking. They utilized a temporal convolution network
to optimize the detection results [18]. In 2021, He et al. proposed an end-to-end video
object detection model based on a spatiotemporal transformer architecture, presenting a
temporal transformer to aggregate both the spatial object queries and the feature memories
of each frame [19]. Zhao et al. proposed the first weakly supervised video salient object
detection network based on fixed-guided scribble annotation, effectively fusing visual
dynamic features through the visual dynamic fusion module and velocity information
enhancement module [20].

These video object detection methods have achieved great results in conventional de-
tection tasks, but in underwater scenes, they still cannot reach a reasonable detection result.

3. Methods

The structure of the UWV-Yolox model is shown in Figure 1. It can be divided into five
modules: input, backbone, neck, prediction, and a frame-level optimization module. In the
input module, we add Contrast Limited Adaptive Histogram Equalization to enhance the
input videos. We propose the CSP_CA module to replace the CSP module in the backbone
module by integrating a Coordinate Attention module. In the prediction module, we
propose jitter loss and regression loss. Finally, we add a frame-level optimization module
to optimize the detection results.

3.1. Video Contrast Enhancement

In underwater environments, the contrast of the underwater videos is usually low,
which causes interference with the feature information of the objects. To solve this problem,
we recover more feature information in the underwater video by enhancing the contrast to
improve the detection effect. Contrast Limited Adaptive Histogram Equalization (CLAHE)
is an adaptive histogram equalization method, which divides the input into small blocks
and then performs limited histogram equalization. Blocking and limiting contrast before
equalization can avoid overexposed areas and suppress noise. Therefore, we use the
CLAHE method to enhance the contrast of the underwater video.
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Figure 1. UWV-Yolox structure.

Contrast Limited Adaptive Histogram Equalization (CLAHE) improves Histogram
Equalization (HE). For a grayscale image {x}, let ng be the number of times the grayscale
g appears. Then the probability of grayscale g appearing in the entire grayscale image is
defined as follows:

px(g) = p(x = g) =
ng

n
, 0 ≤ g < L (1)

The total number of gray values is denoted by L (usually 256), and n represents the total
number of pixels in the image. Therefore, the cumulative distribution function of the gray
level can be expressed as Equation (2), which is also the cumulative normalized histogram
of the gray image.

fx(g) =
g

∑
t=0

px(x = t) (2)

Then, through the transformation of y = T(x), the original gray-scale image {x} is
transformed into the contrast-enhanced gray-scale image {y}. The specific linear cumula-
tive distribution function of the enhanced image is defined as follows:

fy(g) = kg (3)

The relationship between the cumulative distribution function of the original gray
image and the enhanced image is shown in Equation (4), and a is a constant.
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fy
(
y′
)
= fy(T(a)) = fx(a) , 0 ≤ a < L (4)

The function T(·) maps a to the range of [0,1] using the normalized histogram. To
remap the values back to the original range, a transformation needs to be applied to the
results to obtain the final enhanced gray-level image {y}, as shown in Equation (5).

y′ = y(max { fv} −min { fv}) + min { fv} (5)

In this way, the grayscale image {x} can be transformed into the contrast-enhanced
grayscale image {y} after Histogram Equalization.

CLAHE first divides the input image into several non-overlapping blocks of equal size.
It then calculates the histogram of each sub-block and computes the clipping threshold.
After pixel redistribution, it performs Histogram Equalization. Finally, it reconstructs
the grayscale values of the pixels. The clipping threshold prevents noise amplification in
regions that are almost constant—but with noise. It limits the slope of the transformation
function by clipping the histogram to a predefined value before computing fy. In CLAHE,
the clipping threshold is proportional to the slope of the transformation function, which is
proportional to the slope of the cumulative distribution function fx in the neighborhood.
Therefore, it is proportional to the value of the histogram at that pixel location. The part
of the histogram that exceeds the clipping limit is not discarded but is instead evenly
distributed among all histogram blocks.

While applying CLAHE to a video, the video is first extracted into several frames,
then each frame is separated into three color channels: Red, Green, and Blue (RGB). Next,
CLAHE is applied separately to each color channel to enhance the contrast. Finally, we
convert the augmented data back into a video with enhanced contrast. The entire process
is shown in Figure 2.

