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Abstract: The performance of traditional model-based constant false-alarm ratio (CFAR) detection
algorithms can suffer in complex environments, particularly in scenarios involving multiple targets
(MT) and clutter edges (CE) due to an imprecise estimation of background noise power level. Fur-
thermore, the fixed threshold mechanism that is commonly used in the single-input single-output
neural network can result in performance degradation due to changes in the scene. To overcome
these challenges and limitations, this paper proposes a novel approach, a single-input dual-output
network detector (SIDOND) using data-driven deep neural networks (DNN). One output is used for
signal property information (SPI)-based estimation of the detection sufficient statistic, while the other
is utilized to establish a dynamic-intelligent threshold mechanism based on the threshold impact
factor (TIF), where the TIF is a simplified description of the target and background environment
information. Experimental results demonstrate that SIDOND is more robust and performs better
than model-based and single-output network detectors. Moreover, the visual explanation technique
is employed to explain the working of SIDOND.

Keywords: radar signal processing; target detection; signal property information; dual-output
network; dynamic-intelligent threshold

1. Introduction

Target detection is essential to radar signal processing and plays a vital role in all
sensor fields. For radar systems, it means deciding whether radar data represent an echo
coming from a target. The presence of a target prompts the system to engage in further
processing [1]. However, the robustness of the detection algorithms may suffer due to the
complexity and dynamic variability of the environment, which can be broadly categorized
into three scenarios [2]. The first is homogeneous background. In this model, the stationary
background noise exists throughout the reference window. The second is the clutter edge
model. This model describes the transition areas between different background regions.
The third scenario is multiple targets. This situation represents two or more spatially close
targets in the detection window.

Radar target detection can be achieved by either model-based or data-driven detectors,
where the former employs statistical models to build a likelihood-ratio test (LRT), while the
latter transforms the task of target detection into a classification problem. According to the
Neyman–Pearson criterion, the model-based constant false-alarm ratio (CFAR) technique
can maintain a constant probability of false alarms (Pf a) while maximizing the probability
of detection (Pd), which provides an adaptive detection threshold for the LRT by estimat-
ing the cell-under-test (CUT) background noise power level (BNPL) using reference cells
adjacent to the CUT. According to the BNPL estimation strategy, CFAR algorithms can be
divided into three categories, mean-level (ML), ordered statistics (OS), and adaptive CFAR.
The ML CFAR algorithms, such as cell average CFAR (CA-CFAR) [3], the smallest-of CFAR
(SO-CFAR) [4], and the greatest-of CFAR (GO-CFAR) [5], estimate BNPL by weighted
averaging of leading, lagging, or the entire reference window samples. They can provide
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accurate BNPL estimates in a homogeneous, independent, and identically distributed (iid)
environment. The OS CFAR (e.g., ordered statistical CFAR (OS-CFAR) [2], the trimmed
mean CFAR [6], and the censored mean-level detector [7]) estimate BNPL from an or-
dered sequence of samples within the reference window, providing better performance in
multiple target environments. The adaptive CFAR can adaptively determine the logic, algo-
rithms, and parameters for estimating BNPL. The adaptive censored greatest-of CFAR [8]
adaptively determines deletion points based on ordered statistics and removes interfering
targets one by one to obtain high detection performance in multiple targets scenarios.
The variable index CFAR (VI-CFAR) [9] adaptively determines the detection algorithm
based on the uniform statistics characteristics of background clutter. The robust variable
index CFAR [10] determines an adaptive threshold in the first stage and rejects outlier in
subsequent stages. The robust variability index CFAR, based on Bayesian interference
control theory (BVI-CFAR) [11], adaptively evaluates the BNPL by uniformly partitioning
the clutter region and optimizing the selection strategy. However, model-driven target
detection algorithms are susceptible to model mismatch, resulting in sensitivity to changes
in the statistical model of the underlying data. Moreover, the presence of interfering tar-
gets and clutter edges can introduce non-homogeneities in the reference window samples,
leading to a reduction in performance for the aforementioned algorithms.

