
Citation: Jara Ochoa, H.J.; Peña, R.;

Ledo Mezquita, Y.; Gonzalez, E.;

Camacho-Leon, S. Comparative

Analysis of Power Consumption

between MQTT and HTTP Protocols

in an IoT Platform Designed and

Implemented for Remote Real-Time

Monitoring of Long-Term Cold Chain

Transport Operations. Sensors 2023,

23, 4896. https://doi.org/10.3390/

s23104896

Academic Editors: Alexandru Lavric,

Liliana Anchidin and Adrian

I. Petrariu

Received: 31 March 2023

Revised: 5 May 2023

Accepted: 12 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparative Analysis of Power Consumption between MQTT
and HTTP Protocols in an IoT Platform Designed and
Implemented for Remote Real-Time Monitoring of Long-Term
Cold Chain Transport Operations
Heriberto J. Jara Ochoa, Raul Peña , Yoel Ledo Mezquita , Enrique Gonzalez and Sergio Camacho-Leon *

Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501,
Monterrey 64849, Mexico; a00813912@tec.mx (H.J.J.O.); raul.p.ortega@tec.mx (R.P.); yledo@tec.mx (Y.L.M.);
msegonzalez@tec.mx (E.G.)
* Correspondence: sergio.camacho@tec.mx

Abstract: IoT platforms for the transportation industry are portable with limited battery life and
need real-time and long-term monitoring operations. Since MQTT and HTTP are widely used as the
main communication protocols in the IoT, it is imperative to analyze their power consumption to
provide quantitative results that help maximize battery life in IoT transportation systems. Although
is well known that MQTT consumes less power than HTTP, a comparative analysis of their power
consumption with long-time tests and different conditions has not yet been conducted. In this
sense, a design and validation of an electronic cost-efficient platform system for remote real-time
monitoring is proposed using a NodeMCU module, in which experimentation is carried out for
HTTP and MQTT with different QoS levels to make a comparison and demonstrate the differences
in power consumption. Furthermore, we characterize the behavior of the batteries in the systems
and compare the theoretical analysis with real long-time test results. The experimentation using the
MQTT protocol with QoS 0 and 1 was successful, resulting in power savings of 6.03% and 8.33%,
respectively, compared with HTTP, demonstrating many more hours in the duration of the batteries,
which could be very useful in technological solutions for the transport industry.

Keywords: Internet of Things (IoT); power consumption; Hypertext Transfer Protocol (HTTP);
Message Queue Telemetry Transport (MQTT); long-term monitoring; NodeMCU

1. Introduction
1.1. IoT Technology

In our modern world, considerable progress has been made in Internet of Things (IoT)
technology. IoT systems have had exponential growth, and it is estimated that in future
years, there will be more than 50 billion IoT devices in the world [1,2]. IoT technology
has contributed to the development of novel logistics applications such as intelligent
transportation systems [3], smart traffic monitoring [4,5], supply chain tracking [6], smart
agriculture [7], damage detection, and monitoring the conditions in which goods are
transported and stored [8], among many others.

According to the International Data Corporation (IDC), which is the premier global
provider of market intelligence and advisory services, the transportation sector will have
significant growth in the IoT market, and it is expected to reach USD 195 billion by 2020 [5].
IoT technology is changing the mode of operations in logistics and infrastructure, improving
efficiency, reliability, safety, and tracking.

Even though at present, IoT platforms in the transportation industry are widely used,
they have a big limitation with regard to their power consumption, as most of them are
planned to be portable. Coupled with this, a change of battery is needed at certain intervals
of time, particularly for long-term monitoring.

Sensors 2023, 23, 4896. https://doi.org/10.3390/s23104896 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104896
https://doi.org/10.3390/s23104896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2808-9743
https://orcid.org/0000-0001-8270-3890
https://orcid.org/0000-0003-0732-5855
https://orcid.org/0000-0002-5996-9997
https://doi.org/10.3390/s23104896
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104896?type=check_update&version=1

Sensors 2023, 23, 4896 2 of 23

1.2. Long-Term Cold Chain Transport Operations

Effective cold chain transportation helps to reduce losses for companies. When a cold
chain breaks down during the storage, transportation, and loading and unloading of prod-
ucts, quality and consumer health are compromised [9,10]. In the U.S.A., approximately
88 million tons of food are wasted year by year, representing almost USD 143 billion in
losses [11]. Food spoilage due to the development of microorganisms is favored when
important variations in environmental conditions such as temperature, humidity, and light
intensity occur [12]. Moreover, products are often wasted when failures in refrigeration
or transportation units take place. Conventional cold chain systems can only display and
record environmental data in situ [13]; however, monitoring in real time is needed for
tracking and predicting risks during cold chain transportation [14]. As aforementioned, it
is clear that it is extremely important to find new methods and technologies to ensure the
quality of products. Because of the great potential for monitoring abnormal events related
to temperature and humidity and sensitive products in real time that facilitates taking
corrective actions, IoT technology has rapidly been adopted in the supply chain area.

Technical Challenges in Cold Chain Transportation

Despite the benefits of IoT technology that enable interconnectivity between sen-
sors, vehicles, and cloud-based IT systems, technical challenges need to be considered to
maximize a system’s overall performance:

• Keeping devices connected as they move: A system’s architecture must be suited to
managing bidirectional data transmission and intermittencies in network access when
vehicles are in movement. Some IoT applications within cold chain transportation
could require real-time data transmission over long distances.

• The implementation of embedded systems: Commonly, these kinds of devices have
minimal resources, including low computation power. A lightweight and efficient
protocol is required to optimize network bandwidth.

• Scalability: Broadcasting a message to or from many clients in real time is not an easy
task. Additionally, it is hard to guarantee client–server connections when scaling up
or down the number of devices connected to an IoT system.

• Reliable and secure data management: Identity, the encryption of messages, and
authentication protocols must be used to protect data during the transmission process.

• Energy constraints: Even though at present, IoT platforms in the transportation indus-
try are widely used, they have a big limitation with regard to power consumption, as
most of them are planned to be portable. Coupled with this, a change of battery is
needed at certain intervals of time, particularly for long-term monitoring.

1.3. Research Contribution

The aim of the presented work and the main contributions of this paper include the
following:

• The design and implementation of a cost-efficient IoT electronic platform for the
remote real-time monitoring of long-term cold chain transport operations.

• The evaluation and validation of the performance, accuracy, and precision of the
sensed variables in the electronic platform.

• A comparative analysis of the power consumption between two of the most used
protocols in the IoT, namely, the Hypertext Transfer Protocol (HTTP) and Message
Queue Telemetry Transport (MQTT). The analysis was performed with identical
hardware to compare the HTTP client/server and MQTT publish/subscribe models.
Moreover, the magnitude of the quality of service (QoS) using the MQTT protocol was
valued as either 0 or 1.

• A prediction model for the life cycle of batteries in the implemented platform, accord-
ing to its specifications for long-term tests.

Sensors 2023, 23, 4896 3 of 23

The rest of the paper is organized as follows. Section 2 describes the related work in
terms of IoT architectures with NodeMCU and power consumption evaluations between
the MQTT and HTTP protocols. Then, Section 3 discusses the main features of the MQTT
and HTTP IoT protocols. Afterward, in Section 4, we describe the materials used to design
the platform, and we depict the methods and setups to run the experiments. In Section 5,
we describe the system prototype and the needed cost of each component. Then, Section 6
presents all the obtained results. This paper concludes in Section 7, wherein we provide
our conclusions and future work.

2. Related Work
2.1. NodeMCU for IoT Applications

NodeMCU is a commonly used microcontroller unit (MCU) in wireless and IoT
applications. It is a low-cost open-source IoT platform that includes firmware that runs in
an ESP8266 Wi-Fi system on a chip (SoC) from Espressif Systems. It is a programmable,
simple, and portable microcontroller that can be accessed and controlled remotely at any
location across the globe at any time. NodeMCU can be used for many purposes such as
domotics, smart plugs and lights, industrial wireless control, IP cameras, sensor networks,
wearable electronics, and Wi-Fi location-aware devices, among many others [15]. Some
remarkable experiments are mentioned below.

Khan et al. [16] used NodeMCU in a portable biometric attendance system for aca-
demic purposes with wireless interactions to a web server storing information in a MySQL
database. All the data on a student are stored in the database when a finger is registered,
and his/her attendance is counted automatically and wirelessly stored in the designed
database.

Wi-Fi microcontrollers are also frequently used in domotics. They are not only used
for status indicators of different variables but also for efficient control and optimization
performance, avoiding the unnecessary use of power and resources by turning on/off
lights, regulating their intensity, and controlling fan and water pump flow [17–19].

Abdulahad [20] elaborated a system to control air quality, temperature, and humidity
in many food stores in remote locations through web servers. Two actions are taken: an air
cooler is turned on to cool down perishable food when some variables reach certain values,
and an air puller is activated to pull the contamination out of the locations.

Furthermore, health is an important area in which improvements in IoT technology
can always be made. Chooruang [21] implemented a heart rate monitoring system using an
ESP8266 Wi-Fi module (AMICA, Taiwan) in which detection of the real-time heart rate of a
patient was realized, obtaining a very good percentage error of approximately 2% and 6%.
Besides heart rate monitoring, blood pressure monitoring experiments have been conducted.
Singh [22] created an economically user-friendly method to detect blood pressure in real
time. The prediction program can automatically release an appropriate medical dosage
invasively in cases of an emergency. In addition, blood pressure readings are immediately
communicated to emergency contacts if the data are outside of the threshold.

Some other investigations and experiments have been conducted in the IoT area that
will have a lot of applications in the near future such as in voice-controlled autonomous
vehicles [23]. IoT applications are limitless and can be used in any area and in any environ-
ment with the correct sensors, actuators, and displays.

2.2. Power Consumption between HTTP and MQTT

In terms of the application layer, which is responsible for the interface between com-
munications and the application running on the host [24], two of the most representative
application protocols for IoT technology, namely, HTTP and MQTT, are compared. These
two protocols play important roles because both protocols are used in the experimenta-
tion part in Section 5, which gives us important results in Section 6 related to the power
consumption of the system.

Sensors 2023, 23, 4896 4 of 23

Wireless communication protocols represent a percentage of the total power consump-
tion in an IoT platform, in which the battery depends on the selected protocol. Below,
some experiments evaluating power consumption using the HTTP and MQTT protocols
are presented.

In [25], energy consumption studies on 3G and Wi-Fi transmission using real traffic data
were conducted. The studies were performed with a modern smartphone for Wi-Fi, a specific
mobile broadband module for 3G, and a major mobile operator, where the application was
run using the MQTT and HTTP protocols. MQTT resulted as a better solution for energy
consumption when the number of users and the sharing interval were low.

An air control device is presented in [26]. It uses an ESP12E microcontroller and a
DHT22 temperature sensor in a system using Wi-Fi connectivity. Different parameters
such as latency and current consumption are compared to obtain the most optimal case.
The paper concludes that the MQTT protocol has lower latency and overhead and power
transmission than HTTP, and the battery life of the batteries becomes longer with MQTT.

In [27], an evaluation of many established messaging protocols including MQTT,
the Constrained Application Protocol (CoAP), and HTTP for IoT systems is conducted,
comparing architectures, transport protocols, message size, message overload, latency,
bandwidth, reliability of QoS, and interoperability, among other variables. It establishes
that the MQTT protocol consumes less power than HTTP and that it is better for power
consumption solutions.

