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Abstract: In integrated circuit manufacturing, defects in epoxy drops for die attachments are required
to be identified during production. Modern identification techniques based on vision-based deep
neural networks require the availability of a very large number of defect and non-defect epoxy
drop images. In practice, however, very few defective epoxy drop images are available. This paper
presents a generative adversarial network solution to generate synthesized defective epoxy drop
images as a data augmentation approach so that vision-based deep neural networks can be trained
or tested using such images. More specifically, the so-called CycleGAN variation of the generative
adversarial network is used by enhancing its cycle consistency loss function with two other loss
functions consisting of learned perceptual image patch similarity (LPIPS) and a structural similarity
index metric (SSIM). The results obtained indicate that when using the enhanced loss function, the
quality of synthesized defective epoxy drop images are improved by 59%, 12%, and 131% for the
metrics of the peak signal-to-noise ratio (PSNR), universal image quality index (UQI), and visual
information fidelity (VIF), respectively, compared to the CycleGAN standard loss function. A typical
image classifier is used to show the improvement in the identification outcome when using the
synthesized images generated by the developed data augmentation approach.

Keywords: vision-based die attachment inspection; synthesized defective epoxy drop images;
enhanced loss function CycleGAN

1. Introduction

In integrated circuit (IC) manufacturing, vision- or camera-based inspection systems
are often used to enable automatic inspection of defects encountered during IC production.
There are three primary components associated with such systems: a camera sensor, a
computer running the inspection algorithms, and a sorter to separate defective and non-
defective ICs. In this paper, defective epoxy drop images for die attachment are studied
using die substrate images captured by a camera.

Die attachment is a crucial step in the production of ICs. It is also referred to as die
bonding or die mounting and involves attaching a silicon wafer die to a die pad or a
substrate. Adhesive die attachments are most widely used due to their low cost [1]. In
order to create a bond between a die and a substrate, an adhesive die attachment, as its
name implies, uses an adhesive or epoxy. An epoxy die attachment equipment/die bonder
is normally used to attach a die to its substrate using epoxy adhesive [2]. As illustrated
in Figure 1, the die is set on top of the epoxy drop that is placed on the substrate and is
bonded by heating.

A difficult aspect of die attachment is attaching the die to the substrate with the least
amount of epoxy possible. An excessive amount of epoxy could cause the die or chip to tilt
or overflow the substrate, compromising the stability of the entire IC package. On the other
hand, an inadequate amount of epoxy could cause a bond line to become too thin, creating
a weak bond with insufficient mechanical strength, which could lead to die cracking or
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die lifting. It is therefore necessary to inspect epoxy drops for proper die attachment.
Due to the time and cost involved in conducting the inspection manually, the inspection
process has been automated in modern IC manufacturing. The inspection process needs
to be computationally efficient with high accuracy so that it is deployable in an actual
production line.
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Figure 1. Epoxy die attachment.

A vision-based deep learning system can be utilized to conduct the inspection process
automatically by examining images of an epoxy drop to assess whether a proper amount
has been used. Depending on predefined quality standards, the system would accept or
reject the die in real time. The use of modern deep neural networks requires the availability
of a very large number of images with both adequate and inadequate amounts of epoxy. In
practice, only a few images with inadequate amounts of epoxy, named defective or rejected
epoxy images, are available since such cases occur quite infrequently. A good performance
is normally reached when the training data are equally balanced for non-defective and
defective image samples. Furthermore, although the lack of defective epoxy images can be
mitigated by using conventional data augmentation techniques (such as cropping, rotating,
flipping, and translating) [3], these techniques do not provide the image diversity needed
for adequate training or testing of deep neural networks. The testing situation arises when
only non-defective images are used for training a deep neural network and the generated
defective images are used to test the trained network.

Generative adversarial network (GAN) models are being increasingly used for data
augmentation purposes [4]. Many variations of GANs have been introduced in recent years.
A variation of a GAN called CycleGAN [5] has been used to synthesize realistic images in
different applications. In this paper, the CycleGAN standard loss function is modified or
enhanced by utilizing learned perceptual image patch similarity (LPIPS) [6] and a structural
similarity index metric (SSIM) [7] in order to generate more realistic defective or rejected
epoxy images. Different combinations of LPIPS and the SSIM with/without the standard
loss function are examined.