Figure 2. Process of the CLAHE method.

3.2. CSP_CA Module

Blurring is inevitable in underwater videos, which makes it harder for the model
to accurately detect objects. In this paper, we propose an improved CSP module named
CSP_CA by integrating a Coordinate Attention (CA) module into the CSP module. It
improves the detection performance on blurry underwater videos.

As shown in Figure 3, the CA module can be divided into two steps: coordinate
information embedding and coordinate attention generation. Coordinate information
embedding is performed first. It does not use two-dimensional global pooling to compress
the feature tensor into a single feature tensor, which would cause the loss of positional
information. The CA module decomposes both horizontal and vertical global pooling into
one-dimensional feature encoding operations. So, it allows the model to capture long-
term dependencies between channels along one direction and preserves object positional
information along the other direction to help the network more accurately locate the
interesting objects. Then, the CA module performs coordinate attention generation. The
two cascaded feature maps are transformed using a shared 1× 1 convolution, followed
by normalization and nonlinear transformation to generate an intermediate feature map.
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Then, the intermediate feature map is split along the horizontal and vertical directions
into two separate tensors. Each tensor is transformed into the same number of channels
as the input feature map using a 1× 1 convolution. After expansion, the two tensors are
used as attention weights and added to the input feature map through multiplication to
add positional information. Unlike the channel attention mechanism that only focuses on
channel information, the CA module also encodes spatial information.

Figure 3. Coordinate attention module.

In the UWV-Yolox model, we propose the CSP_CA module by integrating the CA
module into the CSP module. The structure of the CSP module is shown in Figure 4a. It
divides the input feature map into the trunk branch and the residual branch. The residual
branch directly performs convolution to extract features, while the trunk branch convolves
first, and then goes through multiple Res Unit structures. Due to the different structures of
the Res Unit, the CSP module includes CSP1 and CSP2 structures. The Res Unit structure
in the CSP1 module adopts a residual structure. It extracts features through the residual
structure of two consecutive convolutional layers. The Res Unit structure in the CSP2
module is directly composed of two consecutive convolutional layers. The two branches
are then merged to output the feature map through concat operation

There are two structures of the CSP_CA module, namely CSP_CA1 and CSP_CA2,
as shown in Figure 4b,c. For the Res Unit in the original CSP that contains the residual
structure, it is replaced by the CSP_CA1 module. A CA module is added between the
CBS module and the Res Unit module in its trunk branch, which enhances the ability to
extract blurry features. The Res Unit module in the original CSP module that does not
contain the residual structure is replaced by the CSP_CA2 module. The Res Unit module
is replaced by the CA module in its trunk branch, reducing the number of parameters of
the model [21]. The CSP_CA module improves the detection accuracy of the UWV-Yolox
model without significantly reducing the detection speed. The CSP_CA module extracts
the position information along both the horizontal and vertical directions. Each element in
the two attention maps reflects whether the object of interest exists in the corresponding
row and column. Two-direction location is beneficial for exacting the position of the object
of interest. Therefore, the CSP_CA module can augment the representations of the objects
of interest and have better robustness to noise and interference in the input data, thereby
improving the performance and generalization ability.
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Figure 4. CSP_CA module and CSP module.

3.3. Loss Function

The loss function of the UWV-Yolox model includes classification loss, regression loss,
confidence loss, and jitter loss, which is defined as follows:

Loss = λclsLosscls + λregLossreg + λcon f Losscon f + λjitterLossjitter (6)

Both the classification loss and the confidence loss use Binary CrossEntropy (BCE) loss, as
shown in Equation (7), where y represents the value of ground truth and p(x) represents the
value of prediction. The classification loss calculates the loss of class between the prediction
and ground truth, and the confidence loss calculates the loss of classified confidence.