According to [28], MQTT resulted in a better power consumption performance. In
the experimentation, with 3G technology, 4.1% of the battery per day is saved just by
using MQTT over HTTPS to maintain an open stable connection, while Wi-Fi technology
had similar results as well. Finally, in [29], the authors compare MQTT with QoS 0 vs.
HTTPS protocols, evaluating their performance and battery energy consumption with a
novel approach in which a developed device acts as an MQTT broker instead of the typical
cloud-based architecture, eliminating the need for an external internet server and making
the system simpler and more affordable and secure. It concludes that HTTPS is slightly
more efficient in terms of establishing connections, while MQTT is more efficient during
transmission and regarding power consumption.

Most of the previously presented works agree that the MQTT protocol consumes less
power than HTTP, which can be used as a very good solution in IoT technology for power
consumption issues.

3. IoT Application Layer Protocols
3.1. HTTP

HTTP is the first acknowledged IoT protocol that uses a request/response architecture
in a client–server model, and it is mainly used to deploy web servers. A web server
provides solicited data via browsers, and through HTTP, they are delivered in HyperText
Markup Language (HTML) format. The browsers always begin communication with the
petition of an HTML document to the server, and then, the document is processed and
sends more petitions to request scripts, Cascading Style Sheets (CSS), among other aspects.

Client/Server Architecture

The client/server architecture is a request–response model consisting of a client and
a server system communicating over a computer network. This architecture provides an
enhanced way to share the workload. The client is constantly launching a connection to
the server, while the server is always waiting for a request from any client. Giving an
example, as seen in Figure 1, a client can be a computer hardware device and a server can
be a computer. Each of the servers provides a response to the client devices (laptops, tablets,
and smartphones) [30,31].

Sensors 2023, 23, 4896 5 of 23

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Client/Server Architecture
The client/server architecture is a request–response model consisting of a client and

a server system communicating over a computer network. This architecture provides an
enhanced way to share the workload. The client is constantly launching a connection to
the server, while the server is always waiting for a request from any client. Giving an
example, as seen in Figure 1, a client can be a computer hardware device and a server can
be a computer. Each of the servers provides a response to the client devices (laptops, tab-
lets, and smartphones) [30,31].

Figure 1. Request–response architecture in HTTP.

3.2. MQTT Protocol
MQTT, developed in 1999, is an open network protocol that transports messages be-

tween devices and is frequently used in IoT applications. The Transmission Control Pro-
tocol (TCP) is one of the fundamental sets of protocols on the internet, which is important
in the MQTT protocol because it usually runs over the TCP/IP.

Unlike HTTP, the MQTT protocol uses a publish/subscribe architecture, and, alt-
hough HTTP is more used, MQTT has more applications in the wireless area because it is
faster, requires less bandwidth, and requires less consuming power. An example of an
MQTT application in the wireless area is in the Web of Things platform (WoT) for stu-
dents’ learning process [32]. The WoT performs remote experimentation with a collabora-
tive learning environment and analyzes the data generated via sensors displaying relevant
information on dashboards. The authors define three layers for a full cycle of development
in IoT solutions: (1) basic interaction with sensors and specific communication protocols;
(2) data management models to handle the generated data; and (3) the processing and
visualization of the most relevant indicators in the IoT devices.

One of the main advantages of the MQTT protocol is the energy saving of the broker
when a cloud-based broker is selected because, in many experiments, a physical broker
must be used to transmit the information, such as a Raspberry Pi computer. Furthermore,
the power savings are because it takes less time, and fewer data packets (bigger data-size
packets than HTML) are sent.

3.2.1. Publish/Subscribe Architecture
In the publish/subscribe architecture, as seen in Figure 2, a client publishes infor-

mation and other clients can subscribe to only the information they want to receive. Pub-
lishing is the operation in which a client wants to send data to the broker and subscribes
when the broker sends the data to the clients. While HTTP requests to open and close the
connection at each request, MQTT stays online to always maintain an open channel be-
tween the broker and the clients. Some of the challenges in this architecture are the dis-
covery of publishers and topics and the guaranteed delivery when publishing to a distrib-
uted database [33].

Regarding the structure of this architecture, MQTT topics are structured in a hierar-
chical way, similar to folders in a computer where a slash (/) establishes the limit. One ex-
ample of this topical layer structure could be myhome/upperfloor/myroom/temperature.

Regardless of the QoS level, the interaction sequence in MQTT would be the connec-
tion between the publisher and the broker where an acknowledgment signal is returned,

Figure 1. Request–response architecture in HTTP.

3.2. MQTT Protocol

MQTT, developed in 1999, is an open network protocol that transports messages
between devices and is frequently used in IoT applications. The Transmission Control
Protocol (TCP) is one of the fundamental sets of protocols on the internet, which is important
in the MQTT protocol because it usually runs over the TCP/IP.

Unlike HTTP, the MQTT protocol uses a publish/subscribe architecture, and, although
HTTP is more used, MQTT has more applications in the wireless area because it is faster,
requires less bandwidth, and requires less consuming power. An example of an MQTT
application in the wireless area is in the Web of Things platform (WoT) for students’
learning process [32]. The WoT performs remote experimentation with a collaborative
learning environment and analyzes the data generated via sensors displaying relevant
information on dashboards. The authors define three layers for a full cycle of development
in IoT solutions: (1) basic interaction with sensors and specific communication protocols;
(2) data management models to handle the generated data; and (3) the processing and
visualization of the most relevant indicators in the IoT devices.

One of the main advantages of the MQTT protocol is the energy saving of the broker
when a cloud-based broker is selected because, in many experiments, a physical broker
must be used to transmit the information, such as a Raspberry Pi computer. Furthermore,
the power savings are because it takes less time, and fewer data packets (bigger data-size
packets than HTML) are sent.

3.2.1. Publish/Subscribe Architecture

In the publish/subscribe architecture, as seen in Figure 2, a client publishes information
and other clients can subscribe to only the information they want to receive. Publishing is
the operation in which a client wants to send data to the broker and subscribes when the
broker sends the data to the clients. While HTTP requests to open and close the connection
at each request, MQTT stays online to always maintain an open channel between the broker
and the clients. Some of the challenges in this architecture are the discovery of publishers
and topics and the guaranteed delivery when publishing to a distributed database [33].

Regarding the structure of this architecture, MQTT topics are structured in a hierarchi-
cal way, similar to folders in a computer where a slash (/) establishes the limit. One example
of this topical layer structure could be myhome/upperfloor/myroom/temperature.

Regardless of the QoS level, the interaction sequence in MQTT would be the connec-
tion between the publisher and the broker where an acknowledgment signal is returned,
the connection and subscription between the subscriber and the broker with its acknowl-
edgment signal, and, finally, the publishing from the publisher to the broker and then to
the subscriber if it is a subscriber to that topic.

Sensors 2023, 23, 4896 6 of 23

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

the connection and subscription between the subscriber and the broker with its acknowl-
edgment signal, and, finally, the publishing from the publisher to the broker and then to
the subscriber if it is a subscriber to that topic.

Figure 2. Publish/subscribe architecture in MQTT protocol.

3.2.2. Broker
The MQTT broker is the heart of the entire MQTT protocol because it is the server

that transfers messages between senders and receivers. The broker facilitates and filters
the information between clients. This has many advantages in a system [34]:
• Space: Subscribers and clients do not need to know the IPs of each other.
• Time: Clients do not have to be running at the same time.
• Synchronization: Publishing and receiving information can occur simultaneously,

and this does not halt operations.

3.2.3. Quality of Service
All messages are published with a QoS level, which specifies the delivery require-

ment and ensures the reliability of messaging. MQTT supports three levels of QoS: 0, 1,
and 2 [35,36], which can be seen in Figure 3. In a system, clients can have different num-
bers of QoS levels, and when a client is subscribed to a specific topic, the client determines
the maximum level of QoS. It does not matter if the sender publishes a message on a cer-
tain topic with a higher QoS level; the system will proceed with the level established by
the receiver [37].
• QoS 0: “At most once”. A message is sent only once, and whether the message was

received by the client is not verified. This level is the simplest, but it is possible to lose
packages of data.

• QoS 1: “At least once”. At level 1, a message is sent, and the delivery status is checked
via the status check message, called the PUBACK. The broker stores messages and
sends them until clients have acknowledged their delivery, but if a PUBACK is lost,
duplicate messages are received by the client since there is no confirmation of delivery.

• QoS 2: “Exactly once”. Messages have a second acknowledgment round trip, having
four interactions between the client and the broker to ensure that the messages are

Figure 2. Publish/subscribe architecture in MQTT protocol.

3.2.2. Broker

The MQTT broker is the heart of the entire MQTT protocol because it is the server that
transfers messages between senders and receivers. The broker facilitates and filters the
information between clients. This has many advantages in a system [34]:

• Space: Subscribers and clients do not need to know the IPs of each other.
• Time: Clients do not have to be running at the same time.
• Synchronization: Publishing and receiving information can occur simultaneously, and

this does not halt operations.

3.2.3. Quality of Service

All messages are published with a QoS level, which specifies the delivery requirement
and ensures the reliability of messaging. MQTT supports three levels of QoS: 0, 1, and
2 [35,36], which can be seen in Figure 3. In a system, clients can have different numbers
of QoS levels, and when a client is subscribed to a specific topic, the client determines the
maximum level of QoS. It does not matter if the sender publishes a message on a certain
topic with a higher QoS level; the system will proceed with the level established by the
receiver [37].

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

delivered only once. Message loss is not possible with QoS 2, but the process is more
complicated and sometimes requires more time.

Figure 3. Packet transmission method with QoS levels in MQTT.

Comparing the different QoS levels, in [38], cellular network and Wi-Fi experimen-
tation was conducted to make a comparison in terms of power consumption using the
MQTT protocol. The experimentation concluded that QoS 1 was the level that consumed
less power, followed by QoS 2 and finally QoS 0, over Transport Layer Security (TLS). QoS
0 and 2 consumed 6.7% and 5% more energy than QoS 1, respectively.

In [39], a power consumption comparative analysis using MQTT was made with dif-
ferent variables in the system, such as the number of publishers and subscribers, different
amounts of payloads, and different magnitudes of QoS levels. In general, QoS 1 and 2 had
better power consumption results compared with QoS 0. Moreover, as the QoS level in-
creased, the number of messages reaching the subscriber in a given period was reduced.

4. Material and Methods
4.1. Hardware

In the proposed electronic platform, different devices were used for our experimental
work: a NodeMCU board for data capture, processing, and transmission; a DHT11 mod-
ule to collect temperature and humidity measurements; a GY-NEO6MV2 module, which
is a Global Positioning System (GPS) sensor for geolocation; and a microSD card module
that allowed the NodeMCU board to communicate with the memory card and write or
read the information on it. To visualize the relevant data, a Grove liquid-crystal display
(LCD) with an RGB (red, green, and blue) backlight was included. Finally, a portable bat-
tery took over to power the whole system platform. The different components can be seen
in Figure 4.

(a) (b) (c) (d) (e)

Figure 3. Packet transmission method with QoS levels in MQTT.

Sensors 2023, 23, 4896 7 of 23

• QoS 0: “At most once”. A message is sent only once, and whether the message was
received by the client is not verified. This level is the simplest, but it is possible to lose
packages of data.

• QoS 1: “At least once”. At level 1, a message is sent, and the delivery status is checked
via the status check message, called the PUBACK. The broker stores messages and
sends them until clients have acknowledged their delivery, but if a PUBACK is lost,
duplicate messages are received by the client since there is no confirmation of delivery.