A data augmentation method for generating high-quality rejected epoxy images is
introduced in this paper by enhancing the standard loss function CycleGAN via incor-
porating LPIPS and SSIM image quality metrics. This augmentation approach enables
vision-based deep neural networks to be trained or tested more effectively by having
equal numbers of defective and non-defective images. It is further shown that this data
augmentation of synthesized defective images leads to improved identification outcomes.

The rest of the paper is organized as follows. Section 2 provides a review of previous
works related to GAN models for data augmentation applications. An overview of Cycle-
GAN is then covered in Section 3 together with the introduced enhanced loss function to
address the die attachment problem of interest here. The experimental results in terms of
quantitative evaluation metrics are then presented in Section 4 for the CycleGAN standard
loss function and the enhanced loss function. The paper is finally concluded in Section 5.
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2. Previous Works on Data Augmentation Using a GAN

This section provides a summary of data augmentation performed for different ap-
plications using a GAN. A GAN was used to produce many versions of an image in [8].
A review of medical image augmentation papers using a GAN was covered in [9]. A
pixel-level image augmentation technique was developed in [10] based on image-to-image
translation with a GAN. It was trained on a surface defect dataset of magnetic particle im-
ages to generate synthesized image samples. A variation of CycleGAN named AttenCGAN
was proposed in [11] to synthesize electrical commutators and surface images with artifi-
cial defects to increase the number of image samples. A defect transfer GAN (DT-GAN)
was developed in [12] to produce realistic surface defect images. The Mask2Defect GAN
was suggested in [13] to create surface defect images obtained from an automobile part
stamping plan. A region- and strength-controllable GAN for creating synthesized defects
in metal surfaces was also proposed in [14] based on the idea of image inpainting. To pro-
duce high-quality defect images, a so-called relative mean generative adversarial network
(TARGAN) was introduced in [15] using a metal gear surface defect image dataset and a
hot-rolling strip defect image dataset. In [16], an MAS-GAN-based model was proposed
for the production of industrial defect images by combining an attention mechanism and
a data augmentation module. A framework called DefectGAN was introduced in [17] by
using a compositional-layer-based architecture to generate realistic defect images. For data
augmentation of surface defects on hot-rolled steel strips, three GANs were trained in [18],
a new GAN called a contrastive GAN was proposed in [19], and a semi-supervised learn-
ing (SSL) defect classification approach based on two different networks of a categorized
generative adversarial network (GAN) and a residual network was proposed in [20]. In
order to produce defect images using a large number of defect-free images of commutator
cylinder surfaces from industrial sites, a generation technique known as the surface defect
generation adversarial network (SDGAN) was introduced in [21]. GAN models were also
utilized for unsupervised surface inspection in [22], for anomaly detection on structured
and arbitrary textured surfaces in [23], for Mura defect classification in thin-film transistor
liquid crystal display (TFT-LCDs) in [24], for enhancing the quantity and quality of images
of fabric defects in [25], for the autonomous design of architectural shape sketches in [26],
and for establishing the probabilistic correlations of quasi-static responses of bridges in [27].

More recently, GANs have been used for IC manufacturing applications. A multi-scale
GAN with a transformer (MST-GAN) as a semi-supervised deep learning network was
developed for IC metal package samples in [28]. An IC solder joint inspection approach
was suggested in [29] based on a GAN model and statistical training. In [30], a GAN model
was used to generate pseudo-defective wafer die images from real defective images. A
GAN-based image generation technique for organic light-emitting diode (OLED) panel
defect images was discussed in [31].

In this paper, our objective is to produce realistic defective or rejected epoxy substrate
images based on the few available such images. To meet this objective, we make use of a
large number of defect-free or good epoxy substrate images that are available in order to
generate a large number of defective or rejected epoxy substrate images by using CycleGAN
to translate non-defective or good images to rejected images. For this purpose, we enhanced
the CycleGAN cycle consistency loss function by incorporating other loss functions, which
are discussed in Section 3.

