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Abstract: Triboelectric nanogenerator (TENG) is a promising technology for harvesting energy from
various sources, such as human motion, wind and vibration. At the same time, a matching backend
management circuit is essential to improve the energy utilization efficiency of TENG. Therefore,
this work proposes a power regulation circuit (PRC) suitable for TENG, which is composed of a
valley-filling circuit and a switching step-down circuit. The experimental results indicate that after
incorporating a PRC, the conduction time of each cycle of the rectifier circuit doubles, increasing the
number of current pulses in the TENG output and resulting in an output charge that is 1.6 fold that of
the original circuit. Compared with the initial output signal, the charging rate of the output capacitor
increased significantly by 75% with a PRC at a rotational speed of 120 rpm, significantly improving
the utilization efficiency of the TENG’s output energy. At the same time, when the TENG powers
LEDs, the flickering frequency of LEDs is reduced after adding a PRC, and the light emission is more
stable, which further verifies the test results. The PRC proposed in this study can enable the energy
harvested by the TENG to be utilized more efficiently, which has a certain promoting effect on the
development and application of TENG technology.
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1. Introduction

Energy is an indispensable factor for social development. With the increasing severity
of the energy crisis and the increasing requirements for environmental protection, the
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coming more and more urgent [1-3]. In recent years, the innovation of new energy and
the utilization of environmental energy have been research hotspots, which are necessary
for energy storage and optimization of related renewable energy [4,5]. As a promising
energy harvesting technology, triboelectric nanogenerator (TENG) has attracted consider-
able attention due to its sustainability and low cost [6,7], as it has been proven capable of
harvesting energy from various sources, including human motion, wind, vibration and

water currents, which makes it highly versatile in practical applications [8-12]. At the
same time, the application directions of TENG are also very wide, covering smart phones,
wearable devices, wireless sensor networks, fitness equipment and other fields [13]. It also
has broad application prospects in environmental monitoring, intelligent transportation,
smart home, medical and health fields [14,15].

Despite its well-established theoretical basis and significant advantages, the TENG
faces several challenges that hinder its efficiency [16,17]. Furthermore, stability remains
a significant problem in practical applications [18-20]. Therefore, in-depth research on
the performance and mechanism of TENG is essential for promoting its practical appli-
cation [21,22]. Scholars have explored and conducted experimental research, including
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theoretical analysis and derivation, material selection and preparation, structure design
and optimization, as well as performance testing and analysis, to address the challenges
related to the TENG [23-27]. In addition to studying TENG’s characteristics, developing
a power management circuit that matches the output of TENG is crucial to improving
its efficiency [28,29]. Hu et al. reported a simple and adjustable automatic spark switch
circuit, which achieved energy accumulation and rapid release [30]. Cheng et al. pro-
posed a dual-loop circuit, reducing the energy loss in the diode to 47.1% [31]. Zhang et al.
demonstrated a universal power management circuit that achieved an efficiency of 80%
in matching the impedance of a TENG [32]. A power management circuit can convert
the TENG's alternating current (AC) output into a direct current (DC) output, which can
power electronic devices or store energy in batteries or capacitors [33,34]. Maximizing
harvested energy by increasing energy conversion efficiency is a significant challenge in
TENG technology [35]. A suitable power management circuit can effectively enhance the
TENG’s output performance, playing a vital role in promoting its practical application.

In this paper, a power regulation circuit (PRC) suitable for TENG is proposed, which
is composed of a first-stage valley-filling circuit and a second-stage switching step-down
circuit, and its electrical performance is tested by a typical freestanding-mode TENG. Unlike
common power management circuits that use switch circuits to reduce the duty cycle of
the TENG, a PRC increases the conduction time of the TENG to increase the output charge
and improve the energy utilization efficiency of the TENG. The experimental results show
that adding the PRC increases the power supply time of the TENG in each cycle, thereby
increasing the pulse number of the TENG output signal and the output charge is 1.6-fold
higher than the initial value. Compared with the initial output signal, the charging rate of
the output capacitor increases by 75%, improving the TENG’s performance significantly.
The stability of the PRC is further proved by frequency conversion charging experiments.
At the same time, when the TENG supplies power to LEDs with a motion frequency of 2 Hz,
the LEDs using the PRC flicker less than LEDs powered by direct rectification, the light is
also more stable, further verifying the test results. The proposed PRC can efficiently utilize
the output energy of the TENG, providing new insights into the storage and utilization of
the TENG's energy.