• QoS 2: “Exactly once”. Messages have a second acknowledgment round trip, having
four interactions between the client and the broker to ensure that the messages are
delivered only once. Message loss is not possible with QoS 2, but the process is more
complicated and sometimes requires more time.

Comparing the different QoS levels, in [38], cellular network and Wi-Fi experimen-
tation was conducted to make a comparison in terms of power consumption using the
MQTT protocol. The experimentation concluded that QoS 1 was the level that consumed
less power, followed by QoS 2 and finally QoS 0, over Transport Layer Security (TLS). QoS
0 and 2 consumed 6.7% and 5% more energy than QoS 1, respectively.

In [39], a power consumption comparative analysis using MQTT was made with
different variables in the system, such as the number of publishers and subscribers, different
amounts of payloads, and different magnitudes of QoS levels. In general, QoS 1 and 2
had better power consumption results compared with QoS 0. Moreover, as the QoS level
increased, the number of messages reaching the subscriber in a given period was reduced.

4. Material and Methods
4.1. Hardware

In the proposed electronic platform, different devices were used for our experimental
work: a NodeMCU board for data capture, processing, and transmission; a DHT11 module
to collect temperature and humidity measurements; a GY-NEO6MV2 module, which is a
Global Positioning System (GPS) sensor for geolocation; and a microSD card module that
allowed the NodeMCU board to communicate with the memory card and write or read the
information on it. To visualize the relevant data, a Grove liquid-crystal display (LCD) with
an RGB (red, green, and blue) backlight was included. Finally, a portable battery took over
to power the whole system platform. The different components can be seen in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

delivered only once. Message loss is not possible with QoS 2, but the process is more
complicated and sometimes requires more time.

Figure 3. Packet transmission method with QoS levels in MQTT.

Comparing the different QoS levels, in [38], cellular network and Wi-Fi experimen-
tation was conducted to make a comparison in terms of power consumption using the
MQTT protocol. The experimentation concluded that QoS 1 was the level that consumed
less power, followed by QoS 2 and finally QoS 0, over Transport Layer Security (TLS). QoS
0 and 2 consumed 6.7% and 5% more energy than QoS 1, respectively.

In [39], a power consumption comparative analysis using MQTT was made with dif-
ferent variables in the system, such as the number of publishers and subscribers, different
amounts of payloads, and different magnitudes of QoS levels. In general, QoS 1 and 2 had
better power consumption results compared with QoS 0. Moreover, as the QoS level in-
creased, the number of messages reaching the subscriber in a given period was reduced.

4. Material and Methods
4.1. Hardware

In the proposed electronic platform, different devices were used for our experimental
work: a NodeMCU board for data capture, processing, and transmission; a DHT11 mod-
ule to collect temperature and humidity measurements; a GY-NEO6MV2 module, which
is a Global Positioning System (GPS) sensor for geolocation; and a microSD card module
that allowed the NodeMCU board to communicate with the memory card and write or
read the information on it. To visualize the relevant data, a Grove liquid-crystal display
(LCD) with an RGB (red, green, and blue) backlight was included. Finally, a portable bat-
tery took over to power the whole system platform. The different components can be seen
in Figure 4.

(a) (b) (c) (d) (e)

Figure 4. Devices used to design the experimental electronic platform: (a) NodeMCU board;
(b) DHT11 module and GPS sensor; (c) LCD; (d) microSD card module and memory; and (e) portable
battery.

4.2. Measurement Equipment

To analyze the behavior of the system, the oscilloscope Tektronix TBS1000 (Oregon, USA),
a MUL-280 multimeter (Longwood, FL, USA), and an NI myDAQ (Austin, TX, USA) data
acquirer were needed to measure accurate values of voltage, current, power, and energy
wasted on the electronic platform. Figure 5 shows the mentioned measurement equipment.

Sensors 2023, 23, 4896 8 of 23

Sensors 2023, 23, x FOR PEER REVIEW 8 of 24

Figure 4. Devices used to design the experimental electronic platform: (a) NodeMCU board; (b) DHT11
module and GPS sensor; (c) LCD; (d) microSD card module and memory; and (e) portable battery.

4.2. Measurement Equipment
To analyze the behavior of the system, the oscilloscope Tektronix TBS1000 (Oregon,

USA), a MUL-280 multimeter (Longwood, FL, USA), and an NI myDAQ (Austin, TX, USA)
data acquirer were needed to measure accurate values of voltage, current, power, and en-
ergy wasted on the electronic platform. Figure 5 shows the mentioned measurement
equipment.

(a) (b) (c)

Figure 5. Measurement equipment: (a) oscilloscope; (b) multimeter; and (c) NI myDAQ.

Data Acquirer
Data acquisition (DAQ) in electronic prototypes is the process of measuring an elec-

tric signal, such as voltage or current, with a computer in programmable software. Trans-
ductors are essential to calculate physical phenomena such as temperature, pressure,
light, sound, force, and acceleration, among many others, through measurements of
changes in voltage and current. In comparison with traditional measurement systems
such as oscilloscopes and multimeters, the DAQ system takes advantage of processing
power, productivity, visualization, and connectivity skills in the industry with powerful,
flexible, and cost-effective measurement solutions.

A DAQ device is an interface between a computer and physical signals. It mainly
digitizes analog input signals to be interpreted with a computer. Three key components
are needed in a DAQ device to measure a signal:
• Signal conditioning: Physical signals are usually noisy, and they are not prepared for

input into an ADC. Signal conditioning is a process that adapts signals to a required
input range. This circuit can include amplification, attenuation, and filtering.

• Analog-to-digital converter (ADC): Analog signals from sensors are converted into
digital signals before being sent to the computer. The communication between the
DAQ system and the computer is digital, so the DAQ system carries out the proce-
dure to transform analog signals into digital signals.

• PC bus: The communication between the DAQ and the PC is through a port where the
bus works as a communication interface. The ADC makes periodic samples of the sig-
nal at a predefined rate, which are sent to the PC through the PC bus, where the original
signal is reconstructed. The most common PC buses are USB and Ethernet.
A NI myDAQ, as shown in Figure 5c, was needed to record readings in the system. It

can be used as an oscilloscope, ammeter, voltmeter, or function generator, among many
other applications. The NI myDAQ uses LabVIEW and NI Multisim software and infor-
mation is sent via a USB PC bus. It has a 16-bit resolution and a maximum sampling rate of
200 KS/s. It can work with ± 10V and has a very good time resolution of 10 ns.

4.3. Web Development Methodology (Front-End)
In this prototype, the creation of a web server was very important to display the

sensed data acquired with the microcontroller. HTML, CSS, and JavaScript were some
tools required for the elaboration of the front end.

Figure 5. Measurement equipment: (a) oscilloscope; (b) multimeter; and (c) NI myDAQ.

Data Acquirer

Data acquisition (DAQ) in electronic prototypes is the process of measuring an electric
signal, such as voltage or current, with a computer in programmable software. Transductors
are essential to calculate physical phenomena such as temperature, pressure, light, sound,
force, and acceleration, among many others, through measurements of changes in voltage
and current. In comparison with traditional measurement systems such as oscilloscopes
and multimeters, the DAQ system takes advantage of processing power, productivity,
visualization, and connectivity skills in the industry with powerful, flexible, and cost-
effective measurement solutions.

A DAQ device is an interface between a computer and physical signals. It mainly
digitizes analog input signals to be interpreted with a computer. Three key components are
needed in a DAQ device to measure a signal:

• Signal conditioning: Physical signals are usually noisy, and they are not prepared for
input into an ADC. Signal conditioning is a process that adapts signals to a required
input range. This circuit can include amplification, attenuation, and filtering.

• Analog-to-digital converter (ADC): Analog signals from sensors are converted into
digital signals before being sent to the computer. The communication between the
DAQ system and the computer is digital, so the DAQ system carries out the procedure
to transform analog signals into digital signals.

• PC bus: The communication between the DAQ and the PC is through a port where
the bus works as a communication interface. The ADC makes periodic samples of the
signal at a predefined rate, which are sent to the PC through the PC bus, where the
original signal is reconstructed. The most common PC buses are USB and Ethernet.

A NI myDAQ, as shown in Figure 5c, was needed to record readings in the system. It
can be used as an oscilloscope, ammeter, voltmeter, or function generator, among many
other applications. The NI myDAQ uses LabVIEW and NI Multisim software and informa-
tion is sent via a USB PC bus. It has a 16-bit resolution and a maximum sampling rate of
200 KS/s. It can work with ± 10V and has a very good time resolution of 10 ns.

4.3. Web Development Methodology (Front-End)

In this prototype, the creation of a web server was very important to display the
sensed data acquired with the microcontroller. HTML, CSS, and JavaScript were some tools
required for the elaboration of the front end.

4.3.1. HTTP Dashboard

Figure 6a illustrates the dashboard design. First, the indicators of the variables are dis-
played showing the actual magnitudes of the temperature and humidity and the coordinates,
and they are updated every 10 s. The update time can be changed to any time greater than 2 s,
which is the period in which the DHT11 sensor can work with more frequency, but for this
prototype, it was decided to make lectures every 10 s to have enough space in the memory.
Then, a map in real time is displayed, as can be seen in Figure 6b. A map design from
“mapbox” was obtained, which is an American provider of online maps for websites such
as Facebook, Snapchat, and The Weather Channel, among many others. It has a free option
and is a little bit limited, but for this project’s purposes, it worked perfectly. Finally, Figure 6c
illustrates 2 graphs of the last 30 registers of the temperature and humidity measurements,

Sensors 2023, 23, 4896 9 of 23

which are updated every 10 s as the indicators at the top of the web server. When the cursor is
on one point of the graph, it displays the date and the magnitude.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

4.3.1. HTTP Dashboard
Figure 6a illustrates the dashboard design. First, the indicators of the variables are dis-

played showing the actual magnitudes of the temperature and humidity and the coordi-
nates, and they are updated every 10 s. The update time can be changed to any time greater
than 2 s, which is the period in which the DHT11 sensor can work with more frequency, but
for this prototype, it was decided to make lectures every 10 s to have enough space in the
memory. Then, a map in real time is displayed, as can be seen in Figure 6b. A map design
from “mapbox” was obtained, which is an American provider of online maps for websites
such as Facebook, Snapchat, and The Weather Channel, among many others. It has a free
option and is a little bit limited, but for this project’s purposes, it worked perfectly. Finally,
Figure 6c illustrates 2 graphs of the last 30 registers of the temperature and humidity meas-
urements, which are updated every 10 s as the indicators at the top of the web server. When
the cursor is on one point of the graph, it displays the date and the magnitude.

(a)

(b) (c)

Figure 6. HTTP dashboard components: (a) displayed indicators; (b) real-time map; and (c) graphs
of temperature and humidity.

4.3.2. MQTT Dashboard
One of the advantages of using MQTT is that programming in Arduino IDE is easier

than in HTML because it is not necessary to make the design. With the help of an MQTT
broker, only a connection between the microcontroller and the broker is required. In this
case, an Adafruit broker was used, and the design of the dashboard was directly made on
the web page. It is only necessary to give the correct variables to display them in different
formats. As shown in Figure 7a, the MQTT dashboard was made, and it indicates the tem-
perature and humidity of the system. One disadvantage is that the broker is limited to
many dashboards during free trials.

Figure 6. HTTP dashboard components: (a) displayed indicators; (b) real-time map; and (c) graphs
of temperature and humidity.

