High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire
Abstract
:1. Introduction
2. Sensor’s Working Principle
3. Sensitive-Unit Preparation
4. Experiments and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laudati, A.; Mennella, F.; Giordano, M.; D’Altrui, G.; Tassini, C.C.; Cusano, A. A fiber-optic Bragg grating seismic sensor. IEEE Photonics Technol. Lett. 2007, 19, 1991–1993. [Google Scholar] [CrossRef]
- Mills, A.R.; Kadirkamanathan, V. Sensing for aerospace combustor health monitoring. Aircr. Eng. Aerosp. Technol. 2020, 92, 37–46. [Google Scholar] [CrossRef]
- Tang, S.; Cao, J. Deposit Location Identification Based on Feature Decomposition of High-Resolution Remote Sensing Images. IEEE Access 2020, 9, 15239–15251. [Google Scholar] [CrossRef]
- Kim, H.; Kerrigan, S.; Bourham, M.; Jiang, X. AlN Single Crystal Accelerometer for Nuclear Power Plants. IEEE Trans. Ind. Electron. 2020, 68, 5346–5354. [Google Scholar] [CrossRef]
- Simões, A.; Ries, A.; Riccardi, C.S.; González, A.H.M.; Longo, E.; Varela, J.A. High Curie point CaBi2Nb2O9 thin films: A potential candidate for lead-free thin-film piezoelectrics. J. Appl. Phys. 2006, 100, 074110. [Google Scholar] [CrossRef]
- Nagmani, A.K.; Behera, B.; Kadirkamanathan, V. A Review on High Temperature Piezoelectric Crystal La3Ga5SiO14 for Sensor Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 918–931. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, H.; Tao, Z.; Cao, X.; Yang, C.; Che, Z.; Xu, T. Design, fabrication and test of a bulk SiC MEMS accelerometer. Microelectron. Eng. 2022, 260, 111793. [Google Scholar] [CrossRef]
- Chae, J.; Kulah, H.; Najafi, K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J. Microelectromech. Syst. 2005, 14, 235–242. [Google Scholar] [CrossRef]
- Prokopczuk, K.; Rozwadowski, K.; Starzy’nska, M.A.; Doma’nski, A.W. fiber-optic sensor for membrane submicrometer vibration measurement. Appl. Opt. 2014, 53, 6051–6057. [Google Scholar] [CrossRef]
- Qian, J.; Jia, P.; Ren, Q.; Liu, H.; Qin, L.; Xiong, J. An Accelerometer Based on All Silica In-Line Fiber Fabry-Perot Etalon for High Temperature up to 800 °C. Micromachines 2022, 13, 548. [Google Scholar] [CrossRef]
- Sifta, R.; Munster, P.; Sysel, P.; Horvath, T.; Novotny, V.; Krajsa, O.; Filka, M. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations. Metrol. Meas. Syst. 2015, 22, 111–118. [Google Scholar] [CrossRef]
- Taiwo, A.; Taiwo, S.; Sahbudin, R.K.Z.; Yaacob, M.H.; Mokhtar, M. Collimator-based sensor for remote vibration monitoring. Microw. Opt. Technol. Lett. 2015, 57, 38–41. [Google Scholar] [CrossRef]
- Zhao, M.; Wei, X.; Bai, H.; Wang, H. Design and simulation of a MEMS Fabry–Perot accelerometer with ultra-low cross-axis sensitivity. Smart Mater. Struct. 2020, 29, 085029. [Google Scholar] [CrossRef]
- Wang, D.-H.; Jia, P.-G. Fiber optic extrinsic Fabry–Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme. Opt. Eng. 2013, 52, 055004. [Google Scholar] [CrossRef]
- Long, L.; Guo, Z.; Zhong, S. A MEMS Accelerometer Based on Wavelength Modulation Using an Integrated Blazed Grating. IEEE Sens. J. 2018, 19, 877–884. [Google Scholar] [CrossRef]
- Ran, Z.; Lu, E.; Rao, Y.; Ni, M.; Peng, F.; Zeng, D. Fiber-optic fabry-perot interferometer tip accelerometer fabricated by laser-micromachining. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2011; Volume 7753, pp. 1–714. [Google Scholar]
- Jia, P.-G.; Wang, D.-H.; Yuan, G.; Jiang, X.-Y. An Active Temperature Compensated Fiber-Optic Fabry–Perot Accelerometer System for Simultaneous Measurement of Vibration and Temperature. IEEE Sens. J. 2013, 13, 2334–2340. [Google Scholar] [CrossRef]
- Qian, J.; Jia, P.; Liu, H.; Ren, Q.; Liu, J.; Qin, L.; Xiong, J. A MEMS Fiber-Optic Fabry-Perot Vibration Sensor for High-Temperature Applications. IEEE Access 2022, 10, 42908–42915. [Google Scholar] [CrossRef]