LossBCE = −ylog(p(x)) + (1− y) log(1− p(x)) (7)

In object detection tasks, bounding boxes are used to locate the objects. To evaluate the
quality of the predicted boxes, the closeness between the predicted box and the ground truth
box is calculated, which is also known as the regression loss. The IOU loss is commonly
used as regression loss. The IOU between two detection boxes A and B is defined as the
intersection over the union of their areas, as shown in Equation (8). The larger the IOU,
the closer the predicted box is to the ground truth box, and the smaller the loss should be.
Therefore, the IOU regression loss function can be expressed as follows:

IOU =
A ∩ B
A ∪ B

=
A ∩ B

A + B− A ∩ B
(8)

Lossreg = 1− IOU2 (9)

However, IOU only considers the relationship between the area of the predicted
bounding box and the ground truth bounding box, ignoring the information about their
position and shape. Therefore, only using IOU to calculate the regression loss is not accurate
enough. In order to more comprehensively utilize the relationship between the predicted
bounding box and the ground truth bounding box, a new regression loss function CIOUlog
is used in the UWV-Yolox model, which considers the overlapping area, position, and
shape of two bounding boxes, as shown in Equation (10).

CIOUlog = IOUlog −
(

ρ2

c2 + αv
)

(10)
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IOUlog represents the overlap area loss, which is defined as follows:

IOUlog =
log (wi + λ)(hi + λ)

log (w1 + λ)(h1 + λ) + log (w2 + λ)(h2 + λ)− log (wi + λ)(hi + λ)
(11)

The size differences of the detected bounding boxes are relatively large when taking into
account the different sizes of underwater objects. It makes a significant difference in the
value of the IOU. In order to make the IOU loss more stable in this situation, the logarithm
of the area is taken before calculating IOU. At the same time, in order to avoid the situation
where the value of the area is too small so the logarithm result becomes negative and the
size difference becomes large, λ is added to the bounding box’s edge length before taking
the logarithm. So that it maps the values of edge length to regions where the logarithmic
function changes relatively smoothly In the UWV-Yolox model, λ is set to 1 to map the
values to a range greater than 0. IOUlog also has a larger value than IOU, which increases
the proportion of overlap area loss in the entire regression loss.

ρ2

c2 represents the position loss, where ρ2 represents the distance between the centers
of the two boxes, and c2 represents the diagonal length of the outer rectangle of the two
boxes. αv represents the shape loss, where v represents the difference in aspect ratio
between the two boxes. It is calculated using the inverse trigonometric function, as shown
in Equation (12). α is calculated by v and IOUlog, as shown in Equation (13).

v =
4

π2 (arctan
w1

h1
− arctan

w2

h2
)

2
(12)

α =
v

1− IOUlog + v
(13)

The larger the value IOUlog is, the closer the predicted bound box is to the ground truth
bound box. Above all, the CIOUlog regression loss function can be expressed as follows:

Lossreg = 1− CIOUlog (14)

In video object detection, different frames in a video are individually detected. How-
ever, the detector’s accuracy varies for each frame, so the predicted bounding boxes of
adjacent frames may vary significantly, which is not consistent with the fact that the bound-
ing boxes of adjacent frames change in a certain pattern. This phenomenon is called jitter.
It not only reduces the accuracy of video object detection but also affects the visualization
of the detection results. To reduce the jitters, the UWV-Yolox model adds a new jitter loss
function. The physical concepts of velocity and acceleration are incorporated to define
the velocity and acceleration of the bounding boxes. Velocity is defined as the difference
between the bounding box coordinates of adjacent frames, as shown in Equation (15).
Acceleration is defined as the difference between the velocities of adjacent frames, which is
defined as follows:

Vi = Yi −Yi−1 (15)

Ai = Vi −Vi−1 (16)

The jitters of the bounding boxes are mainly reflected in the irregular velocities of the
bounding box coordinates between adjacent frames, which means that the acceleration of
the bounding boxes is different. When detecting the same object in adjacent frames, the
object originally changes at a certain acceleration. However, due to the predicted deviation
of the object detection in one frame, the acceleration of the object changes. By suppressing
the change of acceleration to reduce thhe detection errors, the jitters can be suppressed
Therefore, the jitter loss mainly consists of acceleration loss, which calculates the difference
between the predicted box acceleration and the ground truth box acceleration between
adjacent frames, as shown in Equation (17).
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Lossjitter =
1

T − 2

T−2

∑
i=0
|Agt

i − Ai| (17)

T refers to the batch size, and Agt
i represents the acceleration of the ground truth box. In

the UWV-Yolox model, considering that the value of the jitter loss is heavily larger than
other loss functions, the weight coefficient of the jitter loss is set to 0.05.