For data-driven detectors, detecting intrinsic features and constructing efficient clas-
sifiers are essential for improving the performance of data-driven detectors. Previous
research has focused on utilizing data-driven machine learning to address detection prob-
lems [12–14]. For instance, the study by Zhai et al. [15] proposes a reinforcement-based
target detection and communication system for massive multiple-input multiple-output
arrays that effectively enhances the multi-target scenario target detection capability. While
power allocation for antenna transmission is a prevalent algorithmic approach, this paper
primarily focuses on the signal processing stage after receiving the echo. Coluccia et al.
proposed a radar detector based on the k-nearest neighbor (KNN) approach [16], while
Wang et al. developed a detector based on residual networks to detect high-speed targets
with phase-encoded signals [17]. In addition, Gao et al. used a signal structure information-
based convolutional neural network (CNN) for target detection [18]. These algorithms are
typically considered as single-input single-output network detectors (SISONDs). SISONDs
usually set a constant threshold, which is determined by the worst-case scenario, to achieve
the desired Pf a. However, the fixed threshold can be mismatched and result in degradation
in performance due to dynamic and time-varying complex environments. In complex
backgrounds, increasing the capacity of the network architecture and the number of train-
ing samples may improve detection performance. However, high-capacity networks may
extract more abstract features, which would come at the cost of computational, memory,
and training complexity, making them challenging to train for complex target detection
problems compared to simpler scenes. Therefore, SISONDs may only be effective in specific
environments, and changes in the scene can result in performance degradation due to
hard-training networks and threshold mismatches.

In this paper, a single-input dual-output network detector (SIDOND) is proposed to
alleviate the limitations of the fixed threshold approaches used in SISOND. The objective
is to achieve optimal detection performance and robustness in complex environments.
The proposed SIDOND employs two sub-networks to exploit the intrinsic information of
the reflected signals for detecting targets. One sub-network is responsible for estimating
detection sufficient statistics (DSS) for feature-based classification, while the other sub-
network is dedicated to estimating the threshold impact factor (TIF) which forms the
basis of a dynamic-intelligence threshold mechanism. In radar applications, target echo
typically contains significant intrinsic structure information related to the transmitted
waveform and the target itself. A data-driven method that recognizes and leverages this
intrinsic structure information would successfully solve the detection task. Despite the
potential benefits of signal properties information (SPI) for target detection, to the best of
our knowledge, its impact on detection performance has not been adequately studied in the
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open literature. Furthermore, the proposed method exploits all the available information
from the detection window, which includes target echoes, interfering echoes, clutter, and
other relevant data to determine the optimal threshold for the SPI-based detector. The TIF is
a compact representation of the significant information in the detection window. A higher
TIF value reflects the presence of more discernible SPI in the detection window, leading
to a lower threshold requirement for the detector. By employing a dynamic-intelligent
threshold mechanism, the proposed SIDOND can effectively enhance the target detection
performance in complex environments.

The main contributions of this paper are as follows:

1. The proposed single-input double-output network detector (SIDOND) is a promising
approach to extracting both the target and background environment features without
significantly increasing network capacity and training complexity.

2. The dynamic-intelligent threshold mechanism can adaptively adjust the threshold
based on the estimated target and environmental information, which enhances the
detection performance in a complex environment while maintaining a low false-
alarm rate.

3. The CNN based on periodic activation function and a particular initialization strategy
can effectively avoid the gradient disappearance problem of deep networks, which
improves the convergence speed and network performance in the target detection task.

The remaining sections of this paper are organized as follows. In Section 2, the model
of target echos is introduced, and the target detection task is formulated. Section 3 analyzes
the methodology and structure of the proposed SIDOND. Section 4 presents simulation
results under various conditions, including multiple targets, clutter edges, and complex
environments. Finally, Section 5 provides conclusions.

Some symbols used in this paper are explained as follows. The boldface characters
represent vectors or matrices. N

(
µ, σ2) is defined as a normal distribution with mean µ

and variance σ2. � stands for Hadamard product. ⊗ stands for convolution operation. (·)T

represents the transpose.