3. Generating Synthesized Defective Images via CycleGAN

The most widely used conditional generative adversarial network for the purpose of
unpaired image-to-image translation is called CycleGAN [5]. A typical CycleGAN learns
the mapping between two distributions via optimization of an objective function by using
two generators and two discriminators. Two losses are incorporated into the CycleGAN
optimization framework: adversarial loss and cycle consistency loss. The adversarial loss
measures the difference between the generated images and the target images according
to the original GAN design [4], and the cycle consistency loss is used to avoid conflicts
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between the learnt mappings. In our problem, we generate synthesized defective or
rejected epoxy drop substrate images from non-defective or good epoxy drop substrate
images. Despite the fact that the CycleGAN generates realistic synthetic images, ambiguity
mapping occurs when a domain with rich information (i.e., good epoxy drop substrate
images) is translated into a domain with relatively weak information (i.e., rejected epoxy
drop substrate images). This ambiguity mapping is addressed in this paper by adding the
loss functions of LPIPS and the SSIM to the standard cycle consistency loss function of the
generator network. More details of these loss functions are stated later in this section.

Two generator networks and two discriminator networks make up the CycleGAN
architecture [5]. Adversarial training is carried out on the networks against one another.
The generators’ objective is to convert an image from one domain to another. The dis-
criminators’ objective is to distinguish between real and synthesized images in their re-
spective domains. Figure 2 demonstrates the CycleGAN framework that we utilized to
achieve data augmentation of defective or rejected epoxy drop substrate images. The data
augmentation model contains the two mapping functions Gg→r : Good→ Rejected and
Gr→g : Rejected→ Good , and the associated adversarial discriminators Dr and Dg. Here,
Dr distinguishes between real rejected epoxy drop substrate images {Ir} and synthesized
rejected epoxy drop substrate images {Is

r } generated from real good epoxy drop substrate
images {Ig}, and likewise Dg distinguishes between {Ig} and {Is

g}. The total loss function of
the CycleGAN can be expressed as a summation of the adversarial losses (Ladvers) and the
cycle consistency loss (Lcyc

)
:

L
(
Gg→r, Gr→g, Dg, Dr

)
= Ladvers

(
Gg→r, Dr

)
+Ladvers

(
Gr→g, Dg

)
+Lcyc

(
Gg→r, Gr→g

)
(1)
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Adversarial losses make sure that the generated images appear realistic, and the cycle
consistency loss reflects the difference between the original image and the reconstructed or
transformed image. The aim is to solve the following optimization problem

G∗(g→r), G∗(r→g) = arg min
Gg→r ,Gr→g

max
Dg ,Dr
L
(
Gg→r, Gr→g, Dg, Dr

)
(2)

More details of the loss functions are stated next.



Sensors 2023, 23, 4864 5 of 16

Adversarial loss function: For both the mapping functions, the adversarial losses
in [4] adopted by the standard Cycle GAN are used. For the mapping function Gg→r and
its discriminator Dr, the optimization problem can be written as

Ladvers
(
Gg→r, Dr, Ig, Ir

)
= Eir∼pdata(ir)[log Dr(ir)]+Eig∼pdata(ig)

[
log (1− Dr(Gg→r

(
ig
)
))
]

(3)

where ir ∼ pdata(ir) and ig ∼ pdata
(
ig
)

denote the distributions of Ir and Ig, respectively,
and E denotes the expected value over all real data instances. Here, Gg→r attempts to
generate images Gg→r

(
ig
)

that look like Ir images, while Dr attempts to distinguish between
synthesized images Is

r ≈ Gg→r
(
ig
)

and real images Ir. Similarly, for the mapping function
Gr→g and its discriminator Dg, the optimization problem can be written as

Ladvers
(
Gr→g, Dg, Ir, Ig

)
= Eig∼pdata(ig)

[
log Dg(ig)

]
+Eir∼pdata(ir)

[
log (1− Dg(Gr→g(ir)))

]
(4)

Cycle consistency loss: Cycle consistency loss converts images back to their original
domain, i.e., ig → Gg→r

(
ig
)
→ Gr→g(G g→r

(
ig
)
≈ ig , known as the forward cycle consis-

tency loss, and ir → Gr→g(ir)→ Gg→r(G r→g(ir) ≈ ir , known as the backward cycle consis-
tency loss. Cycle consistency loss is defined as the combination of the following losses:

LCycle
(
Gr→g, Gg→r

)
= LF_Cycle(Gg→r

)
+ LB_Cycle(Gr→g

)
(5)

where LF_Cycle and LB_Cycle represent the forward and backward cycle consistency losses,
respectively. The cycle consistency loss makes sure that the features of the input images
are preserved in the generated images. For the cycle consistency loss, it matters which
loss function is used for the cycle consistency loss. In this work, we consider several
loss functions separately and in combination for the cycle consistency loss in order to
improve the CycleGAN performance for the die attachment problem of interest here.
When combining the loss functions, they are normalized so that their contributions to the
combined loss function are made equal. A description of the loss functions considered is
presented next.

