Signal Property Information-Based Target Detection with Dual-Output Neural Network in Complex Environments
Abstract
:1. Introduction
- 1.
- The proposed single-input double-output network detector (SIDOND) is a promising approach to extracting both the target and background environment features without significantly increasing network capacity and training complexity.
- 2.
- The dynamic-intelligent threshold mechanism can adaptively adjust the threshold based on the estimated target and environmental information, which enhances the detection performance in a complex environment while maintaining a low false-alarm rate.
- 3.
- The CNN based on periodic activation function and a particular initialization strategy can effectively avoid the gradient disappearance problem of deep networks, which improves the convergence speed and network performance in the target detection task.
2. Problem Formulation
2.1. Signal Model
2.2. Posterior Probability Detector
3. Target Detection Using the SIDOND
3.1. The PBCN for SIDOND
3.2. The Structure of the DSSEFCN
3.3. Dynamic-Intelligent Threshold Mechanism
4. Simulations
4.1. Simulation Setup
4.1.1. Experimental Data
4.1.2. The Process of Training the Network
4.2. Performance Results
4.2.1. Homogeneous Background
4.2.2. Multiple Targets Situation
4.2.3. Complex Environment
4.3. Visualization of the SIDOND
4.4. Computational Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Initialization Scheme and Proof of Distribution
References
- Richards, M.A. Fundamentals of Radar Signal Processing; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Rohling, H. Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 1983, 19, 608–621. [Google Scholar] [CrossRef]
- Almeida García, F.D.; Flores Rodriguez, A.C.; Fraidenraich, G.; Santos Filho, J.C.S. CA-CFAR Detection Performance in Homogeneous Weibull Clutter. IEEE Trans. Aerosp. Electron. Syst. 2019, 16, 887–891. [Google Scholar] [CrossRef]
- Meziani, H.A.; Soltani, F. Performance analysis of some CFAR detectors in homogeneous and non-homogeneous Pearson-distributed clutter. Signal Process. 2006, 86, 2115–2122. [Google Scholar] [CrossRef]
- Hansen, V.G.; Sawyers, J.H. Detectability loss due to “greatest of” selection in a cell-averaging CFAR. IEEE Trans. Aerosp. Electron. Syst. 1980, 16, 115–118. [Google Scholar] [CrossRef]
- Gandhi, P.P.; Kassam, S.A. Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 427–445. [Google Scholar] [CrossRef]
- Himonas, S.D.; Barkat, M. Automatic censored CFAR detection for nonhomogeneous environments. IEEE Trans. Aerosp. Electron. Syst. 1992, 28, 286–304. [Google Scholar] [CrossRef]
- Himonas, S. Adaptive censored greatest-of CFAR detection. IEE Proc. F 1992, 139, 247–255. [Google Scholar] [CrossRef]
- Smith, M.; Varshney, P. Intelligent CFAR processor based on data variability. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 837–847. [Google Scholar] [CrossRef]
- Raman Subramanyan, N.; Kalpathi R, R. Robust variability index CFAR for non-homogeneous background. IET Radar Sonar Navig. 2019, 13, 1775–1786. [Google Scholar] [CrossRef]
- Zhu, X.; Tu, L.; Zhou, S.; Zhang, Z. Robust Variability Index CFAR Detector Based on Bayesian Interference Control. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, D.; Hu, Q.; Yu, X. Radar Target Detection Algorithm Using Convolutional Neural Network to Process Graphically Expressed Range Time Series Signals. Sensors 2022, 22, 6868. [Google Scholar] [CrossRef]
- Cao, Z.; Fang, W.; Song, Y.; He, L.; Song, C.; Xu, Z. DNN-based peak sequence classification CFAR detection algorithm for high-resolution FMCW radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5106115. [Google Scholar] [CrossRef]
- Kang, S.W.; Jang, M.H.; Lee, S. Autoencoder-Based Target Detection in Automotive MIMO FMCW Radar System. Sensors 2022, 22, 5552. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, X.; Cao, X.; Greco, M.S.; Gini, F. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications. IEEE Trans. Signal Process. 2023, 71, 741–755. [Google Scholar] [CrossRef]
- Coluccia, A.; Fascista, A.; Ricci, G. A k-nearest neighbors approach to the design of radar detectors. Signal Process. 2020, 174, 107609. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Jiu, B. Sliding Residual Network for High-Speed Target Detection in Additive White Gaussian Noise Environments. IEEE Access 2019, 7, 124925–124936. [Google Scholar] [CrossRef]
- Gao, C.; Yan, J.; Peng, X.; Liu, H. Signal structure information-based target detection with a fully convolutional network. Inf. Sci. 2021, 576, 345–354. [Google Scholar] [CrossRef]