4.3.2. MQTT Dashboard

One of the advantages of using MQTT is that programming in Arduino IDE is easier
than in HTML because it is not necessary to make the design. With the help of an MQTT
broker, only a connection between the microcontroller and the broker is required. In this
case, an Adafruit broker was used, and the design of the dashboard was directly made on
the web page. It is only necessary to give the correct variables to display them in different
formats. As shown in Figure 7a, the MQTT dashboard was made, and it indicates the
temperature and humidity of the system. One disadvantage is that the broker is limited to
many dashboards during free trials.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24

(a) (b)

Figure 7. MQTT dashboard: (a) displayed indicators; (b) map with location and routes.

For geolocation purposes, a map in real time is displayed. The cloud-based MQTT
Adafruit IO broker is limited to only one map designer, and in this case, this is the com-
pany Leaflet. Adafruit makes everything suitable for its products, and it designed libraries
focused on good communication between the physical devices and the broker and map.
Communication between a selected GPS sensor and the interaction with the map has its
challenges because many tools are required to guarantee this. Finally, with the help of
these tools, the broker was able to display our location and our trajectory in predefined
periods. In Section 6, many periods of time are defined to analyze the waste of power in
function of the number of messages sent with the different protocols. In Figure 7b, the
route that was taken to travel along with the current location can be seen. This location is
displayed and updated every predefined time according to the experimentation.

4.4. Web Development Methodology (Back-End)
The back end is in charge of the functionality of the web page in the server-side de-

velopment. It is important to carry out some activities that are not easily seen, such as
communication with the server, the application, and the database. This is what happens
when performing any action on a website. For our project, Hypertext Preprocessor (PHP)
and MySQL tools were used in the back-end web development.

4.4.1. Database
MySQL is an open-source database management service that uses Structured Query

Language (SQL) as a specific domain language that is widely used in programming. It is
the most popular system used with PHP, and it is very fast, reliable, and easy to use. A
block diagram of the database is presented in Figure 8, where there are wired connections
between the sensors and the NodeMCU. The microcontroller connects via Wi-Fi to the
local access point (router) via HTTP and connects to the domain and the hosting server.
With the code “post-nodemcu.php”, it uploads the information to the MySQL database,
and with “nodemcu.php”, the information can be visualized from anywhere with the cor-
rect Uniform Resource Locator (URL).

Figure 8. Database block diagram.

4.4.2. PHP
PHP is a server-side scripting language that is especially suited to web development.

PHP is used to connect and manipulate databases. Two codes, “nodemcu.php” and “post-
nodemcu.php”, were created to prepare the database to store the readings.

Figure 7. MQTT dashboard: (a) displayed indicators; (b) map with location and routes.

For geolocation purposes, a map in real time is displayed. The cloud-based MQTT
Adafruit IO broker is limited to only one map designer, and in this case, this is the company
Leaflet. Adafruit makes everything suitable for its products, and it designed libraries
focused on good communication between the physical devices and the broker and map.
Communication between a selected GPS sensor and the interaction with the map has its
challenges because many tools are required to guarantee this. Finally, with the help of these
tools, the broker was able to display our location and our trajectory in predefined periods.
In Section 6, many periods of time are defined to analyze the waste of power in function of
the number of messages sent with the different protocols. In Figure 7b, the route that was

Sensors 2023, 23, 4896 10 of 23

taken to travel along with the current location can be seen. This location is displayed and
updated every predefined time according to the experimentation.

4.4. Web Development Methodology (Back-End)

The back end is in charge of the functionality of the web page in the server-side
development. It is important to carry out some activities that are not easily seen, such as
communication with the server, the application, and the database. This is what happens
when performing any action on a website. For our project, Hypertext Preprocessor (PHP)
and MySQL tools were used in the back-end web development.

4.4.1. Database

MySQL is an open-source database management service that uses Structured Query
Language (SQL) as a specific domain language that is widely used in programming. It is
the most popular system used with PHP, and it is very fast, reliable, and easy to use. A
block diagram of the database is presented in Figure 8, where there are wired connections
between the sensors and the NodeMCU. The microcontroller connects via Wi-Fi to the local
access point (router) via HTTP and connects to the domain and the hosting server. With
the code “post-nodemcu.php”, it uploads the information to the MySQL database, and
with “nodemcu.php”, the information can be visualized from anywhere with the correct
Uniform Resource Locator (URL).

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24

(a) (b)

Figure 7. MQTT dashboard: (a) displayed indicators; (b) map with location and routes.

For geolocation purposes, a map in real time is displayed. The cloud-based MQTT
Adafruit IO broker is limited to only one map designer, and in this case, this is the com-
pany Leaflet. Adafruit makes everything suitable for its products, and it designed libraries
focused on good communication between the physical devices and the broker and map.
Communication between a selected GPS sensor and the interaction with the map has its
challenges because many tools are required to guarantee this. Finally, with the help of
these tools, the broker was able to display our location and our trajectory in predefined
periods. In Section 6, many periods of time are defined to analyze the waste of power in
function of the number of messages sent with the different protocols. In Figure 7b, the
route that was taken to travel along with the current location can be seen. This location is
displayed and updated every predefined time according to the experimentation.

4.4. Web Development Methodology (Back-End)
The back end is in charge of the functionality of the web page in the server-side de-

velopment. It is important to carry out some activities that are not easily seen, such as
communication with the server, the application, and the database. This is what happens
when performing any action on a website. For our project, Hypertext Preprocessor (PHP)
and MySQL tools were used in the back-end web development.

4.4.1. Database
MySQL is an open-source database management service that uses Structured Query

Language (SQL) as a specific domain language that is widely used in programming. It is
the most popular system used with PHP, and it is very fast, reliable, and easy to use. A
block diagram of the database is presented in Figure 8, where there are wired connections
between the sensors and the NodeMCU. The microcontroller connects via Wi-Fi to the
local access point (router) via HTTP and connects to the domain and the hosting server.
With the code “post-nodemcu.php”, it uploads the information to the MySQL database,
and with “nodemcu.php”, the information can be visualized from anywhere with the cor-
rect Uniform Resource Locator (URL).

Figure 8. Database block diagram.

4.4.2. PHP
PHP is a server-side scripting language that is especially suited to web development.

PHP is used to connect and manipulate databases. Two codes, “nodemcu.php” and “post-
nodemcu.php”, were created to prepare the database to store the readings.

Figure 8. Database block diagram.

4.4.2. PHP

PHP is a server-side scripting language that is especially suited to web development.
PHP is used to connect and manipulate databases. Two codes, “nodemcu.php” and “post-
nodemcu.php”, were created to prepare the database to store the readings.

• “nodemcu.php”: This code was created to allow data visualization everywhere. With
this code, a web server in the created domain is made to have the readings sent to the
database only by accessing the right link.

• “post-nodemcu.php”: This code is in charge of publishing sensor readings to the
MySQL database.

The PHP code creates an index of the table and prepares it to store the necessary
readings in the MySQL database. In any system, it is important to save data when the
electronic platform is working for future analysis if required.

In Figure 9, the interface in phpMyAdmin can be seen, where all the values of the
temperature, humidity, latitude, and longitude readings are stored in conjunction with
their identification numbers and the times of the readings. Each reading was performed
every 10 s.

4.5. Measurement Methodology

Many tools and devices were used to facilitate the different measurements in the circuit.
A multimeter and an oscilloscope were used to see, in the first instance, the operation range
of the current and the voltage consumed in the electronic platform.

The determination of the instantaneous power of the electronic platform to conduct
statistical procedures and obtain conclusions about the system was significant. With the
multimeter and oscilloscope, it was not possible to carry out those readings; moreover, it
was noted that there was too much variation in the current in the system according to the
readings with the multimeter.

Sensors 2023, 23, 4896 11 of 23

In that sense, it was necessary to elaborate a program to store the values of instanta-
neous power

Pinstantaneous(n)= V(n) × I(n) (1)

and obtain the values of the voltage and current at the same time. At the end of the
experiment, a buffer of lots of readings of the instantaneous power makes the statistical
analysis more robust than with oscilloscope and multimeter readings.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

• “nodemcu.php”: This code was created to allow data visualization everywhere. With
this code, a web server in the created domain is made to have the readings sent to the
database only by accessing the right link.

• “post-nodemcu.php”: This code is in charge of publishing sensor readings to the
MySQL database.
The PHP code creates an index of the table and prepares it to store the necessary

readings in the MySQL database. In any system, it is important to save data when the
electronic platform is working for future analysis if required.

In Figure 9, the interface in phpMyAdmin can be seen, where all the values of the
temperature, humidity, latitude, and longitude readings are stored in conjunction with
their identification numbers and the times of the readings. Each reading was performed
every 10 s.

Figure 9. Database of recorded readings.

4.5. Measurement Methodology
Many tools and devices were used to facilitate the different measurements in the cir-

cuit. A multimeter and an oscilloscope were used to see, in the first instance, the operation
range of the current and the voltage consumed in the electronic platform.

The determination of the instantaneous power of the electronic platform to conduct
statistical procedures and obtain conclusions about the system was significant. With the
multimeter and oscilloscope, it was not possible to carry out those readings; moreover, it
was noted that there was too much variation in the current in the system according to the
readings with the multimeter.

In that sense, it was necessary to elaborate a program to store the values of instanta-
neous power

Pinstantaneousሺnሻ = V(n) × I(n) (1)

and obtain the values of the voltage and current at the same time. At the end of the exper-
iment, a buffer of lots of readings of the instantaneous power makes the statistical analysis
more robust than with oscilloscope and multimeter readings.

For the above-mentioned purpose, a small program in LabVIEW 2019 software was
developed, wherein the data acquirer NI myDAQ was used to obtain voltage and current
readings to determine the power of our circuit using the different protocols and with the

Figure 9. Database of recorded readings.

For the above-mentioned purpose, a small program in LabVIEW 2019 software was
developed, wherein the data acquirer NI myDAQ was used to obtain voltage and current
readings to determine the power of our circuit using the different protocols and with the
different variables determined during this project. The objective of the LabVIEW program
is to capture instant power readings, which are exported to a spreadsheet in Microsoft Excel
to proceed with the statistical procedures.

A DAQ assistant, which is a based tool that makes the steps to acquiring simple
measurements in the LabVIEW configuration easier, was needed. Two DAQ assistants
were necessary in the programming to perform the readings: one for voltage and the other
one for current. Analog inputs (AI) were used for the voltage readings and multimeter
inputs (A) for the current readings. The location of the multimeter inputs is on one side of
the analog and digital pins of the device, as can be seen in Figure 10a,b.

When setting up each DAQ assistant, specifying the signals that are going to be
acquired and declaring them as analog inputs is needed. Voltage readings are assigned to
“ai0” (analog inputs), while current readings are assigned to “dmm” (digital multimeter)
pins. Once the configuration is carried out, the software shows the correct way to perform
the connections.

The current measurement diagram can be seen in Figure 10a, while the voltage mea-
surement diagram is shown in Figure 10b. As was mentioned, in the current measurement,
A0, AI, and DIO were not used, and only the HI and COM ports in the NI myDAQ were
used as an ammeter. Moreover, in the voltage measurement, the HI and COM ports were
not used, and only the AI0 (analog inputs) in the NI myDAQ were used as a signal recorder.

Figure 10c depicts the complete schematic of the proposed electronic platform with
the voltage and current measurements using the NI myDAQ. The readings are sent via USB

Sensors 2023, 23, 4896 12 of 23

to the computer to record all the data. Once the readings are saved, statistical procedures
can proceed to carry out the comparative analysis.