2. Structure and Mechanism

Figure 1 presents a schematic diagram of a TENG and a PRC system, where Figure 1a
illustrates the specific structure of the TENG. As the power supply segment of the PRC, the
TENG is used to verify the applicability of the PRC for the TENG’s power management
and compared with the signal output after through the PRC. The TENG adopts a rotating
freestanding mode, comprising a rotor, a shell and a shaft. The shell structure is made of an
acrylic tube with a diameter of 94 mm, with six pairs of copper electrodes attached to its
inner wall. The rotor is made of polylactide (PLA) material and uniformly inlaid with six
pieces of fluorinated ethylene propylene (FEP) films, forming the power generation unit of
the TENG. The TENG is driven by a rotating motor, and the output signals of the system
are measured by a programmable electrometer and data acquisition system, which are
processed and stored by LabVIEW software and computer. Figure 1b shows the schematic
diagram of the PRC system, which consists of two-stage circuits. The first stage comprises
a rectifier and a valley-filling circuit to increase the conduction time of the rectifier bridge
during the TENG’s unit motion cycle and enhance the initial output energy. The second-
stage circuit steps down and stores the previous stage circuit to better match the output
load. A PMOS transistor is used as a control switch, automatically turned on and off based
on the magnitude of the first-stage output signal. To facilitate the experiment’s debugging
and component parameter determination, a PRC system was built on a breadboard, acting
as a passive power management circuit directly connected to the TENG’s output.
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Figure 1. Design schematic diagram of the TENG and the PRC. (a) System structure of the TENG.
(b) The circuit diagram of the PRC.

Figure 2 depicts the specific working principle of the TENG, which mainly comprises
four processes. As presented in Figure 2a, according to the triboelectric sequence table, the
FEP film surface easily gains electrons, resulting in a negative surface potential. Conversely,
the copper electrode surface readily loses electrons, leading to a positive surface potential.
In the initial state (Figure 2a(i)), the rotor remains stationary, and the FEP film is in full
contact with copper electrode I. Consequently, contact electrification causes charge transfer,
and both the copper electrode and the FEP film acquire equal amounts of positive and
negative charges. When the FEP film is rotated to the state illustrated in Figure 2a(ii), it
contacts both copper electrode I and copper electrode 1II, inducing electrostatic induction
that drives electrons on electrode II towards electrode I, resulting in a secondary electrode
under external load, and the current from electrode I to electrode II. As the rotor continues
to move to the state displayed in Figure 2a(iii), the FEP film comes into complete contact
with copper electrode II, and electrostatic equilibrium is reached, with no charge flowing.
Subsequently, the rotor rotates to state iv (Figure 2a(iv)), under external load conditions,
and a potential difference drives the generation of current in the opposite direction to
the previous half-cycle, eventually returning to the initial state, initiating a new cycle.
Therefore, continuous rotation of the TENG produces a continuous AC signal. Additionally,
COMSOL was employed to simulate the electrostatic field, exhibiting the power generation
mechanism of the TENG under different motion states (Figure 2b).
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Figure 2. Principle analysis of the TENG: (a) The specific working principle of the TENG, (i-iv) the
charge transfer relationship between the FEP film and the copper electrode when the TENG rotates;
(b) (i-iv) simulation diagram of charge distribution in different states of the TENG.