3.4. Frame-Level Optimization

In video object detection, there may be significant differences in the detection results
for the same object between adjacent frames, resulting in sudden drops in confidence and
bounding box jitters. Therefore, the UWV-Yolox model adds a frame-level optimization
module, including tablet linking, re-scoring, and re-coordinating. The effect of the frame-
level optimization module is shown in Figure 5.

Figure 5. Effect of the frame-level optimization module.

The tubelet linking aims to link the detected bounding boxes of the same object across
adjacent frames. The good detection results can therefore optimize the poor detection
results in the same tubelet. To determine whether two detection results belong to the same
object, a similarity function between the two objects needs to be defined. In this frame-level
optimization module, the Intersection over Union (IOU) between two bounding boxes,
the distance between the center of the bounding boxes dcenter, and the aspect ratio of the
bounding boxes ratiow, ratioh are chosen as evaluation metrics. Then a logistic regression
function outputs a score that represents the similarity between two objects by calculating
the evaluation metrics. The product of this score and the corresponding class confidences
is defined as the similarity score between two objects, which is defined as follows:

score = X(IOU, dcenter, ratiow, ratioh)× scoreA × scoreB (18)

X(·) refers to the logistic regression function, and scoreA and scoreB refer to the classification
confidence scores of the two detected objects A and B, respectively. After determining
the similarity function, a scoring matrix can be created for each pair of detection results
between two frames based on their similarity scores. All paired detection objects between
the two frames are then selected from the score matrix. The selection process starts by
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choosing the pair with the highest similarity score and then setting the corresponding rows
and columns in the matrix to zero. This process is repeated until there are no more available
pairs to be selected. Then, all paired detection objects between the two frames are obtained.

After obtaining all paired detection objects between two frames, the tubelet linking
process begins. The tubelet is built from the first frame, and if the corresponding pair
of objects still exist in the following frames, the tubelet is extended. The tubelet can be
extended until there is no paired detection object with the tubelet object in the next frame.
The new tubelet can be initialized in any frame. For each pair of frames, if the paired objects
do not belong to any existing tubelet, a new tubelet can be created.

The detection results are then optimized based on the linking tubelets. First, the
bounding boxes are re-scored in the same tubelets, using good detection results to optimize
the poor detection results. For the same object appearing in the adjacent frames, the
predicted results should have the same class confidence no matter how large the shape
change is. If the predicted object has low class confidence and belongs to a tubelet in which
one other object has high class confidence, we could believe that the predicted object should
have higher class confidence. So when re-scoring, the average classification confidence
score of all detection objects in each tubelet is calculated and assigned to all objects in the
tubelet, as shown in Equation (19), where N refers to the number of objects contained in
a tubelet.

score =
1
N

N

∑
i=1

scorei (19)

Then, the coordinates of the bounding boxes are re-coordinated in the tubelets. Usu-
ally the movement of the object has a specific pattern and does not suddenly jitter, so
the predicted bounding boxes in the adjacent frames usually change smoothly instead
of changing drastically. We utilize this point to optimize the detected bounding boxes.
Bounding box re-coordinating treats the four coordinates of the detection bounding boxes
in a tubelet as time series with noise. A one-dimensional Gaussian filter is constructed
along each time series, and the filter convolves a Gaussian function with each coordinate of
the bounding boxes in the same tubelet. The sum of the convolution operation is used as
the new coordinates of the detection objects in the tubelets, as shown in Equation (20).

ci =
i+j< fmax

∑
i−j> fmin

ci+jg(j) (20)

g(·) represents the Gaussian function, as shown in Equation (21). The variable x represents
the distance from the center point, while σ represents the standard deviation of the Gaussian
distribution. i represents the current frame, ci represents the coordinate in the current frame,
and fmax and fmin represent the starting and ending frames of the tubelet, respectively.