The main objective of the LabVIEW program is to store lots of instant power data on
our electronic platform. In Figure 11a, the interface on the front panel of the LabVIEW pro-
gram can be seen, wherein three indicators and three waveform charts can be appreciated.
In the charts, the readings are recorded according to the programming in the block diagram
and then exported to a Microsoft Excel spreadsheet.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 24

different variables determined during this project. The objective of the LabVIEW program
is to capture instant power readings, which are exported to a spreadsheet in Microsoft
Excel to proceed with the statistical procedures.

A DAQ assistant, which is a based tool that makes the steps to acquiring simple meas-
urements in the LabVIEW configuration easier, was needed. Two DAQ assistants were
necessary in the programming to perform the readings: one for voltage and the other one
for current. Analog inputs (AI) were used for the voltage readings and multimeter inputs
(A) for the current readings. The location of the multimeter inputs is on one side of the
analog and digital pins of the device, as can be seen in Figure 10a,b.

(a) (b) (c)

Figure 10. Schematics for the measurements with the NI myDAQ: (a) current measurement; (b)
voltage measurement; and (c) complete schematic for the electronic platform.

When setting up each DAQ assistant, specifying the signals that are going to be ac-
quired and declaring them as analog inputs is needed. Voltage readings are assigned to
“ai0” (analog inputs), while current readings are assigned to “dmm” (digital multimeter)
pins. Once the configuration is carried out, the software shows the correct way to perform
the connections.

The current measurement diagram can be seen in Figure 10a, while the voltage meas-
urement diagram is shown in Figure 10b. As was mentioned, in the current measurement,
A0, AI, and DIO were not used, and only the HI and COM ports in the NI myDAQ were
used as an ammeter. Moreover, in the voltage measurement, the HI and COM ports were
not used, and only the AI0 (analog inputs) in the NI myDAQ were used as a signal re-
corder.

Figure 10c depicts the complete schematic of the proposed electronic platform with
the voltage and current measurements using the NI myDAQ. The readings are sent via
USB to the computer to record all the data. Once the readings are saved, statistical proce-
dures can proceed to carry out the comparative analysis.

The main objective of the LabVIEW program is to store lots of instant power data on
our electronic platform. In Figure 11a, the interface on the front panel of the LabVIEW
program can be seen, wherein three indicators and three waveform charts can be appreci-
ated. In the charts, the readings are recorded according to the programming in the block
diagram and then exported to a Microsoft Excel spreadsheet.

Figure 10. Schematics for the measurements with the NI myDAQ: (a) current measurement;
(b) voltage measurement; and (c) complete schematic for the electronic platform.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

(a) (b)

Figure 11. LabVIEW programming: (a) front panel; (b) block diagram.

In Figure 11b, the block diagram programming in LabVIEW can be seen. It is a very
simple program, which consists of one for-loop that oversees carrying out a reading in
each iteration. The DAQ assistant is in charge of the current readings and DAQ assistant2
oversees those of the voltage. These two signals are multiplied to obtain the power of the
system, and then it is displayed in a chart, where a total of 100 (N = 100) current, voltage,
and power readings are recorded. The time between each iteration is 1.5 s, so for each test,
150 s (2.5 min) is required.

5. System Prototype
In this section, the architecture and price of the proposed electronic prototype are

presented. A block diagram of the portable electric prototype can be seen in Figure 12a.
The different serial protocols that communicate with the sensors, storage, and display can
be seen at the bottom of the diagram, where UART is used for the GPS, SPI for the mi-
croSD, and I2C for the LCD. Then, the prototype establishes communication via HTTP or
MQTT with the web server or with the Adafruit cloud-based broker, depending on which
experimentation analysis is required. Communication with the MySQL database is real-
ized in both cases.

Figure 11. LabVIEW programming: (a) front panel; (b) block diagram.

In Figure 11b, the block diagram programming in LabVIEW can be seen. It is a very
simple program, which consists of one for-loop that oversees carrying out a reading in

Sensors 2023, 23, 4896 13 of 23

each iteration. The DAQ assistant is in charge of the current readings and DAQ assistant2
oversees those of the voltage. These two signals are multiplied to obtain the power of the
system, and then it is displayed in a chart, where a total of 100 (N = 100) current, voltage,
and power readings are recorded. The time between each iteration is 1.5 s, so for each test,
150 s (2.5 min) is required.

5. System Prototype

In this section, the architecture and price of the proposed electronic prototype are
presented. A block diagram of the portable electric prototype can be seen in Figure 12a.
The different serial protocols that communicate with the sensors, storage, and display
can be seen at the bottom of the diagram, where UART is used for the GPS, SPI for the
microSD, and I2C for the LCD. Then, the prototype establishes communication via HTTP or
MQTT with the web server or with the Adafruit cloud-based broker, depending on which
experimentation analysis is required. Communication with the MySQL database is realized
in both cases.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

(a) (b)

Figure 12. System prototype: (a) block diagram; (b) physical setup for experimentation.

The cloud-based broker Adafruit IO is used in this project. Although the free version
has many limitations, such as limited feeds variables (10), limited dashboards (5), and a
limited sampling rate (30 data/minute), it perfectly meets our prototype specifications.
Then, communication between the microcontroller and the final clients through wireless
networks is realized to display the sensor readings on the dashboards in real time. Finally,
the physical prototype can be observed in Figure 12b, where all the devices used in this
electronic platform can be seen.

Price
The cost of the system is usually considered one of the three primary constraints of

any project (scope and time are the other two). It is important and depends on us making
the electronic platform as inexpensive as possible without limiting functionalities. In Table
1, the components of our electric platform with their prices can be seen to make an esti-
mate of the budget required to elaborate this prototype. The prices are seen in dollars and
are according to the Alibaba company website.

Table 1. Components and price of the electronic platform.

Component Unit Price
(USD) 1

Price (USD) 1

1 NodeMCU 2.00 2.00
1 DHT11 temperature and humidity sensor 0.77 0.77
1 NEO 6M GPS sensor 3.50 3.50
1 MicroSD card adapter 3.25 3.25
1 4GB SanDisk microSD card 3.00 3.00
1 Grove LCD RGB backlight 9.09 9.09
1 Breadboard 1.00 1.00
 Total 22.61

1 The prices are expressed in dollars.

With USD 22.61, the electric platform can be put together. Many times, in IoT projects,
LCDs are not required because the information can be seen on the dashboards or in the
cloud. Therefore, with only USD 13.52, a complete real-time system with many sensors
can be installed.

Figure 12. System prototype: (a) block diagram; (b) physical setup for experimentation.

The cloud-based broker Adafruit IO is used in this project. Although the free version
has many limitations, such as limited feeds variables (10), limited dashboards (5), and a
limited sampling rate (30 data/minute), it perfectly meets our prototype specifications.
Then, communication between the microcontroller and the final clients through wireless
networks is realized to display the sensor readings on the dashboards in real time. Finally,
the physical prototype can be observed in Figure 12b, where all the devices used in this
electronic platform can be seen.

Price

The cost of the system is usually considered one of the three primary constraints of any
project (scope and time are the other two). It is important and depends on us making the
electronic platform as inexpensive as possible without limiting functionalities. In Table 1,
the components of our electric platform with their prices can be seen to make an estimate
of the budget required to elaborate this prototype. The prices are seen in dollars and are
according to the Alibaba company website.

Sensors 2023, 23, 4896 14 of 23

Table 1. Components and price of the electronic platform.

Component Unit Price (USD) 1 Price (USD) 1

1 NodeMCU 2.00 2.00

1 DHT11 temperature
and humidity sensor 0.77 0.77

1 NEO 6M GPS sensor 3.50 3.50
1 MicroSD card adapter 3.25 3.25

1 4GB SanDisk
microSD card 3.00 3.00

1 Grove LCD RGB
backlight 9.09 9.09

1 Breadboard 1.00 1.00
Total 22.61

1 The prices are expressed in dollars.

With USD 22.61, the electric platform can be put together. Many times, in IoT projects,
LCDs are not required because the information can be seen on the dashboards or in the
cloud. Therefore, with only USD 13.52, a complete real-time system with many sensors can
be installed.

6. Results

In this section, a comparative analysis of the power consumption between the HTTP
and MQTT protocols is conducted. In addition, the prediction model for the life cycle of
batteries is presented.

6.1. Power Consumption of HTTP and MQTT with QoS 0 and 1

A comparison of the consumed power between the HTTP and MQTT protocols is
presented in Table 2. A total of 3 tests for each of the 100 samples were carried out for
2 different situations for HTTP and MQTT with QoS 0 and 1. For each protocol, readings
of the electronic platform were performed, one with the complete working system and
another connecting only the microcontroller to analyze the power wasted in the NodeMCU
without sensors, displays, or memory. In this table, the current, voltage, power, and energy
were analyzed. In each case, the minimum and maximum current, voltage, and instant
power were obtained, as well as the average power to compare them. From this data, the
energy wasted in each test was calculated by multiplying the power average times the time
for which the tests lasted (150 s).

In addition, the averages of the previous results were obtained. First, the amounts
of power wasted in the circuits in which only the microcontroller was working (without
sensors, displays, or memory) were estimated to be very similar, independent of the
protocol. Only 3.24 mW of power was the biggest difference between the average powers
in the 3 cases. HTTP wasted 381.62 mW, while with the MQTT protocol, 380.17 mW
was wasted with QoS 0 and 383.31 mW with QoS 1. It can be declared that there are no
significant differences between these cases when energizing only the microcontroller.

Secondly, a difference between the average powers can be noted. Theoretically, the
MQTT protocol with any QoS level wastes less power in its operation than HTTP. In the
experimentation, a successful result was obtained. With MQTT, the circuit was consuming
on average 629.68 mW with QoS 0 and 614.33 mW with QoS 1, while with HTTP the
average power was 667.33 mW.

The magnitude of the difference in the average power consumption between the
protocol that consumed less power (MQTT with QoS 1) and the protocol that consumed
more power (HTTP) was 55.83 mW. The difference between HTTP and the MQTT protocol
with QoS 0 was 40.48 mW. Finally, the least difference in power consumption was with the
MQTT protocol between QoS 0 and 1, being 15.35 mW.

In Figure 13, the information in Table 2 is illustrated as a graph. The HTTP readings
are shifted up with respect to the two cases in the MQTT protocol, meaning that HTTP

Sensors 2023, 23, 4896 15 of 23

consumes more power than the MQTT protocols. The downward peaks for the MQTT
protocols can be observed in a better way, where QoS 1 has more than QoS 0.

Table 2. Power consumption of HTTP and MQTT protocols.