2. Problem Formulation
2.1. Signal Model

The echo signal of a target in a radar system can be approximately modeled as [1]

x(t) = kA
(

t− 2R0

c

)
exp

(
−j

4π

λ
(R0 + vt)

)
+ n(t), (1)

where k contains all of the factors related to amplitude in the radar range equation. R0 is
the distance from the target to the radar, and A(t) is the baseband transmit waveform. v is
the target radial velocity, c represents the propagation speed of electromagnetic waves, and
λ is the wavelength. n(t) here is clutter and noise.

A(t), the signal waveform, is the critical information feature for target detection.
Without loss of generality, the linear frequency modulated (LFM) signal is used as the
transmit signal waveform, which can be stated as

A(t) = exp
(

jπt2β/τ
)

, 0 ≤ t ≤ τ, (2)

where β is bandwidth and τ is pulse width. The received signal is sampled with the
frequency Fs and the corresponding sampling interval is Ts = 1/Fs. In the received data x,
the target will affect the q-th to the (q + L)-th samples, where q = 2R0Fs/c, L = τFs.

Then, the echo can be stated as
[
xq, xq+1, xq+2, · · · , xq+L−1

]
, where

xq+l = kAl exp(−j4πR0/λ) · exp( fv(q + l)) + n(q + l), 0 ≤ l ≤ L− 1, (3)
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whereAl = exp
[

jπβ(Tsl − 2R0/c)2/τ
]
, fv = j2π(2v/λ)Ts. Then, the radar echo data

segment xL
q =

[
xq, xq+1, xq+2, · · · , xq+L−1

]
related to the target can be simplified as

xl
q = k̃A� Fv + n, (4)

where k̃ = k exp(−j4πR0/λ), A = [A0, A1, A2, · · · , Al−1] and Fv is the Doppler modula-
tion caused by target radial velocity Fv = [exp( fvq), · · · , exp( fv(q + L− 1))] [19].

It needs to be stated that the detection window length should be set as the waveform
length L in order to acquire the complete information of the transmit waveform. In complex
environments, each detection window contains not only target echo but also interference
echo, clutter edges, and noise. Based on the detection principle, two hypotheses are defined
for the target echo: the null hypothesis H0 and the non-null hypothesis H1 [1]. The H1
means that the detection window contains a complete transmit waveform. Figure 1 shows
a schematic diagram of these hypotheses.
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Figure 1. The sensor echo model.

In Figure 1, the translation symbol Ξ(s, n) represents shift of the vector s to the left
(n < 0) or right (n > 0) by n sampling points. Then, the detection problem can be written as{

H0 : x = ∑NI
r=1 Ξ((k̃A� Fv)r, Ir) + Ξ(nC, IC) + n

H1 : x = k̃A� Fv + ∑NI
r=1 Ξ((k̃A� Fv)r, Ir) + Ξ(nC, IC) + n,

(5)

where NI is the number of interference, nC represents the sudden change of clutter power,
I and IC are shift samples at the edge of interference and clutter, and −L ≤ I, IC ≤ L− 1. It
can be seen that the SPI exists in the detection window.

2.2. Posterior Probability Detector

According to the Bayesian detection criteria, the problem in (5) can be solved by
constructing a likelihood ratio detector,

Λ(x) =
f (x|H1)

f (x|H0)

H1
≷
H0

P(H0)

P(H1)
· η, (6)

where f (x|H1) and f (x|H0) are the probability density of x under H1 and H0, respectively,
Λ(x) is the likelihood ratio, P(H0) and P(H1) represent the prior probabilities of H1 and
H0. According to Bayes’ theorem, (6) can be recast as

P(H1|x)
H1
≷
H0

P(H0|x) · η, (7)
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where P(H1|x) and P(H0|x) are the posterior probabilities of H1 and H0,
P(H1|x) + P(H0|x) = 1. The decision rule (7) can be rewritten as