L1 loss function: Additionally, referred to as mean absolute error (MAE) loss, mea-
sures the absolute distance between the generated image and the target image. In our case,
it is obtained by taking the absolute value of the real good image Ig and the reconstructed
good image Gr→g

(
Gg→r

(
ig
))

. It can be expressed as follows:

LF_Cycle
L1

(
ig, Gr→g(Gg→r

(
ig
)
)
)
= Eig∼pdata(ig),

[∥∥∥ig − Gr→g(Gg→r

(
ig
)
)
∥∥∥

1

]
(6)

Similarly, the absolute value of the real rejected image Ir and the reconstructed good
image Gg→r(Gr→g(ir)

)
is obtained as follows:

LBCycle
L1

(ir, Gr→g(Gg→r

(
ig
)
)) = Eir∼pdata(ir)

[∥∥ir − Gg→r
(
Gr→g(ir)

)∥∥
1

]
(7)

L1 loss function reduces the absolute difference between the images. It is mostly used
to capture low-frequency details or to enforce the accuracy of low frequencies. It has been
used to compute the cycle consistency loss in the standard CycleGAN [5]. The quality of
the generated images can be improved by combining this kind of loss function with another
loss function, as discussed in [32].

L2 loss function: Additionally, referred to as mean squared error (MSE), is obtained
by squaring the difference between the generated image and the target image. In our case,
it can be expressed as follows:

LFCycle
L2

(ig, Gr→g(Gg→r

(
ig
)
)) = Eig∼pdata(ig)

[∥∥∥ig − Gr→g(G g→r

(
ig
)
)
∥∥∥2

2

]
(8)
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LB_Cycle
L2

(irGr→g(Gg→r

(
ig
)
)) = Eir∼pdata(ir)

[∥∥∥ir − Gg→r(Gr→g(ir))
∥∥∥2

2

]
(9)

In [33], L1 and L2 losses were compared and no discernible difference between them
was found. However, according to [34], L1 loss is preferred over L2 loss because it promotes
less blurring. Both of these losses represent pixel-wise losses. They consider pixel-by-pixel
variations between the images. Even though the images being compared are comparable to
the human visual system, there exists a loss in value. Since the computation is based on
each pixel, it is not significantly affected if one shifts an image by just one pixel. The total
loss value gradually rises as a result of the aggregation of each minor difference between
the corresponding pixels of two images. Hence, adding some other loss function to the
standard loss functions can help to improve the performance of the model.

Structural similarity index metric (SSIM): This index has been extensively utilized to
assess image quality [7] and has been used as loss function for numerous image processing
applications [35,36] as well as for GAN-based solutions [32,37,38]. It was created under
the presumption that the human visual system is extremely well suited for sifting through
structural data in a visual input. The structural information degradation between a gener-
ated image and a corresponding input image is measured by the SSIM. Luminance, contrast,
and structure are three sub-indices that make up the SSIM. Luminance is reflected in the
local means, contrast in the local standard deviations, and structure in the local Pearson
correlation between two images. For an input image x and a reconstructed image y, the
SSIM is defined as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (10)

where µx and µy are the mean intensities, σx and σy are the variances, and σxy is the
covariance of images x and y. The constants C1 and C2 are used to prevent numerical
singularity. More information on this index appears in [7]. Here, the SSIM is included
as a loss function to produce visually acceptable images. This index can be expressed
as follows:

LF_Cycle
SSIM

(
ig, Gr→g(G g→r

(
ig
)
)
)
= [1− SSIM

(
ig, Gr→g(G g→r

(
ig
)
)
)
] (11)

LB_Cycle
SSIM

(
ir, Gg→r(G r→g(ir))

)
= [1− SSIM

(
ir, Gg→r(G r→g(ir))

)
] (12)

Learned perceptual image patch similarity (LPIPS): LPIPS indicates how similar
two images appear to the human eye. In essence, LPIPS determines how comparable the
activations of two image patches are for a given network. Therefore, we use it here as a loss
function. Figure 3 and Equations (13) and (14) show how a pertained network F is used to
compute the LPIPS score between a real input image and a reconstructed image.