Protocol Description Test Imin Imax Iavg Vmin Vmax Vavr Pmin Pmax Pavg σ Energy

(#) (mA) (V) (mW) (J)

HTTP

Only
NodeMCU

1 36.25 83.73 78.00 4.79 4.93 4.87 177.40 408.49 379.91 39.96 56.99
2 38.19 83.84 77.53 4.92 4.93 4.93 188.07 412.68 381.85 44.29 57.28
3 38.65 81.90 78.22 4.86 4.92 4.90 188.85 401.69 383.09 34.10 57.46

Avg. 37.70 83.16 77.91 4.85 4.93 4.90 184.77 407.62 381.62 39.45 57.24

Complete
system

1 136.45 154.02 139.29 4.75 4.88 4.80 654.88 741.21 668.89 14.98 100.33
2 137.25 150.26 142.05 4.51 4.76 4.72 630.55 711.82 670.07 18.56 100.51
3 136.79 152.88 140.20 4.74 4.86 4.79 664.59 664.73 671.52 15.04 100.73

Avg. 136.83 152.39 140.51 4.67 4.83 4.77 650.01 705.92 670.16 16.19 100.52

MQTT QoS
0

Only
NodeMCU

1 78.82 79.73 79.28 4.71 4.80 4.77 372.24 382.22 377.93 1.89 56.69
2 78.71 80.53 79.35 4.55 4.93 4.78 359.37 391.76 379.58 6.66 56.94
3 78.71 80.19 79.43 4.75 4.85 4.82 376.85 388.02 383.01 2.05 57.45

Avg. 78.74 80.15 79.35 4.67 4.86 4.79 369.49 387.33 380.17 3.53 57.03

Complete
system

1 123.78 151.28 137.37 4.27 4.69 4.59 573.36 708.99 630.95 16.82 94.63
2 136.11 150.83 139.42 4.24 4.64 4.53 583.48 691.75 631.81 19.84 94.78
3 112.26 142.61 136.32 4.41 4.69 4.60 515.07 663.91 626.39 21.54 93.96

Avg. 124.05 148.24 137.70 4.31 4.67 4.57 557.30 688.22 629.68 19.40 94.45

MQTT QoS
1

Only
NodeMCU

1 42.87 81.90 77.97 4.63 4.88 4.79 203.62 395.42 373.71 34.43 56.06
2 78.93 80.65 79.52 4.71 5.02 388.96 374.26 399.77 388.96 3.41 58.34
3 79.16 80.53 79.46 4.83 5.03 4.88 383.79 399.03 387.57 2.60 58.14

Avg. 66.99 81.03 78.99 4.72 4.98 132.88 320.56 398.07 383.41 13.48 57.51

Complete
system

1 113.28 148.32 135.71 4.47 4.58 4.55 513.58 673.47 616.80 23.87 92.52
2 114.88 144.21 136.32 4.46 4.57 4.53 522.25 657.26 618.11 21.37 92.72
3 113.28 143.41 135.28 4.41 4.59 4.50 509.55 649.26 608.08 21.55 91.21

Avg. 113.82 145.31 135.77 4.44 4.58 4.52 515.12 660.00 614.33 22.26 92.15

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

on average 629.68 mW with QoS 0 and 614.33 mW with QoS 1, while with HTTP the av-
erage power was 667.33 mW.

The magnitude of the difference in the average power consumption between the pro-
tocol that consumed less power (MQTT with QoS 1) and the protocol that consumed more
power (HTTP) was 55.83 mW. The difference between HTTP and the MQTT protocol with
QoS 0 was 40.48 mW. Finally, the least difference in power consumption was with the
MQTT protocol between QoS 0 and 1, being 15.35 mW.

In Figure 13, the information in Table 2 is illustrated as a graph. The HTTP readings
are shifted up with respect to the two cases in the MQTT protocol, meaning that HTTP
consumes more power than the MQTT protocols. The downward peaks for the MQTT
protocols can be observed in a better way, where QoS 1 has more than QoS 0.

Figure 13. Graph of the power consumption in HTTP and MQTT protocols.

The relationship between the above-mentioned cases in terms of power rate is pre-
sented in the following equations:

Power rate = PMQTT0

PHTTP
 = 629.68 mW

670.16 mW = 0.9396 (2)

Power rate = PMQTT1

PHTTP
 = 614.33 mW

670.16 mW = 0.9167 (3)

Power rate = PMQTT1

PMQTT0
 = 614.33 mW

629.68 mW = 0.9756 (4)

which obtain the relation percentages of power consumption in the different protocols.
Different power rates of 0.9396, 0.9167, and 0.9756 are represented, meaning that the

MQTT protocol with QoS 1 consumes 91.67% and 97.56% of the total average power con-
sumed in HTTP and MQTT with QoS 0, respectively, and the MQTT protocol with QoS 0
consumed 93.67% of the power consumed in HTTP. In other words, there are power con-
sumption savings in the MQTT cases of 6.03% (QoS 0) and 8.33% (QoS 1) with respect to
HTTP.

With the previous data, the expected lifetime of any power supply can be calculated.
In the next equation,

Battery Life (h) =
Battery Capacity (Wh)
Estimated Power (W) (5)

Figure 13. Graph of the power consumption in HTTP and MQTT protocols.

The relationship between the above-mentioned cases in terms of power rate is pre-
sented in the following equations:

Power rate =
PMQTT0

PHTTP
=

629.68 mW
670.16 mW

= 0.9396 (2)

Power rate =
PMQTT1

PHTTP
=

614.33 mW
670.16 mW

= 0.9167 (3)

Power rate =
PMQTT1

PMQTT0
=

614.33 mW
629.68 mW

= 0.9756 (4)

Sensors 2023, 23, 4896 16 of 23

which obtain the relation percentages of power consumption in the different protocols.
Different power rates of 0.9396, 0.9167, and 0.9756 are represented, meaning that

the MQTT protocol with QoS 1 consumes 91.67% and 97.56% of the total average power
consumed in HTTP and MQTT with QoS 0, respectively, and the MQTT protocol with
QoS 0 consumed 93.67% of the power consumed in HTTP. In other words, there are power
consumption savings in the MQTT cases of 6.03% (QoS 0) and 8.33% (QoS 1) with respect
to HTTP.

With the previous data, the expected lifetime of any power supply can be calculated.
In the next equation,

Battery Life (h) =
Battery Capacity (Wh)
Estimated Power (W)

(5)

the battery life in hours can be calculated for the different protocols. The battery capacity
(Wh) was 72 Wh according to the battery specifications, while the average power was taken
as the estimated power.

Only one calculation was carried out from the data where only the microcontrollers
were energized because the average powers were very similar. The average of the three
values was taken to determine the battery life, while in the complete system, the data were
taken from the average powers viewed in Table 2.

Furthermore, the rate of change in the autonomy associated with the useful time of
the battery can be seen in Table 3. This can be seen as the percentage over time, where 100%
is divided over the calculation of the battery life to obtain the rate of change (%/h).

Table 3. Expected battery life.

Protocol Pavg (mW) σ (mW) Battery Life (h) σ (h) %/h

HTTP 670.16 ± 16.19 107.44 ± 2.59 0.9308
MQTT QoS 0 629.68 ± 19.39 114.34 ± 3.52 0.8746
MQTT QoS 1 614.33 ± 22.25 117.20 ± 4.24 0.8532

Only
NodeMCU 381.73 ± 18.81 188.61 ± 9.29 0.5302

With HTTP, the battery life is expected to last 107 h, while in the MQTT protocol
with QoS 0 and 1, it is expected to last 114 and 117 h, respectively. The expected time
savings with the MQTT protocol for this battery are 7 and 10 h. As a reference, when only
energizing the microcontroller, the system is expected to last almost 189 h in all cases.

6.2. Normal and Real Distribution of Instantaneous Power Consumption

In Table 4, the 3 tests per protocol are put together, forming a 300 instantaneous power
sample table for each one of the cases: HTTP, MQTT QoS 0, and MQTT QoS 1.

Table 4. Statistical parameters of the 300 samples per protocol.

Protocol
Min. Max. Average σ Variance Median Mode Range

P (mW) P (mW) P (mW) P (mW) P (mW) P (mW) P (mW) P (mW)

HTTP 643.74 741.21 670.29 16.13 260.06 664.25 659.24 97.46
MQTT QoS 0 515.07 708.99 629.67 19.60 384.30 630.64 629.03 193.92
MQTT QoS 1 509.55 673.47 614.33 22.69 515.05 616.85 626.00 163.92

The prediction model will be presented in Section 6.3, and it is based on the statistical
normalization of 300 instantaneous power samples, i.e., their distributions are aligned to a
normal (Gaussian) distribution, as seen in Figure 14a. In this sense, Figure 14a shows the
following main statistical parameters: the minimum and maximum values, average, stan-

Sensors 2023, 23, 4896 17 of 23

dard deviation, variance, median, mode, and range between the maximum and minimum
values.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

(a) (b)

Figure 14. Power consumption in HTTP and MQTT: (a) normal distributions; (b) real distribu-
tions.

In Figure 14b, the real distributions of power consumption can be observed, compar-
ing the three different protocols and analyzing the most constant range of values pre-
sented in the experimentation. The HTTP curve is shifted right, meaning that is the one
that consumes more power, while MQTT QoS 1 is the protocol that consumes less power.

6.3. Prediction Model for Long-Term Tests
The previous results can be used to characterize the behavior of the batteries in the

systems with different protocols. Long-term experiments were made to corroborate and
analyze this characterization. The results of the duration of the battery and the relative
errors are analyzed in Table 5.

Table 5. Theoretical and real discharge of battery.

Hours
Theoretical (%) Real (%) Relative Error

HTTP MQTT 0 MQTT 1 HTTP MQTT 0 MQTT 1 HTTP MQTT 0 MQTT 1
0 100 100 100 100 100 100 0 0 0

12 89 90 90 88 90 90 0.94 0.55 0.27
24 78 79 80 77 79 80 0.85 0.01 0.60
36 66 69 69 65 68 69 2.24 0.75 0.41
48 55 58 59 54 59 59 2.39 1.69 0.08
60 44 48 49 40 47 48 9.41 1.11 1.65
72 33 37 39 28 34 36 15.11 8.19 6.66
84 22 27 28 16 22 23 26.65 17.10 18.81

In addition, the model assumes a linear discharge of the battery, which is validated
by the experimental data collected over 84 h and plotted in Figure 15. A steeper slope is
noted for HTTP with respect to the two-line graphs for the MQTT protocol. This graph
shows that the battery in the MQTT protocol with QoS 1 will last more than the others
because it consumes less energy. With the line graphs, the theoretical values are presented,
while the points indicate the real measurement values.

Figure 14. Power consumption in HTTP and MQTT: (a) normal distributions; (b) real distributions.

In Figure 14b, the real distributions of power consumption can be observed, comparing
the three different protocols and analyzing the most constant range of values presented
in the experimentation. The HTTP curve is shifted right, meaning that is the one that
consumes more power, while MQTT QoS 1 is the protocol that consumes less power.

6.3. Prediction Model for Long-Term Tests

The previous results can be used to characterize the behavior of the batteries in the
systems with different protocols. Long-term experiments were made to corroborate and
analyze this characterization. The results of the duration of the battery and the relative
errors are analyzed in Table 5.

Table 5. Theoretical and real discharge of battery.

Hours
Theoretical (%) Real (%) Relative Error

HTTP MQTT 0 MQTT 1 HTTP MQTT 0 MQTT 1 HTTP MQTT 0 MQTT 1

0 100 100 100 100 100 100 0 0 0
12 89 90 90 88 90 90 0.94 0.55 0.27
24 78 79 80 77 79 80 0.85 0.01 0.60
36 66 69 69 65 68 69 2.24 0.75 0.41
48 55 58 59 54 59 59 2.39 1.69 0.08
60 44 48 49 40 47 48 9.41 1.11 1.65
72 33 37 39 28 34 36 15.11 8.19 6.66
84 22 27 28 16 22 23 26.65 17.10 18.81

In addition, the model assumes a linear discharge of the battery, which is validated by
the experimental data collected over 84 h and plotted in Figure 15. A steeper slope is noted
for HTTP with respect to the two-line graphs for the MQTT protocol. This graph shows
that the battery in the MQTT protocol with QoS 1 will last more than the others because it
consumes less energy. With the line graphs, the theoretical values are presented, while the
points indicate the real measurement values.