Λ′(x) = P(H1|x)
H1
≷
H0

η

1 + η
= η′, (8)

where the posterior probability is the sufficient statistics and the Λ′(·) is the map between
the posterior probability and x. Theoretically, the detection threshold η′ can be found from

Pf a =
∫
{x:P(H1|x)>η′}

f (x|H0). (9)

In radar systems, the estimation of detection threshold η′ is frequently accomplished
using samples in reference cells, which are independent and identically distributed from
the noise in the CUT. Nevertheless, in complex environments, it is crucial to have a thresh-
old that is dynamic and adaptive to the changing conditions. The appropriate threshold
selection involves a trade-off between maintaining a constant false-alarm rate and max-
imizing the probability of target detection. To address these challenges, a dual-output
network structure is utilized to dynamically adjust the threshold in complex environ-
ments which provides an effective way to estimate the threshold and enhance target
detection performance.

3. Target Detection Using the SIDOND

The proposed SIDOND is presented in Figure 2, which depicts its architecture and flow
graph. The raw data are first pre-processed and then input into PBCN, which is the CNN
based on the periodic activation function (PAF), to extract the intrinsic features of the SPI.
The TIF is then obtained through a TIF estimator based on a fully connected network (FCN),
called TIFEFCN, which takes both the combination of features and pre-processed data as
its input. Additionally, the SPI feature is fed to the detection sufficient statistic estimator
based on FCN (DSSEFCN). Finally, the estimated sufficient statistic is compared with the
threshold η′, determined based on the TIF and predefined Pf a, to achieve the detection
task. It should be noted that unlike conventional classification algorithms aimed solely
at achieving high accuracy, the proposed algorithm focuses on maximizing the detection
probability while maintaining an approximate constant Pf a.

Feature
about EWI

0/1

Radar
echoes

TIF

Sin(CNN( ))

FCN

FCN

Threshold
impact factor

Sufficient
statistics

Pretreatment

faP

x

Figure 2. Architecture and flow graph of the SIDOND.

3.1. The PBCN for SIDOND

The primary component of PBCN is the CNN, which has demonstrated remarkable
performance in various fields, including computer vision [20,21], medical diagnosis [22],
target recognition [23–25], and signal detection. This study selects CNN as the feature
extractor for SPI, with the PAF being used as the an activation function. The use of a
non-linear activation function is a fundamental aspect of neural network architectures as
it allows for the network to model complex non-linear relationships between inputs and
outputs. In particular, non-linear activation functions enable neural networks to achieve
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excellent fit capabilities. Furthermore, this paper proposed a new CNN initialization
scheme based on the PAF, which maintains the distribution of output and input of different
layers to achieve faster and better convergence while avoiding undesirable situations, such
as gradient vanishing in a deep CNN.

The convolutional layer that employs the PAF is called SICLayer, and its design and
operation are illustrated in Figure 3. The layer has four parameters: No, which is the
dimension of the output data; Nk, which represents the size of the convolution kernel;
Ns, which is the convolution step length; and Nw, which is the expansion factor that
can be adjusted to a higher value in the first few layers to preserve more comprehensive
feature information.

(              )(              )

SICLayer(256,3,2,1)SICLayer(256,3,2,1)

SICLayer(256,3,1,1)SICLayer(256,3,1,1)

SICLayer(128,3,1,1)SICLayer(128,3,1,1)

SICLayer(64,3,2,1)SICLayer(64,3,2,1)

SICLayer(64,3,1,1)SICLayer(64,3,1,1)

SICLayer(8,3,1,3)SICLayer(8,3,1,3)

(2,64)

(8,64)

(64,64)

(64,32)

(128,32)

(256,32)

(256,16)

FallenFallen

(1,16 × 256)

SICLayer (                         )SICLayer (                         )

(              )

wN

o oN H,

kN

i iN H,

o k s wN N N N, , ,

Figure 3. The structure of the SICLayer (left) and the flowchart of PBCN (right). The parameters
(No, Nk, Ns, Nw) are (the number of output elements, the size of the kernel, the convolution step
length, and the expansion factor of PAF).