- Amiri, R.; Shahzadi, A. Micro-Doppler based target classification in ground surveillance radar systems. Digit. Signal Process. 2020, 101, 102702. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vision 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Liang, W. CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Liu, A.; Yu, Y.; Wang, P.; Li, J.; Liu, Y.; Lv, S.; Zhu, H. Radar HRRP Target Recognition Model Based on a Stacked CNN-Bi-RNN With Attention Mechanism. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5100814. [Google Scholar] [CrossRef]
- Ji, X.; Yang, B.; Wang, Y.; Tang, Q.; Xu, W. Full-Waveform Classification and Segmentation-Based Signal Detection of Single-Wavelength Bathymetric LiDAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4208714. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, X.; Zhang, F.; Wang, L.; Xue, R.; Zhou, F. Robust pol-ISAR target recognition based on ST-MC-DCNN. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9912–9927. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- Mikolov, T.; Kombrink, S.; Burget, L.; Černockỳ, J.; Khudanpur, S. Extensions of recurrent neural network language model. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5528–5531. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
- Li, J.; Dang, S.; Huang, Y.; Chen, P.; Qi, X.; Wen, M.; Arslan, H. Composite Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Trans. Wirel. Commun. 2022, 1. [Google Scholar] [CrossRef]
- Blalock, D.; Gonzalez Ortiz, J.J.; Frankle, J.; Guttag, J. What is the State of Neural Network Pruning? In Proceedings of the Machine Learning and Systems, Austin, TX, USA, 2–4 March 2020; Volume 2, pp. 129–146. [Google Scholar]
- Goodman, L.A. On the exact variance of products. J. Am. Stat. Assoc. 1960, 55, 708–713. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, C.H. Beyond Gaussian approximation: Bootstrap for maxima of sums of independent random vectors. Ann. Statist. 2020, 48, 3643–3671. [Google Scholar] [CrossRef]
- Ash, R.B.; Robert, B.; Doleans-Dade, C.A.; Catherine, A. Probability and Measure Theory; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Bowling, S.R.; Khasawneh, M.T.; Kaewkuekool, S.; Cho, B.R. A logistic approximation to the cumulative normal distribution. J. Ind. Eng. Manag. 2009, 2, 114–127. [Google Scholar] [CrossRef]
Symbol | Significance | Value |
---|---|---|
B | Signal bandwidth | 5 MHz |
Pulse Width | 12.8 | |
Sampling frequency | 5 MHz | |
L | Number of pulse sampling points | 64 |
v | Target speed | m/s |
Label | The Parameters of i-th SICLayer | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
#1 | (8,3,1,3) | (64,3,2,1) | (256,3,2,1) | – | – | – | – | – |
#2 | (8,3,1,3) | (64,3,2,1) | (128,3,1,1) | (256,3,2,1) | – | – | – | – |
#3 | (8,3,1,3) | (64,3,1,1) | (64,3,2,1) | (128,3,1,1) | (256,3,2,1) | – | – | – |
#4 | (8,3,1,3) | (64,3,1,1) | (64,3,2,1) | (128,3,1,1) | (256,3,1,1) | (256,3,2,1) | – | – |
#5 | (8,3,1,3) | (32,3,1,1) | (64,3,1,1) | (64,3,2,1) | (128,3,1,1) | (128,3,1,1) | (256,3,2,1) | – |
#6 | (8,3,1,3) | (16,3,1,1) | (32,3,1,1) | (32,3,2,1) | (64,3,1,1) | (128,3,1,1) | (256,3,1,1) | (256,3,2,1) |
TIF | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
SNR/INR(dB) | (−∞,−13] | [−12,10] | [−9,8] | [−7,−6] | [−5,−4] | [−3,−3] | [−2,−1] | [0,0] | [1,2] | [3,4] | [5,∞) |
Signal Bandwidth | Sampling Frequency | Pulse Width | Number of Pulse Sampling Points | Accuracy |
---|---|---|---|---|
5 MHz | 5 MHz | 12.8 us | 64 | 0.972 |
4 MHz | 4 MHz | 16 us | 64 | 0.971 |
4 MHz | 4 MHz | 32 us | 128 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Su, H.; Mao, Z.; Jing, X.; Jia, C. Signal Property Information-Based Target Detection with Dual-Output Neural Network in Complex Environments. Sensors 2023, 23, 4956. https://doi.org/10.3390/s23104956
Shen L, Su H, Mao Z, Jing X, Jia C. Signal Property Information-Based Target Detection with Dual-Output Neural Network in Complex Environments. Sensors. 2023; 23(10):4956. https://doi.org/10.3390/s23104956
Chicago/Turabian StyleShen, Lu, Hongtao Su, Zhi Mao, Xinchen Jing, and Congyue Jia. 2023. "Signal Property Information-Based Target Detection with Dual-Output Neural Network in Complex Environments" Sensors 23, no. 10: 4956. https://doi.org/10.3390/s23104956
APA StyleShen, L., Su, H., Mao, Z., Jing, X., & Jia, C. (2023). Signal Property Information-Based Target Detection with Dual-Output Neural Network in Complex Environments. Sensors, 23(10), 4956. https://doi.org/10.3390/s23104956