g(x) =
1√
2πσ

e−
x2

2σ2 (21)

Re-coordinating applies a Gaussian filter to re-coordinate the coordinates of the same
object in adjacent frames, and then use the new coordinates sequence as the bounding box
coordinates of the detected objects in the tubelets. It reduces the bounding box jitters in
video object detection. This effect can be seen in Figure 6. After re-coordinating, sudden
changes of the abnormal coordinate values have been reduced and the overall variation
of the bounding box coordinates of the same object becomes smoother as it suppresses
the jitters.
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Figure 6. Results of re-coordinating. The red circle refers to the coordinates with significant differences
before and after re-coordinating.

4. Results
4.1. Experimental Environment Configuration

The experimental platform used in this paper is a GPU server with the Ubuntu
operating system, with the following main hardware configuration: Intel(R) Xeon(R)
Platinum 8338C CPU and RTX 3090 (24GB) GPU. The UWV-Yolox model is implemented
using the deep learning framework Pytorch 1.10.1 and Python 3.8. In the experiments, the
training input image size is set to 640 × 640, and the test input size is set to 576 × 576. The
batch size is 16, and SGD [22] is used as the optimizer with a default weight decay of 0.0005,
momentum of 0.9, and initial learning rate of 0.005. The NMS threshold is set to 0.5, and
both Mosaic and Mixup probabilities are set to 1.

4.2. Dataset

The existing publicly available datasets are either image datasets or just a few numbers
of videos, which are not suitable for training and testing the UWV-Yolox models in the
paper. Considering that there is currently no universal publicly available underwater video
dataset, we select suitable videos from the collected underwater video datasets to build a
universal underwater video object detection dataset (UVODD).

By collecting and screening publicly available underwater datasets, three datasets with
high data quality are selected, namely Brackish [23], UODD [24], and S-URPC2019 [25].
Brackish is an annotated ocean video dataset captured by cameras installed in temperate
straits. The UODD dataset is established for underwater object detection tasks and contains
data with multiple underwater scenes, multiple objects, large objects, and small objects.
S-URPC2019 is a dataset for underwater object detection in the underwater robot target
capture competition. We select parts of images in these datasets that can be converted into
videos and add them to UVODD.
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In terms of class consistency, considering the classes in publicly available underwa-
ter datasets, five common classes are selected as the UVODD dataset classes: echinus,
holothurian, starfish, fish, and jellyfish. In terms of annotation format consistency, the
ImageNet VID dataset [26] is an important dataset for evaluating video object detection
models. Therefore, we use the storage format and annotation format of the ImageNet VID
dataset as the standard for the UVODD dataset. All annotations in the UVODD dataset
are converted into Pascal VOC format. Thus, the UVODD dataset is built, which can be
used in various underwater video object detection tasks—not just limited to this paper. The
UVODD dataset includes 74 videos, about 10,000 images, and over 20,000 annotated objects.
It also covers different types of underwater scenes, a situation with multiple objects, and a
situation with large and small objects. Thus the UVODD dataset has a certain degree of
representativeness and diversity. The specific information of the UVODD dataset is shown
in Table 1.

Table 1. UVODD dataset.

The Number of
Videos

The Number of
Images

The Number of
Objects

Train 59 6886 15,141
Test 15 1773 5930
Sum 74 8659 21,071

4.3. Experimental Results
4.3.1. Evaluation Metrics

In order to objectively evaluate the performance of the model in underwater video
object detection, we use the mAP@0.5 and FPS to validate. FPS refers to frames per second,
which reflects the detection speed. mAP@0.5 refers to the mean average precision at an
IOU threshold of 0.5, which is defined as follows:

mAP =
∑n

i=1 APi

n
(22)

Here, n refers to the number of classes and AP refers to the average precision for a
single class. Each class can calculate its precision and recall for an IOU threshold. Thus,
the P-R curve can be obtained, and the AP value is the area under the curve, as shown in
Equation (23).

AP =
∫ 1

0
P(r)dr (23)

P(r) represents the precision when the recall is r. The precision represents the proba-
bility that the correctly predicted positive sample accounts for all predicted samples, as
shown in Equation (24). The recall represents the probability of the correctly predicted
positive samples among all positive samples, as shown in Equation (25).