The input of the l-th SICLayer is Zl with a dimension of Ni × Hi, the output is Ẑl of
dimension No × Ho, and the size of the convolution kernel is 1× Nl

k, where the required
convolution parameter is the weight wl with dimension No × Nl

k × Ni and the bias bl with
dimension No × 1. Then the output of convolutional is

Ẑl
n,: =

Ni

∑
j=1

Zl
j,: ⊗wl

n,:,j + bl
n, n = 1, 2, . . . , No. (10)

The subscripts specify the position of the element in the raw data. For example,
Ẑl

n,: represents all elements of Ẑl whose first dimension is n. Afterwards, the output of
SICLayer is

Zl+1 = sin
(

Nl
wẐl

)
. (11)

The performance of a network is significantly affected by its initialization [26]. The
convolution kernel is represented by a weight matrix w with three dimensions: the input
depth Hi, the kernel length Nk, and the output depth Ho.
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The initialization of w obeys the uniform distribution of [−c, c], that is w ∼ U(−c, c),
where c is

c =
{ √

6/(Nk Hi)/Nw, Non− firstlayer√
3/(Nk Hi)/Nw, Firstlayer.

(12)

In other words, the c is related to the depth dimension Li of the input data, kernel
length Nk, and the expansion factor Nw of the periodic activation function. With such an
initialization, the data before the periodic activation function approximately obeys the
standard normal distribution, and the data after the PAF approximately obeys the arcsine
distribution. The proof is presented in Appendix A.

3.2. The Structure of the DSSEFCN

The FCN is the fundamental unit for DSSEFCN, and it has been widely applied in
the field of neural network development due to its efficacy in addressing classification
and regression problems. Accordingly, the FCN is employed to construct the posterior
probability estimator in this paper. The configuration of the fully connected layer (FCL)
and the DSSEFCN is presented in Figure 4.

FCL(256,2)FCL(256,2)

FCL(512,256)FCL(512,256)

FCL(4096,512)FCL(4096,512)

(1,4096)

(1,512)

(1,256)

(1,2)

FCL(           )FCL(           )

oN

iN

G

o iN N,

Figure 4. Fully connected network structure (left) and the flowchart of DSSEFCN (right). The
parameters (Ni, No) are (the number of input elements, the number of output elements).

Assuming that the input of the l-th FCN is Zl whose dimension is 1× Ni, the output
is Zl+1 with the dimension 1× No, and the weight vector wl with required dimension
Ni × No and the bias bl of dimension 1× No. The activation function in the figure is Γ.
Thus, the output is

Zl+1 = Γ
(

Zlwl + bl
)

. (13)

The activation function commonly used in hidden layers of FCN is rectified linear
unit (ReLU) [27]. To retain more information and features, the LeakyReLU function [28] is
specially used, and its expression is

LeakyRelu(x) = max(0, x) + 0.01×min(0, x). (14)

The SoftMax [29] is used as the output layer activation function. When the input is x
of length n, the j-th SoftMax output is

So f tMax
(

xj
)
= exj /∑n

k=1 exk . (15)

The output of the DSSEFCN is the approximation of sufficient statistics and the
associated expression can be defined as follows:

Λ′net(x) = Pnet(H1|x) = DSSEFCN(PBCN(x)), (16)
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where the Pnet(H1|x) is the posterior probability approximated by the network. The
DSSEFCN(·) and the PBCN(·) are cascades of multi-layer FCL and multi-layer
SICLayer, respectively.

3.3. Dynamic-Intelligent Threshold Mechanism

After obtaining the estimate of the posterior probability Pnet(H0|x), selecting the
threshold η′ is crucial for solving the target detection problem. It can be seen from (9)
that η′ is determined by Pf a, P(H1|x) and f (x|H0). Under the background of Gaussian
noise, the probability density of x obeys the N-dimensional independent joint Gaussian
distribution, which can be formulated as

f (x|H0) =
N

∏
i=1

1√
2πσi

exp

(
− (xi − µi)

2

2σ2
i

)
, (17)

where the noise power and clutter edge determine σi. When the transmit waveform is
fixed, the µi is determined by the power of the interfering target signal. Substituting
µ = [µ1,µ2, . . . ,µN ] and σ = [σ1, σ2, . . . , σN ], the map on threshold η′ can be formulated as

η′ ← {Pnet(H1|x), Pf a,µ, σ}. (18)

From (18), the threshold η′ is dynamic since the variable parameters are {σ,µ}, and
its exact mathematical expression is extremely hard to derive because of the inability to
accurately estimate {P(H1|x), σ,µ} under complex changing scenarios.