LF_Cycle
LPIPS

(
ig, Gr→g(G g→r

(
ig
)
)
)
= ∑

l
Tl(
∥∥∥Fl(ig

)
− Fl

(
Gr→g(G g→r

(
ig
)
)
)∥∥∥2

2
) (13)

LB_Cycle
LPIPS

(
ir, Gg→r(G r→g(ir))

)
= ∑

l
Tl(
∥∥∥Fl(ir)− Fl

(
Gg→r(G r→g(ir))

)∥∥∥2

2
) (14)

where F denotes the pertained network with l ∈ L layers for feature extraction, and
T normalizes and scales the deep embedding to a scalar LPIPS score. Then, the L2 distance
is computed and averaged across the dimensions and layers of the network. For feature
distances, the AlexNet [39] network is used here, which is more in line with the structure
of the human visual cortex [6,40].
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Model Architecture and Training

For the generator and discriminator, the same architecture described in the standard
CycleGAN [5] is used here; see Figure 4. The generator feeds its 128 × 128 input image
through three convolutional layers in succession, each of which causes the representation
to become smaller with more channels. Afterwards, a set of six residual blocks follows,
each with 128 filters. Transpose convolutional layers are used to further enhance the
representation for the final image. Apart from the Tanh activation in the last layer for
reconstruction, each layer is followed by instance normalization and a rectified linear unit
(ReLU) as the activation function. The generated image is 128 × 128 in size. The Markovian
discriminator (PatchGAN) [41] is utilized to determine if the image patches are real or
synthesized for the discriminator. Five convolutional layers make up the discriminator,
which is a fully convolutional network. In order to keep the size of the feature maps
at 1/8, the stride is only set to 2 for the first four convolutional layers and the instance
normalization along with Leaky ReLU are utilized as the activation function. To preserve
the size of the feature maps, the stride of the final output layers is set to 1 and the filter
number is set to 1 in order to produce a one-channel prediction map with values ranging
from 0 to 1 for every pixel. The discriminator’s input is a real or synthesized image having
a size of 128 × 128, and the output is 30 × 30 in size. In order to determine if a patch of
the input image is real or synthesized, each output pixel corresponds to a patch of the
input image.
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After defining each component of the CycleGAN, the network is trained. A pseudo
code of the training is shown in Algorithm 1. CycleGAN offers a clear advantage over
utilizing unpaired data. However, our image-generating network is trained using the
paired real good epoxy drop substrate images and real rejected epoxy drop substrate
images in order to test the generated images in a uniform manner. The batch size is set to 1
with 200 epochs and k = 100, which is sufficient for convergence. The model is optimized
using the Adam optimizer with β1 = 0.5 and an initial learning rate of 0.0002 for the first
100 epochs, decreasing the learning rate linearly to 0 for the last 100 epochs. Our CycleGAN
with different cycle consistency losses is implemented in Python (environment version
3.8.13) using the TensorFlow (version 2.9.1) and Pillow (version 9.2.0) libraries.

Algorithm 1. Cycle GAN Training

1: for number of epochs do
2: for k iterations do

3: Draw a minibatch of samples
{

i(1)g , . . . , i(m)
g

}
from data distribution, pdata

(
ig
)

domain Ig

4: Draw a minibatch of samples
{

i(1)r , . . . , i(m)
r

}
from data distribution, pdata(ir) domain Ir

5: Generate m synthetic samples
Is
r : Ig → Gg→r

(
ig
)

Is
g : Ir → Gr→g(ir)

6: Compute adversarial losses
// Combination of discriminator loss on both real and fake images
Ladvers

(
Gg→r, Dr, Ig, Ir

)
= Eir∼pdata(ir)[log Dr(ir)] +Eig∼pdata(ig)[log (1− Dr(Gg→r

(
ig
)
))]

Ladvers
(
Gr→g, Dg, Ir, Ig

)
= Eig∼pdata(ig)[log Dg(ig)] +Eir∼pdata(ir)[log (1− Dg(Gr→g(ir)))]