Figure 3 illustrates the specific working process of the PRC. Figure 3a represents the
first-stage circuit, which comprises a rectifier and a passive valley-filling circuit. To illustrate
the functioning of the first-stage circuit, Figure 3b presents its detailed working principle.
When the voltage of the TENG is high, the output current signal follows the path illustrated
in Figure 3b(i). The current charges C; and Cy, and D, conducts while D and D3 are cut
off. In contrast, when the voltage is low, the capacitors C; and C; are discharged through
D; and D3 while D; is cut off, as shown in Figure 3b(ii). Meanwhile, when selecting a
capacitor, it must be ensured that the values of C; and C; are equal, and in order to match
the internal resistance of the TENG, the selection of the capacitor should not be too large.
The selected capacitor value is 0.1 uF. Furthermore, neglecting the voltage drop across the
diodes, when the TENG output voltage attains V,, the voltage drops across C; and C, are
both 1/2 V. Subsequently, when the output voltage of the TENG drops to 1/2 Vm, the
rectifier bridge diode is cut off. At this point, D; and D3 conduct, and the two capacitors
are connected in parallel to power the load. Compared to the basic rectifier circuit, the
power supply after rectification needs to be higher than Vy, to provide power to the external
load. Therefore, as shown in Figure 3¢, compared to the case of directly rectifying the
output (Figure 3c(i)), the first-stage circuit increases the power supply time of the external
load within one cycle, and due to the longer conduction time, only a small peak current is
required to fulfill the power requirement within one cycle (Figure 3c(ii)). The second-stage
output circuit, as illustrated in Figure 3d, comprises a PMOS switch and a step-down storage
section. Figure 3e demonstrates the specific working process. Initially, when the output
voltage Vi of the first stage reaches the threshold voltage of the switch Sy, that is, when the
source voltage of the PMOS transistor is 2 to 3 V higher than the gate voltage, the energy is
transferred from the first-stage circuit to the second-stage circuit, and S; is passed through
the change in the voltage is automatically turned on and off, and assists the second-stage
circuit to realize the voltage reduction, realizing a regulation process of the passive switch.
The output current powers the capacitor Coyt and the load via the inductor Ly, as depicted in
Figure 3e(i). Conversely, when the voltage falls below Vj, the switch S; is tuned off, causing
the energy stored in the inductor to be released to Coyut and the load. At this point, Dy is
turned on, creating a closed loop, as shown in Figure 3e(ii). Ultimately, when the energy
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stored in Coy; reaches a certain threshold, it becomes capable of supplying stable power to
the output load, as displayed in Figure 3e(iii). By employing the aforementioned two-stage
circuits, the PRC system can accomplish the entire working process.
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Figure 3. PRC-specific workflow: (a) the circuit diagram of the first stage in the PRC system;
(b) the workflow of the first-stage circuit in the PRC, (i) series charging and (ii) parallel discharging
of capacitors.; (c) the output mechanism diagram of the first-stage circuit in the PRC; (d) the circuit
diagram of the second stage in the PRC system; (e) (i-iii) the workflow of the second-stage circuit
within one cycle in the PRC.

3. Results and Discussion
3.1. Basic Output Performance

Figure 4 illustrates the fundamental performance tests of the TENG and the PRC.
Specifically, Figure 4a(i-iii) exhibit the open-circuit voltage, short-circuit current, and
transferred charge output signals of the TENG at different rotational speeds, respectively.
Notably, the peak values of the open-circuit voltage and transferred charge remain nearly
constant with increasing rotational frequency, whereas the short-circuit current gradually
increases, having established the essential output performance and stable operating state
of the TENG. Figure 4b(i,ii), respectively, demonstrate the short-circuit currents outputted
by the TENG rectification and the TENG integrated with a first-stage circuit, at a consistent
rotational speed of 120 rpm (unless stated otherwise, all subsequent experimental condi-
tions were conducted at this rotational speed). The current pulse signals in Figure 4b(ii)
appear to be more closely packed. To further elucidate the effect of the first-stage circuit in
the PRC on the TENG output signal, Figure 4b(iii) compares the two sets of current signals
in Figure 4b(i,ii) with amplification. It can be concluded that after the first-stage circuit, the
number of pulse currents output by the TENG per unit time doubled, and the transferred
charge amount increased by 60%. Although the peak current value slightly decreases, the
accumulated energy output during the entire cycle shows a significant increase, which
indicates that the first-stage circuit effectively increases the conduction time of the rectifier
bridge diode of the TENG, leading to improved output power. It is worth noting that in the
PRC system, the inductance L; plays a critical role in determining the circuit performance,
particularly when the frequency of TENG motion is relatively high and the switch is rapidly
turned on and off. To investigate this effect, experiments were carried out using different
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inductance values, as shown in Figure 4c(i-iii). Cout with values of 10 uF, 22 uF, and 47 pF
was used to test the charging time. Since the motion frequency of the TENG itself is not
high, uH level inductance values are chosen. The capacitance charging curves show that
the charging rate of Coyt increases with an increasing inductance value. However, when
the value of L1 exceeds 330 uH, the delay caused by inductance becomes more significant,