To address this, using TIF to characterize {σ,µ}, a mechanism that utilizes TIF to
approach the optimal threshold is proposed, which can effectively enhance Pd and ensure
the Pf a requirements. Specifically, an TIFEFCN is employed to estimate TIF, as shown in
Figure 5. The main building blocks of TIFEFCN are the same as those of the DSSEFCN,
which has been discussed in Section 3.2. The extracted features related to the posterior
probability and the original data x are fed into this TIFEFCN. The TIF is categorized into a
predetermined number of labels that correspond to different signal to noise ratio (SNR) or
interference-to-noise ratio (INR) intervals. By jointly estimating TIF and the preset Pf a, the
current threshold is determined.

FCL(400,11)FCL(400,11)

FCL(1600,400)FCL(1600,400)

FCL(4224,1600)FCL(4224,1600)

(1,4224)

(1,1600)

(1,400)

(1,11)

N

G

N N

Figure 5. The structure of the neural network part of the TIF estimation.

Thus far, the fundamental building blocks of the SIDOND architecture have been
proposed, which include the PBCN, DSSEFCN, and TIFEFCN. In order to assess the
performance of the proposed SIDOND, a single-input single-output detector (SISOND)
utilizing a PBCN and DSSEFCN is built for comparison purposes.
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4. Simulations
4.1. Simulation Setup
4.1.1. Experimental Data

All experiments in this paper are based on simulation, and all signals without special
instructions are generated by the signal model given in Section 2. The sensor receiving
the signal is set as an LFM signal, and the specific parameters are shown in Table 1. The
pre-treatment in Figure 2 includes normalization and splitting the complex values into real
and imaginary parts.

Table 1. Sensor simulation parameters.

Symbol Significance Value

B Signal bandwidth 5 MHz
τ Pulse Width 12.8 µs
Fs Sampling frequency 5 MHz

L Number of pulse sampling
points 64

v Target speed [−3400, 3400] m/s

In the experiments of this paper, the computation of Pf a is not direct. Hence, Monte
Carlo strategy is used to estimate Pf a. Assuming that the Monte Carlo estimation of the
false-alarm rate is P̂f a, it approximately obeys a Gaussian distribution according to the
central limit theorem.

P̂f a ∼ N
(

Pf a,
Pf a(1− Pf a)

K

)
, (19)

where K is the number of Monte Carlo trials. Then the false alarm rate error can be
calculated as

e = (P̂f a − Pf a) ∼ N
(

0,
Pf a(1− Pf a)

K

)
. (20)

Setting a tolerance error as E, the probability of meeting the tolerance requirement is

P(|e| < E) = 1− 2Q

 E√
Pf a(1− Pf a)/K

, (21)

where Q is the complementary Gaussian cumulative distribution function. Then, the
condition that satisfies the tolerance with a certain probability can be obtained by

K ≥
[

Q−1
(

1− P{|e| < E}
2

)]2 Pf a

(
1− Pf a

)
E2 . (22)

For example, setting Pf a to be 0.0001, E to be 0.000025, and P(|e| < E) to be 90%, the
number of Monte Carlo experiments is at least 432,843.

Training data set: A total of 1× 107 data were generated In this paper, with an H1 : H0
ratio of 1:1. To facilitate the feature extraction based on the SPI, the interfering target
number NI was set to 1, and the clutter edge nC was set to 0 in the PBCN. The SNR or
INR followed a uniform distribution on the integer set [−13, 5] dB. When only noise was
present, the noise power σ2 followed a uniform distribution on the integer set [−5, 13] dB.