7: Update the discriminators Dg and Dr
max

Dg
Ladvers

(
Gr→g, Dg, Ir, Ig

)
max

Dr
Ladvers

(
Gg→r, Dg, Ig, Ir

)
8: Generate m cycle samples

ICycle
g : Gg→r(ig)→ Gr→g(Gg→r(ig))

ICycle
r : Gr→g(ir)→ Gg→r(Gr→g(ir))

9: Compute Cycle Consistency Loss
LCycle

(
Gr→g, Gg→r

)
= LF_Cycle(Gg→r

)
+ LB_Cycle(Gr→g

)
/* Different loss functions separately and in combination were used to
calculate the cycle consistency losses LF_Cycle(Gg→r

)
and LB_Cycle(Gr→g

)
*/

10: Compute total generator loss
L
(
Gg→r, Gr→g, Dg, Dr

)
= Ladvers

(
Gg→r, Dr, Ig, Ir

)
+ Ladvers

(
Gr→g, Dg, Ir, Ig

)
+ λLcyc

(
Gg→r, Gr→g

)
11: Update the generators Gg→r and Gr→g

min
Gg→r ,Gr→g

L
(
Gg→r, Gr→g, Dg, Dr

)
4. Experimental Results and Discussion

In this section, first we report our experiments to assess the quality of the generated
images based on our introduced enhanced loss function CycleGAN. Then, we report our
experiments using a typical image classifier (ResNet18) [42]) to show the identification
outcomes with and without using the generated synthesized defective or rejected images.

Our experiments were performed on a server with the 64-bit Windows 10 operating
system with two Intel® Xeon® 2.40 GHz CPUs and with two NVIDIA Tesla K40 m graphics
cards having 256 GB RAM.

4.1. Quantative Evaluation of Generated Images
4.1.1. Evaluation Metrics

Our goal is to create high-quality synthesized rejected epoxy drop substrate images.
This requires quantitative quality evaluation metrics of the synthesized images. The metrics
that are often used for this purpose include peak signal-to-noise ratio (PSNR) [7], the
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universal image quality index (UQI) [43], and visual information fidelity (VIF) [44]. The
testing dataset consists of paired images of the same size.

Peak signal-to-noise ratio (PSNR): Given its simplicity and ease of use, the PSNR is
the most widely used metric for evaluating synthesized images. The PSNR indicates the dif-
ference in pixels between a synthesized and a real image. The quality of the resulting image
improves with an increasing PSNR. Equation (15) indicates how the PSNR is computed:

PSNR = 20 log10 (
Peak Value2

MSE
) (15)

where Peak Value denotes the highest value in the image data, and for an 8-bit unsigned
integer data type, it is 255. The mean squared error (MSE) between two images is given by

MSE =
1

NN ∑N
i=1 ∑N

j=1(x(i, j)− y(i, j))2 (16)

with x and y representing, respectively, the real and the synthesized images of size
N × N. Equation (15) reflects the absolute error in dB.

Universal image quality index (UQI): The UQI compares generated synthesized and
real images in terms of luminance, contrast, and structure, reflecting the characteristics of
the human visual system. It corresponds to the special case of the SSIM when C1 = C2 = 0
in Equation (10) and can be written as the product of three components of correlation,
luminance distortion, and contrast distortion, as follows:

UQI =
σxy

σxσy
· 2x y

(x)2 + (y)2 ·
2σxσy

σ2
x + σ2

y
(17)

where x = {xi|i = 1, 2, . . . , N} and y = {yi|i = 1, 2, . . . , N} denote the real and the syn-
thesized images, respectively, x = 1

N ∑N
i=1 xi, y = 1

N ∑N
i=1 yi, σ2

x = 1
N−1 ∑N

i=1 (x i − x)2,
σ2

y = 1
N−1 ∑N

i=1 (y i − y)2, and σxy = 1
N−1 ∑N

i=1 (x i − x)(y− y). The dynamic range of the
UQI is [−1, 1]. The best value 1 is achieved if and only if for all i = 1, 2, . . . , N, xi = yi.