Sensors 2023, 23, 4896 18 of 23
Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 15. Battery life.

The linear equations of the battery capacity are given via the next equation:

%Battery = 100 − mt (6)

where ‘m’ is equal to the slope, and ‘t’ is the time in hours. The number 100 is the maxi-
mum percentage of the battery that will decrease in time given the rate of change ‘m’.

Different values of the rate of change are seen in the three different cases of the
HTTP and MQTT protocols. Next, the theoretical linear equations

%Battery MQTT 1 = 100 − 0.8532t (7)

%Battery MQTT 0 = 100 − 0.8746t (8)

%Battery HTTP = 100 − 0.9308t (9)

are presented.
With the results of the long-term experimentation, the real linear equations

%Battery MQTT 1 = 101.25 − 0.9077t (10)

%Battery MQTT 0 = 101.17 − 0.9236t (11)

%Battery HTTP = 100.58 − 1.002t (12)

are obtained, which are very similar to the theoretical linear equations previously seen.
In Table 6, the theoretical energy consumption data from the longtime tests can be

seen, while Figure 16 contains the theoretical graphs.

Table 6. Theoretical energy consumption.

Hours
Energy Consumption (Wh)

HTTP MQTT QoS 0 MQTT QoS 1
0 00.00 00.00 00.00
12 08.04 07.56 07.37
24 16.08 15.11 14.74
36 24.13 22.67 22.12
48 32.17 30.22 29.49
60 40.21 37.78 36.86
72 48.25 45.34 44.23
84 56.29 52.89 51.60

Figure 15. Battery life.

The linear equations of the battery capacity are given via the next equation:

%Battery = 100 − mt (6)

where ‘m’ is equal to the slope, and ‘t’ is the time in hours. The number 100 is the maximum
percentage of the battery that will decrease in time given the rate of change ‘m’.

Different values of the rate of change are seen in the three different cases of the HTTP
and MQTT protocols. Next, the theoretical linear equations

%Battery MQTT 1 = 100 − 0.8532t (7)

%Battery MQTT 0 = 100 − 0.8746t (8)

%Battery HTTP = 100 − 0.9308t (9)

are presented.
With the results of the long-term experimentation, the real linear equations

%Battery MQTT 1 = 101.25 − 0.9077t (10)

%Battery MQTT 0 = 101.17 − 0.9236t (11)

%Battery HTTP = 100.58 − 1.002t (12)

are obtained, which are very similar to the theoretical linear equations previously seen.
In Table 6, the theoretical energy consumption data from the longtime tests can be

seen, while Figure 16 contains the theoretical graphs.

Table 6. Theoretical energy consumption.

Hours
Energy Consumption (Wh)

HTTP MQTT QoS 0 MQTT QoS 1

0 00.00 00.00 00.00
12 08.04 07.56 07.37
24 16.08 15.11 14.74
36 24.13 22.67 22.12
48 32.17 30.22 29.49
60 40.21 37.78 36.86
72 48.25 45.34 44.23
84 56.29 52.89 51.60

Sensors 2023, 23, 4896 19 of 23Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 16. Energy consumption.

Relative Error between Theory and Experimentation
The relative error is given using the next equation:

Errorp(n) =
หTheoretical value-Experimentation valueห

Theoretical value ×100 (13)

In Figure 17, the relative error percentage graph of the three cases is given. An in-
crease in the error percentage is noted because the error accumulates as time passes. The
relative error for HTTP is higher than for the other two cases of the MQTT protocol. Both
cases behave in a very similar way.

Figure 17. Relative error percentage.

Beyond 60 h, the relative error does not behave in a linear way, and it behaves as a
higher-order function, as can be appreciated in the graph.

Figure 16. Energy consumption.

Relative Error between Theory and Experimentation

The relative error is given using the next equation:

Errorp(n) =
|Theoretical value− Experimentation value|

Theoretical value
×100 (13)

In Figure 17, the relative error percentage graph of the three cases is given. An increase
in the error percentage is noted because the error accumulates as time passes. The relative
error for HTTP is higher than for the other two cases of the MQTT protocol. Both cases
behave in a very similar way.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 16. Energy consumption.

Relative Error between Theory and Experimentation
The relative error is given using the next equation:

Errorp(n) =
หTheoretical value-Experimentation valueห

Theoretical value ×100 (13)

In Figure 17, the relative error percentage graph of the three cases is given. An in-
crease in the error percentage is noted because the error accumulates as time passes. The
relative error for HTTP is higher than for the other two cases of the MQTT protocol. Both
cases behave in a very similar way.

Figure 17. Relative error percentage.

Beyond 60 h, the relative error does not behave in a linear way, and it behaves as a
higher-order function, as can be appreciated in the graph.

Figure 17. Relative error percentage.

Beyond 60 h, the relative error does not behave in a linear way, and it behaves as a
higher-order function, as can be appreciated in the graph.

Sensors 2023, 23, 4896 20 of 23

7. Conclusions and Future Work

In this paper, we presented the design and implementation of a cost-efficient IoT
electronic platform for the remote real-time monitoring of long-term cold chain transport
operations. In terms of cost, with USD 22.61, the electric platform can be put together.
Moreover, if an LCD is not required in the implementation, with only USD 13.52, a complete
real-time system can be installed. In terms of data validation, for both the HTTP and
MQTT implementations, a dashboard and a map with real-time data were presented.
The displayed data show the actual magnitude of the temperature and humidity and the
coordinates for geolocation.

Using our prototype, we conducted experiments to compare the HTTP and MQTT
protocols with different QoS levels to select better solutions in the IoT area for the transport
industry. In terms of the MQTT protocol, QoS 0 and QoS 1 were selected as the extreme
cases in power consumption between the following three levels: QoS 0, QoS 1, and QoS
2. According to [38], QoS 1 is the level that consumes less power and QoS 0 is that which
consumes the most. Nevertheless, for future experimentation, we will integrate and validate
QoS 2 in our test platform.

One of the main advantages of the MQTT protocol over HTTP in the IoT is that it
consumes less power, which is a very important variable in IoT technology, and it could be
proved in the experimentation. The above seems to be related to the size of the payload
header format and the fact that, unlike MQTT, HTTP treats one request at a time [40].

In our results, lots of data on instantaneous power were obtained with an NI myDAQ
as the voltage and current data acquirer. The MQTT and HTTP protocols with a sampling
rate of 10 s between each transfer of data were analyzed and 15 min between the data
transfer to the MySQL database. The entire electronic platform consumed on average
629.68 mW and 614.33 mW using the MQTT protocol with QoS 0 and 1, respectively, while
when using HTTP, the circuit consumed 667.33 mW. The electronic platform using the
MQTT protocol with QoS 1 resulted in 91.67% of the total average consumed power in the
electronic platform with HTTP, and 97.56% of the power wasted with QoS 0, while QoS 0
resulted in 93.96% of the power wasted in HTTP. There were power consumption savings in
the MQTT cases of 6.03% (QoS 0) and 8.33% (QoS 1) with respect to HTTP. Using the MQTT
protocol with QoS 1, the battery is expected to last 10 h more than when using HTTP and
3 h more than with QoS 0 with a 72 Wh portable battery. With QoS 0, the battery is expected
to last 7 h more than with HTTP. In cargo transport, 7 and 10 more operating hours result
in a very good improvement in the system, having variables readings working correctly
over more time. In the experimentation section, HTTP resulted in a bigger discharge rate
than the MQTT protocols.

Another advantage of the MQTT protocol is that no energy must be wasted in the
broker if using a cloud-based broker, as was the one used in the presented prototype. A
device-to-gateway model was used in the MQTT protocol where the Adafruit IO cloud-
based broker acted as a cloud-based gateway. In other cases, it is necessary to use another
microcontroller as a broker to transmit information.

Furthermore, we presented a prediction model for the life cycle of batteries, according
to their specifications for long-term tests. The obtained results show that the characteri-
zation for a few hours (from 0 to 48 h) only presents a small relative error of up to 2.24
in comparison with the real experimentation. As time passes, an increase in the error
percentage is observed because the error accumulates. The relative error in HTTP is higher
than in the other two cases of the MQTT protocol. Both cases behave in a very similar way.

A limitation of this article is that no analysis of how fast any system can work was
carried out. It is important to have in mind the type of application in which your platform
is going to perform. However, in this project, fast readings are not necessary because the
main idea is to give contributions to future works to reduce the power of the circuit. In
the IoT, it is very important to take care of wasted energy because most of the sensors in a
sensor network are connected to a small portable battery, which has a limited lifetime. In
the HTTP experimentation, it was realized that information can be transmitted very fast,

Sensors 2023, 23, 4896 21 of 23

but also, the system is going to be limited to the specifications of all the components of the
circuit. In this case, a DHT11 temperature and humidity sensor can read a maximum of
data every two seconds. In many cases, the velocity of a system depends on the physical
limitations of the sensors. Another relevant topic to discuss, which was not included in
the present work, is the evaluation of the differences in power consumption in a system
with the ability to switch between the different qualities of service offered by the MQTT
protocol.

According to all the presented results, we depict some potential strategies to optimize
power consumption in IoT-enabled cold chain systems:

• Develop new strategies for the detection of abnormalities in the parameters being
monitored. New methodologies and systems need to consider the criteria to define
abnormalities and detect whether transportation vehicles are in movement or not
due to environmental conditions that could impact the desired range of values for
temperature and humidity in products.

• Set the sampling rate according to the needs of the application, taking into consider-
ation that the sampling frequency is proportional to the power consumption of any
system. It would be valuable to increase the sampling period without altering the
main functions of the electronic platform.

• Develop a hybrid IoT system capable of switching between the different levels of
services in the MQTT message delivery quality of service according to the type of
product, the environmental conditions, and the traffic within the cold supply chain.

• Leave out devices that are not indispensable to the performance of the system such
as LCD, which is used for debugging purposes, and microSD memory, which can be
substituted with the cloud database.

• Apply one of the multiple specialized methods and techniques to optimize code, which
is intended to become smaller, executing tasks in a quicker way and performing fewer
operations. With code optimization, the program is expected to consume less memory
and the electronic system less power.

Finally, this investigation opens the discussion for continuing this work in the future
in the following different areas:

• Implementing cellular networks and analyzing the consumed power in the electronic
platform.

• Fabricating the electronic platform in a PCB-Microelectro-Mechanical System (MEMS)
to significantly reduce its size and make it more portable.

• Experimenting with different sampling rates to determine differences in power.
• Associating the data storage and databases with cloud providers such as Alibaba

Cloud and Amazon Web Services, among others.
• Studying the differences in power consumption when varying many variables such

as the time of data transmission, the number of subscribers/publishers in the system,
and the number of sensors in wireless network nodes.

• Exploring other application layer protocols such as CoAP and WebSocket, which also
have many uses in actual IoT applications.

Author Contributions: Conceptualization, H.J.J.O. and S.C.-L.; data curation, R.P., Y.L.M., E.G. and
S.C.-L.; formal analysis, H.J.J.O.; funding acquisition, S.C.-L.; investigation, H.J.J.O.; methodology,
H.J.J.O. and S.C.-L.; project administration, S.C.-L.; resources, S.C.-L.; software, H.J.J.O.; supervision,
S.C.-L.; validation, H.J.J.O., R.P., Y.L.M., E.G. and S.C.-L.; visualization, S.C.-L.; writing—original
draft, R.P., Y.L.M. and S.C.-L.; writing—review and editing, R.P., E.G. and S.C.-L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Tecnologico de Monterrey, through the research group on
Innovation in Smart Digital Technologies and Infrastructure, and by the National Robotics Laboratory
of the Northeast and Central Area of Mexico at the School of Engineering and Sciences.