leading to a reduction in the charging rate. Based on our results, the optimal value of L; is
between 150 uH and 330 uH.
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Figure 4. Basic output characteristics of the TENG and the PRC. (a) (i-iii) The original signals of voltage,
current and charge of the TENG at different frequencies; (b) (i) short-circuit current output by direct
rectification and (ii) by the PRC of the TENG, (iii) amplification of the current signal for comparison.;
(c) (i-iii) influence of different inductance values on charging characteristics of output capacitor.

3.2. Demonstration of the PRC

Once the basic principles and parameters of the PRC system are determined, Figure 5
presents the final output performance analysis of the PRC system, along with comparative
experiments and application demonstrations. Figure 5a shows the load charging character-
istic curves for different Coy¢ of 10 uF 22 uF, and 47 pF, indicating that the internal resistance
of the TENG should be considered when choosing the load. If the Cqyt is insufficiently
large, the load voltage will fluctuate, leading to poor load-bearing capacity. Moreover,
when the capacitance of Coyt remains constant, the charging speed of Coyt will be faster
with a larger load. Comparative experiments were conducted as shown in Figure 5b(i,ii),
where capacitors were charged under two different output conditions, one with the PRC
system and the other without it. The results demonstrate that the charging rate of capacitors
increased by 75% when the capacitor is charged to 5 V with the PRC system included. In
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addition, the charging time is significantly reduced with the inclusion of the PRC system.
In order to verify the stability of the PRC system, Figure 5c presents a bar chart of the
charging time of three groups of output capacitors charged to 5 V under different TENG
motion frequencies. The charging time ratios of the three groups of capacitors are also
tested at different frequencies using 3 Hz as the reference frequency, as shown in the curve
in Figure 5c, the three curves almost coincide and can be fitted into one curve, indicating
that the charging time varies proportionally with the motion frequency, and the entire
circuit system is very stable. Finally, Figure 5d demonstrates the actual application capa-
bility of the PRC circuit through an experimental demonstration. Figure 5d(i) shows the
testing system diagram, and the power supply of LEDs under two output modes, direct
rectification and PRC output, is tested at a TENG speed of 120 rpm. The experimental
findings indicate that when the LEDs are connected to the PRC (as illustrated in Figure 5d(i)
and Video S1 in the Supplementary Materials), the flashing phenomenon is reduced and the
overall lighting process becomes more stable. These demonstration results are consistent
with the test data, thus confirming that the PRC can enhance the output efficiency of the
TENG and improve the output stability.
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Figure 5. The output performance test and application demonstration of the PRC. (a) (i-iii) Curves
of the charging voltage and the charging rate of Cout under different loads; (b) comparison ex-
periment of output capacitor charging (i) with PRC and (ii) without the PRC; (c) the relationship
between frequency and charging time; (d) (i) experimental test physical diagram and (ii) application
demonstration of the TENG powering LEDs in two output modes.
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4. Conclusions

In summary, the PRC system increases the power supply time of the TENG in each
cycle, thereby increasing the number of pulses in the TENG output current signal. As
a result, the total output energy per unit cycle increases, and compared to the initial
output signal, the charging rate of the output capacitor increases by 75% after the PRC
is added, improving the output efficiency of the TENG significantly. The PRC consists
of a first-stage valley-filling circuit and a second-stage switching step-down circuit. The
circuit performance was tested by a rotation-type freestanding-mode TENG. The frequency
conversion charging experiment further demonstrated the stability of the PRC. At the same
time, when the TENG supplies power to the LEDs at 120 rpm, the LEDs using the PRC
flicker less and emit more stable light than the LEDs supplied by direct rectification, further
validating the test results. The PRC proposed in this study can more effectively harvest
and utilize the TENG’s energy, which has a certain promoting effect on the storage and
utilization of the output energy of the TENG.
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Dl/ Dz, D3, D4 Diode

Lq Inductance

Cout Output Capacitance

Ry, Load

Vi Input Voltage

Vout Output Voltage
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