Visual information fidelity (VIF): Visual information fidelity (VIF) is a full reference
image quality assessment index based on natural scene statistics and the human visual
system (HVS). The HVS is used to determine the accuracy of visual information, which
includes factors such as the sharpness of edges, the accuracy of color representation, and
the ability to detect subtle changes in contrast. VIF measures image fidelity by comparing
the information recovered from a real image x with the information lost in a synthesized
image y using the HVS. It is a straightforward ratio of the real and the generated images
with a value between 0 and 1 and is defined as follows:

VIF =
HVS(y)
HVS(x)

(18)

4.1.2. Dataset

A dataset of O-shape epoxy drop substrate images was provided to us by Texas
Instruments. In the dataset, there were 8850 good epoxy drop substrate images and only
16 rejected epoxy drop substrate images. As explained earlier, this is because defective
patterns of epoxy drops rarely occur during production. To ready the dataset for processing,
we cropped the region of interest (ROI), having a size of 128 × 128, from the images, as
illustrated in Figure 5 (Figure 5a shows ROI cropping of non-defective or good epoxy
drop substrate and Figure 5b shows ROI cropping of defective or rejected epoxy drop
substrate). We selected 88 good epoxy drop substrate images with different lighting
conditions/backgrounds and paired them with rejected epoxy drop substrate images.
Some sample non-defective or good epoxy drop substrate images are shown in Figure 6.
Additional defective or rejected epoxy drop substrate images were generated by rotation
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and vertical/horizontal flips for the experiments. Figure 7 shows the 16 rejected real epoxy
drop substrate images.
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4.1.3. Results and Discussion

We started our experiments by training the model using the standard cycle consistency
loss (i.e., L1) along with the other loss functions (i.e., L2, SSIM and LPIPS) separately as
well as in combination. Then, we generated realistic synthesized images after training
the model.
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Figure 8 shows some sample outcomes of the generated synthesized rejected epoxy
drop substrate images using different loss functions as the cycle consistency loss, sepa-
rately and in combination with the CycleGAN standard loss function. Table 1 shows the
evaluation metrics for different loss functions as the cycle consistency loss (LCycle). As the
dataset utilized was made up of paired image data, all the generated synthesized rejected
images (i.e., Is

r ) exhibited a relatively uniform reference material or real rejected epoxy
drop substrate images (i.e., Ir). This table shows the averages and standard deviations of
the metrics for the rejected images Ir and their generated counterpart, i.e., the generated
synthesized images Is

r translated from the good epoxy drop substrate images Ig using the
CycleGAN network with different loss functions as the cycle consistency loss. The number
of generated images for each loss function separately and in combination was 1408.
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Table 1. Image quality evaluation metrics for different loss functions as the cycle consistency loss.

Loss Function as LCycle
PSNR UQI VFI

Mean ± STD Mean ± STD Mean ± STD

L1 (Standard Cycle GAN) 18.77 ± 4.88 0.86 ± 0.16 0.19 ± 0.08
L2 16.65 ± 1.66 0.89 ± 0.09 0.08 ± 0.05

SSIM 21.06 ± 2.23 0.93 ± 0.05 0.20 ± 0.06
LPIPS 22.51 ± 4.23 0.94 ± 0.09 0.26 ± 0.02

L1 + SSIM 22.94 ± 4.50 0.93 ± 0.07 0.24 ± 0.02
L2 + SSIM 23.39 ± 4.46 0.93 ± 0.08 0.25 ± 0.02
L1 + LPIPS 23.26 ± 3.48 0.93 ± 0.07 0.32 ± 0.03
L2 + LPIPS 22.24 ± 4.98 0.90 ± 0.15 0.27 ± 0.02

L2 + SSIM + LPIPS 20.81 ± 6.75 0.90 ± 0.10 0.17 ± 0.02
L1 + SSIM + LPIPS 29.86 ± 5.11 0.98 ± 0.01 0.44 ± 0.03

From Table 1, one can see that the L2 loss received the lowest score for all the metrics
when used alone and performed better when used in combination with LPIPS and the
SSIM. The standard cycle consistency loss function L1 loss performed worse than both
the SSIM and LPIPS. These findings correlate with the visual examination of the images
shown in Figure 8. We also found that combining the SSIM and LPIPS with L1 separately
improved their scores, but combining all three together (i.e., L1 + SSIM + LPIPS) gave the
best results and visually looked more realistic and similar to the real rejected images.