Test data set: The details of the test data set will be explained in each respective
test section.
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4.1.2. The Process of Training the Network

First, the PBCN and DSSEFCN are trained. The binary classification task corresponds
to the binary label y ∈ {0, 1}. When y = 0, it represents H0, and when y = 1, it means H1.
Given x, label y obeys Bernoulli distribution

p(y|x) = P(H1|x)yP(H0|x)1−y. (23)

For the labels to be considered and the output of the neural network, there are

pnet(y|x) = Pnet(H1|x)yPnet(H0|x)1−y, (24)

where Pnet(H1|x) + Pnet(H0|x) = 1.
Relative entropy, also known as Kullback–Leibler (KL) divergence or information

divergence, is a type of statistical distance. The relative entropy can measure the difference
between the information entropy of the actual distribution P(H1|x) and the cross-entropy of
P(H1|x) and Pnet(H1|x), representing the information loss caused by the fitting distribution.
The relative entropy is

DKL(p(y|x)||pnet(y|x)) = Ex∼P(y|x)[log p(y|x)− log pnet(y|x)]. (25)

In (25), only pnet(y|x) can be optimized by our algorithm, the loss function is formu-
lated as

Loss = Ex∼p(y|x)[− log pnet(y|x)]. (26)

When the parameters of PAF-based CNN and FCN are defined as W, the process of
obtaining the best W can be regarded as an optimization problem

W = arg min
W

Loss = arg min
W

Ex∼p(y|x)[− log pnet(y|x)]

= arg min
W

−(y log[Pnet(H1|x)] + (1− y) log[Pnet(H0|x)]).
(27)

In other words, the maximum-likelihood method can be used to train the network.
However, it is not feasible to obtain the optimal global solution for W since (26) is highly
non-convex. Nevertheless, effective gradient descent optimization methods can yield
acceptable solutions. Given a training batch consisting of N output data

[
z1, z2, z3, . . . , zN]

and labels
[
y1, y2, y3, . . . , yN], then the cost function is

J =
N

∑
i=1

yi ln
(

zi
)
+
(

1− yi
)

ln
(

1− zi
)

. (28)

The back-propagation algorithm is employed to train the neural network, and the
SGD algorithm with an initial learning rate of 0.001 and momentum of 0.99 is used for
optimization [30]. The learning rate is reduced by four-fifths every ten epochs. The
experiment is conducted on TensorFlow-GPU 2.0.

Subsequently, the Monte Carlo integration method can be utilized to derive the thresh-
old based on a preset value of Pf a.

Pf a =
1
N

N

∑
n=1

I
[
Pnet(H1|xn) > η′, xn ∼ f (xn|H0,µ, δ)

]
. (29)

The Pd can be formulated by

Pd =
1
N

N

∑
n=1

I
[
Pnet(H1|xn) > η′, xn ∼ f (xn|H1,µ, δ)

]
, (30)
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where I[·] denotes the indicator function. To compare the impact of different network
architectures on performance, six models with varying numbers of layers and nodes have
been generated, and their specific parameters are presented in Table 2. Each model is
trained for four epochs on the training set, and a test dataset is generated with the same
parameters as the training set to evaluate the algorithm’s performance. The average and
peak accuracy of each model are shown in Figure 6. Notably, the performance of PBCN
is relatively consistent across different parameter settings, indicating that it is not highly
sensitive to network architecture. Additionally, it can be seen that when the number of
layers exceeds six, the algorithm’s performance improves gradually or even deteriorates.
Based on these results, this paper has selected the #4 network for subsequent experiments.
However, in practical applications, the network size can be adjusted according to hardware
and other requirements.

Table 2. The parameters of PBCN with different layers and nodes.