Precision =
TP

TP + FP
(24)

Recall =
TP

TP + FN
(25)

TP represents the number of correctly detected positive samples, FP represents the
number of incorrectly detected negative samples, and FN represents the number of incor-
rectly detected positive samples.

4.3.2. Experimental Results with Different Data Augmentation Methods

Before object detection, contrast enhancement processing with CLAHE is applied to
the input videos. To verify the effect of the CLAHE, we conduct experiments to compare
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CLAHE with several data augmentation methods. Considering that there are no paired
original images and augmented images in the dataset, methods with supervised learning
are not possible. Therefore, we select traditional data augmentation methods and GAN-
based data augmentation methods for experiments. Figure 7 shows the augmented videos
of different data augmentation methods. The fusion augmentation method makes the
videos clearer but causes significant color deviation for the objects in the videos. The
Cycle-SNSPGAN method does not have an obvious dehazing effect on the videos. The
RGSH method corrects the contrast and color of the videos but some parts are excessively
enhanced, causing an exposure phenomenon. Overall, the CLAHE method is the best
augmentation method for underwater videos.

Figure 7. Results of video augmentation.

Table 2 shows the detection results of the detection model when different augmentation
methods are applied to it on the UVODD dataset. It shows that the CLAHE method
improves the mAP@0.5 of underwater video object detection by 1.2% compared with the
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result without augmentation, while other data augmentation methods do not significantly
improve or even weaken the detection performance. It indicates the effectiveness of using
the CLAHE contrast enhancement method to augment underwater videos.

Table 2. Results with different augmentation methods.

Model Augmentation
Methods mAP@0.5(%)

Yolox None 85.8
Improved Yolox Fusion [27] 81.4 (−4.4)

Improved Yolox Cycle-SNSPGAN
[28] 82.9 (−2.9)

Improved Yolox RGSH 86.0 (+0.2)
UWV-Yolox CLAHE 87.0 (+1.2)

Red color means the increase of mAP@0.5. Green color means the decrease of mAP@0.5. Bold means the results
of the UWV-Yolox model. The contents in the ( ) mean the mAP@0.5 value compared with the value without the
augmentation method.

4.3.3. Experimental Results with Individual Improvement

This paper proposes the UWV-Yolox model with five improvements. To verify the
meaningfulness of each improvement and its ability to improve the performance of under-
water video object detection, we conduct the experiments. Each improvement is individu-
ally added to the original UWV-Yolox model, and we then train and test the model on the
UVODD dataset. The results are shown in Table 3.

Table 3. Results of the original UWV-Yolox model with individual improvement.

Methods mAP@0.5(%) Parameters

baseline 85.8 99.00 M
+ Regression loss 86.0 (+0.2) 99.00 M
+ Coordinate Attention 86.5 (+0.7) 82.66 M
+ CLAHE 87.0 (+1.2) 99.00 M
+ Frame-level optimization 87.3 (+1.5) 99.00 M
+ Jitter loss 88.2 (+2.4) 99.00 M
Red color means the increase of mAP@0.5. The contents in the ( ) mean the mAP@0.5 value compared with the
value of baseline.

It can be seen that each improvement improves the performance of the UWV-Yolox
model, indicating their effectiveness in improving the model’s ability to detect objects
in underwater videos. Among all, the jitter loss has a particularly significant effect on
detection. Jitter is a common phenomenon in video object detection, and weakening jitters
through jitter loss is beneficial for improving video detection performance. The CLAHE
method applied to enhance contrast in input videos and the frame-level optimization
module applied to optimize detection results increase the detection mAP@0.5 by at least
1.2%. The addition of a CA mechanism to the model’s backbone also improves the model’s
ability to detect objects, increasing the detection mAP@0.5 by 0.7%. The replacement of
regression loss is not significantly improving the performance, as it is only 0.2% higher
than the baseline. It indicates that the overlapping area plays a major role in evaluating the
proximity between predicted and ground truth boxes.