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 4896 22 of 23

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study is available in
https://www.repositorionacionalcti.mx/recurso/oai:repositorio.tec.mx:11285/637503, accessed on
11 May 2023.

Acknowledgments: We thankfully acknowledge the CONACYT (National Council for Science and
Technology of Mexico) for the Master’s and mobility scholarships awarded to H.J.J.-O.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of this study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Xu, L.; McArdle, G. Internet of too many things in smart transport: The problem, the side effects and the solution. IEEE Access

2018, 6, 62840–62848. [CrossRef]
2. Abraham, S.C. Internet of things (IoT) with cloud computing and machine-to-machine (M2M) communication. IJETST 2016, 3,

4654–4661. [CrossRef]
3. Muthuramalingam, S.; Bharathi, A.; Rakesh Kumar, S.; Gayathri, N.; Sathiyaraj, R.; Balamurugan, B. IoT based intelligent

transportation system (IoT-ITS) for global perspective: A case study. In Internet of Things and Big Data Analytics for Smart
Generation; Kacprzyk, J., Lakhmi, C.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019.

4. Sherly, J.; Somasundareswari, D. Internet of Things based smart transportation systems. IRJET 2015, 2, 1207–1210.
5. Xie, X. Key Applications of the Smart IoT to Transform Transportation Systems; In WIOMAX Report, Washington, USA. 2018. Available

online: http://www.wiomax.com/doc/report/WIO-TR-18-001.pdf (accessed on 11 May 2023).
6. Tadejko, P. Application of Internet of Things in logistics-current challenges. JEMI 2015, 7, 54–64.
7. Trilles, S.; Torres-Sospedra, J.; Belmonte, O.; Zaragaza-Soria, F.J.; González-Pérez, A.; Huerta, J. Development of an open

sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease. Sustain. Comput.
Inform. Syst. 2020, 28, 100309. [CrossRef]

8. Causevic, S.; Colakovic, A.; Haskovic, A. The model of transport monitoring application based on Internet of Things. In
Proceedings of the International Scientific Conference on Science and Traffic Development, Opatija, Croatia, 10–11 May 2018.

9. Davis, K.F.; Downs, S.; Gephart, J.A. Towards food supply chain resilience to environmental shocks. Nat. Food 2021, 2, 54–65.
[CrossRef] [PubMed]

10. Raak, N.; Symmank, C.; Zahn, S.; Aschemann-Witzel, J.; Rohm, H. Processing- and product-related causes for food waste and
implications for the food supply chain. Waste Manag. 2017, 61, 461–472. [CrossRef]

11. Pocas Ribeiro, A.; Rok, J.; Harmsen, R.; Rosales Carreón, J.; Worrell, E. Food waste in an alternative food network-a case-study.
RCR Adv. 2019, 149, 210–219. [CrossRef]

12. Gormley, R.; Brennan, M.; Butler, F. Upgrading the Cold Chain for Consumer Food Products; The National Food Centre, TEAGASC,
Agriculture and Food Development Authority: Dublin, Ireland, 2000.

13. Wang, J.; Wang, H.; He, J.; Li, L.; Shen, M.; Tan, X.; Min, H.; Zheng, L. Wireless sensor network for real-time perishable food
supply chain management. Comput. Electron. Agric. 2015, 110, 196–207. [CrossRef]

14. Tamplin, M.L. Integrating predictive models and sensors to manage food stability in supply chains. Food Microbiol. 2018, 75,
90–94. [CrossRef]

15. ESP8266 Wi-Fi MCU, Espressif Systems. Available online: https://www.espressif.com/en/products/socs/esp8266 (accessed on
30 March 2023).

16. Kaium Khan, A.; Ahmed Shaem, T.; Rahman, M.; Zowad Khan, A.; Shah Alamgir, M. A portable and less time consuming
wireless biometric attendance system for academic purpose using NodeMCU microcontroller. In Proceedings of the 2018 21st
International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018.

17. Mahindar, R.; Prakash, M.; Ghosh, S.; Mukherjee, S.; Ghosh, R. IoT-based home appliances control system using NodeMCU and
blynk server. Int. Adv. Res. J. Sci. Eng. Technol. 2018, 5, 16–22.

18. Shelke, P.; Kulkarni, S.; Yelpale, S.; Pawar, O.; Singh, R.; Deshpande, K. A NodeMCU based home automation system. Int. Res. J.
Eng. Technol. 2018, 5, 127–129.

19. Chan May, O.A.; Sandoval Gio, J.; Peña Koo, J.J. Internet de las cosas para controlar el encendido y apagado de aires acondiciona-
dos y luminarias. Pist. Educ. 2016, 38, 100–119.

20. Abdulahad Aziz, D. Webserver based smart monitoring system using esp8266 node mcu module. Int. J. Sci. Eng. Res. 2018, 9,
801–807.

21. Chooruang, K.; Mangkalakeeree, P. Wireless heart rate monitoring system using mqtt. Procedia Comput. Sci. 2016, 86, 160–163.
[CrossRef]

22. Singh, B.; Urooj, S.; Mishra, S.; Haldar, S. Blood pressure monitoring system using wireless technologies. Procedia Comput. Sci.
2019, 152, 267–273. [CrossRef]

https://www.repositorionacionalcti.mx/recurso/oai:repositorio.tec.mx:11285/637503
https://doi.org/10.1109/ACCESS.2018.2877175
https://doi.org/10.18535/ijetst/v3i09.13
http://www.wiomax.com/doc/report/WIO-TR-18-001.pdf
https://doi.org/10.1016/j.suscom.2019.01.011
https://doi.org/10.1038/s43016-020-00196-3
https://www.ncbi.nlm.nih.gov/pubmed/37117650
https://doi.org/10.1016/j.wasman.2016.12.027
https://doi.org/10.1016/j.resconrec.2019.05.029
https://doi.org/10.1016/j.compag.2014.11.009
https://doi.org/10.1016/j.fm.2017.12.001
https://www.espressif.com/en/products/socs/esp8266
https://doi.org/10.1016/j.procs.2016.05.045
https://doi.org/10.1016/j.procs.2019.05.017

Sensors 2023, 23, 4896 23 of 23

23. Sachdev, S.; Macwan, J.; Patel, C.; Doshi, N. Voice-controlled autonomous vehicle using IoT. Procedia Comput. Sci. 2019, 160,
712–717. [CrossRef]

24. Puñal Pereira, P. Efficient IoT Framework for Industrial Applications. Ph.D. Thesis, School of Industrial Electronics, Lulea,
Sweden, 2016.

25. Vergara, E.J.; Nadjm-Tehrani, S.; Prihodko, M. Energybox: Disclosing the wireless transmission energy cost for mobile devices.
Sustain. Comput. Inform. Syst. 2014, 4, 118–135. [CrossRef]

26. Luthfi, F.; Juanda, E.A.; Kustiawan, I. Optimization of data communication on air control device based on Internet of Things
with application of http and mqtt protocols. In Proceedings of the IOP Conference Series: Materials Science and Engineering,
Bandung, Indonesia, 16 November 2017.

27. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and http. In Proceedings of the 2017 IEEE
International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017.

28. Power Profiling: Https Long Polling vs. MQTT with ssl on Android. Available online: http://stephendnicholas.com/posts/
power-profiling-mqtt-vs-https (accessed on 30 March 2023).

29. Espinosa-Aranda, J.L.; Vallez, N.; Sanchez-Bueno, C.; Aguado-Araujo, D.; Bueno, G.; Deniz, O. Pulga, a tiny open-source mqtt
broker for flexible and secure IoT deployments. In Proceedings of the 2015 IEEE Conference on Communications and Network
Security (CNS), Florence, Italy, 28–30 September 2015.

30. Veerasamy, B.D. Creating a model http server program using java. arXiv 2010, arXiv:1003.1497.
31. Kumar, S. A review on client-server based applications and research opportunity. IJRSR 2019, 10, 33857–33862.
32. Pastor-Vargas, R.; Tobarra, L.; Robles-Gómez, A.; Martin, S.; Hernández, R.; Cano, J. A wot platform for supporting full-cycle IoT

solutions from edge to cloud infrastructures: A practical case. Sensors 2020, 20, 3770. [CrossRef] [PubMed]
33. Happ, D.; Wolisz, A. Limitations of the pub/sub pattern for cloud based IoT and their implications. In Proceedings of the 2016

Cloudification of the Internet of Things (CIoT), Paris, France, 23–25 November 2016.
34. Bryce, R.; Shaw, T.; Srivastava, G. MQTT-G: A publish/subscribe protocol with geolocation. In Proceedings of the 2018 41st

International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018.
35. Lee, S.; Kim, H.; Hong, D.K.; Ju, H. Correlation analysis of mqtt loss and delay according to qos level. In Proceedings of the The

International Conference on Information Networking 2013 (ICOIN), Bangkok, Thailand, 28–30 January 2013.
36. Longo Imedio, J.E.L. Aplicación de Domótica en el Contexto de IoT. Master’s Thesis, Facultad de Informática, Madrid, España, 2019.
37. Tena, A.R.; Kristensen, L.M.; Rutle, A. On modelling and validation of the MQTT IoT protocol for M2M communication. CEUR

Workshop Proc. 2018, 2138, 99–118.
38. Baranauskas, E.; Toldinas, J.; Lozinskis, B. Evaluation of the impact on energy consumption of mqtt protocol over tls. In

Proceedings of the IVUS 2019 International Conference on Information Technologies, Kaunas, Lithuania, 25 April 2019.
39. Viswanathan, A. Analysis of Power Consumption of the MQTT Protocol. Master’s Thesis, School of Information Sciences,

University Park, PA, USA, 2017.
40. Digital Transformation in Transportation and Logistics with IoT and MQTT. Available online: https://www.hivemq.com/solutions/

transportation/digital-transformation-in-transportation-and-logistics-with-iot-and-mqtt/ (accessed on 30 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procs.2019.11.022
https://doi.org/10.1016/j.suscom.2014.03.008
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
https://doi.org/10.3390/s20133770
https://www.ncbi.nlm.nih.gov/pubmed/32635632
https://www.hivemq.com/solutions/transportation/digital-transformation-in-transportation-and-logistics-with-iot-and-mqtt/
https://www.hivemq.com/solutions/transportation/digital-transformation-in-transportation-and-logistics-with-iot-and-mqtt/

	Introduction
	IoT Technology
	Long-Term Cold Chain Transport Operations
	Research Contribution

	Related Work
	NodeMCU for IoT Applications
	Power Consumption between HTTP and MQTT

	IoT Application Layer Protocols
	HTTP
	MQTT Protocol
	Publish/Subscribe Architecture
	Broker
	Quality of Service

	Material and Methods
	Hardware
	Measurement Equipment
	Web Development Methodology (Front-End)
	HTTP Dashboard
	MQTT Dashboard

	Web Development Methodology (Back-End)
	Database
	PHP

	Measurement Methodology

	System Prototype
	Results
	Power Consumption of HTTP and MQTT with QoS 0 and 1
	Normal and Real Distribution of Instantaneous Power Consumption
	Prediction Model for Long-Term Tests

	Conclusions and Future Work
	References