- Zhou, C.; Tong, X.; Mao, Y.; Xiong, Q.; Fang, D.; Pan, X. Study on a high-temperature fiber-optic F–P acceleration sensing system based on MEMS. Opt. Lasers Eng. 2019, 120, 95–100. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Y.; Zhang, Y.; Feng, X.; Hu, J.; Jiang, L. Sapphire fiber-optic high-temperature vibration sensor. Opt. Express 2022, 30, 1056–1065. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, F.; Ma, D.; Liu, Z.; Wang, X. Design, fabrication, characterization, and application of an ultra-high temper-ature 6H-SiC sapphire fiber optic vibration sensor. IEEE Photonics J. 2019, 11, 6802512. [Google Scholar] [CrossRef]
- Ren, Q.; Jia, P.; An, G.; Liu, J.; Fang, G.; Liu, W.; Xiong, J. Dual-wavelength demodulation technique for interrogating a shortest cavity in multi-cavity fiber-optic Fabry–Pérot sensors. Opt. Express 2021, 29, 32658. [Google Scholar] [CrossRef] [PubMed]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Sapphire: Material, Manufacturing, Applications, 3rd ed.; Springer Science Business Media: New York, NY, USA, 2009; pp. 154–196. [Google Scholar]
- Nehari, A.; Mehnaoui, M.; Breton, G.; Gullin, Y.; Orival, S.; Panczer, G.; Brenier, A.; Lebbou, K.; Godfroy, J.; Labor, S.; et al. Al2O3 shaped crystals grown under stationary stable state and optical characterizations. Opt. Mater. 2010, 32, 780–782. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kwon, S.B.; Kim, J.-H.; Ahn, S.-H.; Min, S. Effects of surface coating materials on cutting forces and ductile-to-brittle transition in orthogonal cutting of monocrystalline sapphire. J. Manuf. Process. 2022, 84, 375–382. [Google Scholar] [CrossRef]
- Pissadakis, S.; Böhme, R.; Zimmer, K. Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique. Opt. Express 2007, 15, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Jeon, H.; Sung, Y.-J.; Yeom, G.-Y. Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching. Appl. Opt. 2001, 40, 3698–3702. [Google Scholar] [CrossRef]
- Wang, X.C.; Lim, G.C.; Zheng, H.Y.; Ng, F.L.; Liu, W.; Chua, S.J. Femtosecond pulse laser ablation of sapphire in ambient air. Appl. Surf. Sci. 2004, 228, 221–226. [Google Scholar] [CrossRef]
- Fang, X.; Wang, S.; Li, B. Theoretical and Experimental Studies on Ultraviolet Nanosecond Laser Micromachining of Sapphire. Integr. Ferroelectr. 2022, 230, 179–191. [Google Scholar] [CrossRef]
- Stonyte, D.; Jukna, V.; Butkus, S.; Paipulas, D. Surface roughness optimization during femtosecond ultraviolet laser ablation. In Fiber Lasers and Glass Photonics: Materials through Applications; SPIE: Bellingham, WA, USA, 2022; Volume 12142, pp. 279–285. [Google Scholar]
- Ren, Q.; Jia, P.; Qian, J. Three-wavelength Dynamic Demodulation Technique for Multi-cavity Fiber Fabry-Perot Senso. Acta Photonica Sin. 2022, 51, 0906005. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
Length of cantilever beam/mm | 3.8 | |
Width of cantilever beam/mm | 0.3 | |
Thickness of cantilever beam/mm | 0.2 | |
Density of sapphire/kg·m−3 | 3980 | |
Mass of inertial mass/kg | ||
Young’s modulus of sapphire/GPa | 497 | |
Sensitivity/nm·g−1 | S | 0.883 |
Frequency/Hz | f | 20,911 |
Temperature/°C | 200 | 400 | 600 | 800 |
---|---|---|---|---|
Displacement /nm | 7.87 | 8.10 | 8.35 | 8.63 |
Symbol | Pulse Width/ns | Laser Power/W | Working Pulse Frequency/kHz | Scanning Speed/mm·s−1 | Spotting Time/ms |
---|---|---|---|---|---|
Value | 11 | 6.60 | 30 | 0.5 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Jia, P.; Su, C.; Zhao, A.; Liu, J.; Ren, Q.; Xiong, J. High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire. Sensors 2023, 23, 4952. https://doi.org/10.3390/s23104952
Liu H, Jia P, Su C, Zhao A, Liu J, Ren Q, Xiong J. High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire. Sensors. 2023; 23(10):4952. https://doi.org/10.3390/s23104952
Chicago/Turabian StyleLiu, Hua, Pinggang Jia, Chengxin Su, Aihao Zhao, Jia Liu, Qianyu Ren, and Jijun Xiong. 2023. "High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire" Sensors 23, no. 10: 4952. https://doi.org/10.3390/s23104952
APA StyleLiu, H., Jia, P., Su, C., Zhao, A., Liu, J., Ren, Q., & Xiong, J. (2023). High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire. Sensors, 23(10), 4952. https://doi.org/10.3390/s23104952