4.3.4. Results of the Ablation Experiments

We conduct ablation experiments to explore the effectiveness of augmenting videos
using CLAHE, adding a CA mechanism, adding jitter loss, replacing regression loss, and
adding a frame-level optimization module in the UWV-Yolox model. These improvements
are tested separately in six models trained and tested on the same UVODD dataset, as
shown in Table 4.
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Table 4. Results of the ablation experiments.

CLAHE CA Module Jitter Loss Regression Loss Frame-Level Optimization mAP@0.5(%)

85.8
X 87.0 (+1.2)
X X 87.5 (+0.5)
X X X 88.0 (+0.5)
X X X X 88.8 (+0.8)
X X X X X 89.0 (+0.2)

Red color means the increase of mAP@0.5. The contents in the ( ) mean the mAP@0.5 value compared with the
upper value.

From Table 4, it can be seen that each improvement in the UWV-Yolox model improves
the detection results. Considering that the input videos interfered with by the underwater
environment are blurry and of low contrast, the underwater videos are first processed with
CLAHE to enhance the contrast. It makes mAP@0.5 improved by 1.2%, indicating that
enhancing the contrast improves the clarity of the object features in the videos. Next, the CA
module is added to the feature extraction backbone network to augment the representations
of the objects of interest, and the mAP@0.5 is 0.5% higher than when only augmenting the
videos. Additionally, since jitters are inevitable during the detection of bounding boxes
in videos, the jitter loss is added to the loss function, improving by 0.5% for detection. It
indicates that jitters are a common occurrence in videos and an important optimization
point for video detection. Subsequently, the IOU regression loss is replaced with CIOUlog
regression loss, which considers the relationship between the overlapping area, position,
and shape of the predicted and ground truth boxes. It improves the proximity between
the predicted and ground truth boxes and is 0.8% better than the former experiment.
Finally, since the objects in adjacent frames of a video are usually similar, a frame-level
optimization module is added to the model. It constructs tubelets between adjacent frames
for bounding box re-scoring and re-coordinating, improving by 0.2% in underwater video
detection performance.

We compare the experimental results of adding each improvement individually and
the ablation experiments. When comparing the result of directly adding jitter loss with
adding jitter loss after data augmentation and adding the CA module, we found that
the improvement of mAP@0.5 decreased from 2.4% to 0.5%. This indicates that data
augmentation and the CA module lead to improvements in underwater video object
detection and reduce the effectiveness of the jitter phenomenon as well. The same as the
frame-level optimization. However, replacing the regression loss improved the detection
mAP@0.5 from 0.2% in the separation experiment to 0.8% in the ablation experiment. It
suggests that, after reducing the effectiveness of jitter, the overlapping area is not sufficient
to evaluate the proximity between the predicted and ground truth boxes, so the influence
of position and shape is also significant.

4.3.5. Experimental Results of Different Model

To verify the effectiveness of the proposed UWV-Yolox model in underwater video ob-
ject detection, we conduct some comparative experiments to compare the UWV-Yolox
model with other detection models on the UVODD dataset. The results are shown
in Table 5.

From the table, it can be seen that the mAP@0.5 of the UWV-Yolox model reaches
89.0%, the highest among all models, which indicates that the model has the best detection
performance for underwater videos. Compared to the TransVOD_Lite video detection
model, the UWV-Yolox model has higher mAP@0.5 and faster speed. This indicates that the
UWV-Yolox model performs better in detecting underwater videos with low contrast and
blurriness. As for the Boosting R-CNN, an underwater detection model, the UWV-Yolox
model increases the mAP@0.5 by 11.6% and fastens the detection speed. It shows that
the UWV-Yolox model performs better for underwater scenes and makes full use of the
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video information. The UWV Yolox model improves the mAP@0.5 by 6.7% compared
to the Yolov5 model but slows down the detection speed. The process of augmenting
underwater videos and the optimization of detection results using frame relationships
in the UWV-Yolox model benefit for detecting objects in the underwater video but also
consume more detection time, which is not conducive to real-time detection. The YOLOV
model learns the spatiotemporal relationships in videos during model training, but its
generalization ability for underwater scenes is weak. The UWV-Yolox model not only
utilizes video information but also improves the detection of underwater scenes, so it
increases the mAP@0.5 by 4%, requiring more detection time. Compared to the Yolox
model, the UWV-Yolox model improves the mAP@0.5 by 3.2% with close detection speed.
While ensuring detection speed, It improves the detection performance for underwater
videos without slowing down the detection speed.