Furthermore, from the results of Table 1, one can see that L1 performed better than
L2 and the output generated from the L2 function had the blurring effect (see Figure 8), as
mentioned in [34]. Additionally, combining L1 and L2 with the other loss functions also
improved the performance of the model, as noted in [32]. It can be seen that applying the
SSIM for L1 and L2 increased the performance of the model. LPIPS as the loss function was
found to work better independently as well as in combination since it enhanced the image
quality and helped to generate more realistic images, as noted in [45].

4.2. Impact of Generated Images on Defect Identification
4.2.1. Identification Metrics

The image classifier ResNet18 [42] was used here as a typical classifier to show the
impact of the generated images when performing defect identification. As normally done
for classification problems, the confusion matrix, precision, recall, and accuracy of the
classifier were found with and without using the generated images. Table 2 shows a
depiction of the confusion matrix with precision, recall, and accuracy denoted by

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

where TP (true positive) indicates when a rejected image is placed in the defective or
rejected class, TN (true negative) indicates when a good or non-defective image is placed in
the non-defective or good class, FP (false positive) indicates when a non-defective or good
image is placed in the defective or rejected class, and FN (false negative) indicates when a
defective or rejected image is placed in the non-defective or good class.
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Table 2. Confusion Matrix.

Correct Labels

Rejected Good

Predicted Labels
Rejected TP FP

Good FN TN

4.2.2. Datasets

To ready the dataset for the classification experiments, we randomly selected 1400 real
good epoxy drop substrate images and labeled them as non-defective or good. For the
defective or rejected class, the 16 available real defective or rejected epoxy drop sub-
strate images were used to generate 2800 synthesized defective or rejected epoxy drop
substrate images (1400 images were generated by the standard loss function CycleGAN
and 1400 images were generated by our enhanced loss function CycleGAN). Then, these
datasets were divided into 60% training, 20% validation, and 20% testing subsets with no
overlap among them.

4.2.3. Identification Outcomes

While keeping the same non-defective or good class images the same, for the defective
or rejected class, the classifier ResNet18 was trained in three different ways, as follows:

1. By using real rejected epoxy drop substrate images;
2. By using rejected epoxy drop substrate images and generated rejected epoxy drop

substrate images based on the standard loss function CycleGAN;
3. By using rejected epoxy drop substrate images and generated rejected epoxy drop

substrate images based on our enhanced loss function CycleGAN.

Then, the above trained models were tested via the same testing data subset whose
rejected class consisted of a combination of real and generated rejected epoxy drop sub-
strate images. Table 3 shows a comparison of the identification outcomes. As can be
seen from this table, the addition of the synthesized images significantly improved the
identification outcome. Furthermore, our enhanced loss function CycleGAN provided a
higher identification outcome compared to the standard loss function CycleGAN.

Table 3. Confusion matrix and identification outcomes for ResNet18 as a typical image classifier.

Data Augmentation Method

Confusion Matrix Identification Metrics

AccuracyCorrect Labels
Precision Recall

Rejected Good

No augmentation (only real data) Predicted Labels
Rejected 23 02

0.92 0.04 36%Good 540 278

CycleGAN standard with loss function Predicted Labels
Rejected 381 05

0.99 0.68 78%Good 182 275

CycleGAN with enhanced loss function Predicted Labels
Rejected 458 13

0.97 0.81 86%Good 105 267

5. Conclusions

In this paper, the loss function of the generative adversarial network of CycleGAN
was enhanced or modified to generate high-quality defective epoxy drop images for die
attachment in IC manufacturing. Such images are needed for the purpose of training
or testing vision-based deep neural network inspection systems. A CycleGAN network
with different cycle consistency loss functions was designed to generate different sets
of synthesized images. Based on three evaluation metrics, it has been shown that by
incorporating the loss functions of learned perceptual image patch similarity (LPIPS) and
the structural similarity index metric (SSIM) into the standard CycleGAN loss function,
more realistic or higher-quality synthesized epoxy drop images are generated as compared
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to using the CycleGAN standard loss function. Furthermore, it has been shown that our
enhanced loss function CycleGAN as a data augmentation approach leads to improved
identification outcomes when using a typical image classifier. The enhancement approach
developed in this paper is general purpose in the sense that it can be applied to other data
augmentation scenarios involving other types of images.
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