Table 5. Results of different detection models.

Model Backbone Input Size Batch Size mAP@0.5(%) FPS

TransVOD_Lite [29] ResNet-101 600 × 600 4 69.0 14.9
Boosting R-CNN [30] ResNet-50 1333 × 800 4 77.4 25.4

Yolov5 CSPDarknet 640 × 640 32 82.3 156.2
YOLOV [31] CSPDarknet 640 × 640 32 85.0 104.1

Yolox CSPDarknet 640 × 640 16 85.8 75.6
UWV-Yolox CA_CSPDarknet 640 × 640 16 89.0 71.8

Bold means the results of the UWV-Yolox model.

Figure 8 shows the detection results of various detection models for underwater video
object detection. The red ellipses highlight the superior performance of the UWV-Yolox
model compared with the detection results with the black ellipses. It can be found that most
of the confidence of objects detected by the UWV-Yolox model is higher than the confidence
detected by other models. A few objects show a slight decrease in confidence due to frame-
level optimization, which uses high-confidence objects to optimize the same object with
low confidence in the adjacent frames. Moreover, the UWV-Yolox model can detect objects
that cannot be detected by other models, such as partially occluded objects, incompletely
shaped objects, and blurry objects. This indicates that augmenting the underwater video
and integrating the CA module to utilize the position relationship of blurry objects in
the UWV-Yolox model is beneficial for improving performance in underwater videos.
Compared to other models, the UWV-Yolox model also reduces wrong object detection,
such as detecting one object as multiple objects. In addition, the predicted bounding boxes
of the UWV-Yolox model more accurately locate the objects, and the changes of bounding
boxes between adjacent frames are smoother, suppressing the jitters.

Overall, the UWV-Yolox model improves the performance of object detection in under-
water videos. It improves the classification confidence of most objects. It also enhances the
detection ability for occluded, incomplete, and blurry objects. Furthermore, the UWV-Yolox
model makes the predicted bounding boxes closer to the ground truth bounding boxes and
smoothens the changes of the bounding boxes between adjacent frames, suppressing the
jitters. Although the detection speed of the UWV-Yolox model is not fast, it has reached the
level of real-time detection. However, the frame-level optimization module reduces the con-
fidence of some high-confidence objects by averaging the confidence of the same tubelets to
optimize the low-confidence objects. Additionally, the augmentation of underwater video
and the frame-level optimization module slow down the detection speed.
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Figure 8. The detection results of different underwater video object detection models.

5. Conclusions

We propose the UWV-Yolox model to address the issue of underwater video object
detection. In the model, we use the Contrast Limited Adaptive Histogram Equalization
method to enhance video contrast. In the backbone for feature extraction, we propose
a new CSP_CA module by adding a Coordinate Attention module to the CSP module.
As for the loss function, we add jitter loss to optimize the prediction of object detection
boxes in the design of the loss function. Frame-level optimization module is also added to
optimize the detection results. By conducting experiments, we validate the effectiveness of
the proposed UWV-Yolox model. On the UVODD dataset built in the paper, the mAP@0.5
of the UWV-Yolox model reaches 89.0%, which is 3.2% better than the original Yolox model.

UWV-Yolox provides a new perspective for solving the task of underwater video object
detection, and the improvements of the UWV-Yolox can be flexibly applied to other models
to improve the detection results. The UWV-Yolox model will soon also be applied to an
eco-environment research program for the Environmental Protection Agency to explore
underwater biodiversity and environmental stability in rivers.

In the future, we plan to continue cooperating with the Environmental Protection
Agency to obtain more underwater video data to increase the dataset required for training.
Furthermore, future research will make more in-depth lightweight improvements on
UWV-Yolox, thus fastening the detection speed and reducing the demand for hardware
configuration to expand the application scenarios of the model.
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