Label
The Parameters of i-th SICLayer

1 2 3 4 5 6 7 8

#1 (8,3,1,3) (64,3,2,1) (256,3,2,1) – – – – –
#2 (8,3,1,3) (64,3,2,1) (128,3,1,1) (256,3,2,1) – – – –
#3 (8,3,1,3) (64,3,1,1) (64,3,2,1) (128,3,1,1) (256,3,2,1) – – –
#4 (8,3,1,3) (64,3,1,1) (64,3,2,1) (128,3,1,1) (256,3,1,1) (256,3,2,1) – –
#5 (8,3,1,3) (32,3,1,1) (64,3,1,1) (64,3,2,1) (128,3,1,1) (128,3,1,1) (256,3,2,1) –
#6 (8,3,1,3) (16,3,1,1) (32,3,1,1) (32,3,2,1) (64,3,1,1) (128,3,1,1) (256,3,1,1) (256,3,2,1)

#1 #2 #3 #4 #5 #6

Model

0.86

0.87

0.88

0.89

0.90

0.91

0.92

A
cc

u
ra

cy

Peak Accuracy

Mean Accuracy

Figure 6. Loss convergence under different activation functions.

The performance comparison of different activation functions and initialization meth-
ods was conducted in this paper, and the results are presented in Figure 7. The PAF-
activated network with the proposed novel initialization scheme is observed to converge
well, as depicted in Figure 7 . The accuracy performance of the network is evaluated on
two related test sets during the training process, and it is observed that the proposed PAF
and initialization method outperforms other methods for both test sets. The results suggest
that the proposed method is effective in improving the performance of the network.
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Figure 7. Loss convergence (a) and accuracy on the test set (b) under different activation functions.
The test set is composed of target and multiple interferences.

A new training dataset is generated by restricting the values of SNR and INR parame-
ters within the range of [−19, 5] dB. The corresponding TIF values are assigned based on
Table 3. These TIF values are used as the training labels for FCN. The network is trained
with the same training parameters and loss function for 30 epochs to achieve the required
accuracy. Multiple sets of data are used to conduct Monte Carlo experiments, from which a
mapping table is obtained that shows the relationship among TIF, threshold, and Pf a.

Table 3. TIF classification standards.

TIF 0 1 2 3 4 5 6 7 8 9 10

SNR/INR(dB) (−∞,−13] [−12,10] [−9,8] [−7,−6] [−5,−4] [−3,−3] [−2,−1] [0,0] [1,2] [3,4] [5,∞)

As waveform information is a key feature in this study, the algorithm’s performance
is evaluated when the parameters of waveform are changed. This comparison focuses on
the bandwidth, sampling frequency, pulse width, and number of pulse sampling points.
The model was trained with an equal number of samples, and validation was conducted
after 30 epochs. Results are presented in Table 4, which indicates that changes in signal
bandwidth and sampling frequency do not have a significant effect on the algorithm’s
performance. However, an increase in pulse width and the corresponding increase in
sampling points improves the algorithm. This result demonstrates the effectiveness of
our proposed algorithm in addressing the challenges of target detection in the presence of
varying waveform parameters.

Table 4. Comparison of performance with different signal model parameters.

Signal
Bandwidth

Sampling
Frequency Pulse Width

Number of
Pulse Sampling

Points
Accuracy

5 MHz 5 MHz 12.8 us 64 0.972
4 MHz 4 MHz 16 us 64 0.971
4 MHz 4 MHz 32 us 128 0.986
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4.2. Performance Results

This subsection compares the performance of the proposed SIDOND algorithm with
several traditional CFAR-based methods, including CA-CFAR [3], SO-CFAR [4], GO-
CFAR [5], OS-CFAR [2], VI-CFAR [9], BVI-CFAR [11], as well as a data-driven method
called SISOND. The traditional algorithms use 20 reference cells and 6 guard cells, except
for BVI-CFAR, which uses 32 reference cells. CA-CFAR, SO-CFAR, and GO-CFAR are
different mean-level CFAR methods, while OS-CFAR is an ordered statistical CFAR that
uses the 15th-ordered statistic for background noise estimation. VI-CFAR is an adaptive
CFAR method that uses two statistics, the variability index (VI) and the mean ratio (MR),
set as 4.76 and 1.806. BVI-CFAR is an adaptive CFAR method based on VI and Bayesian
interference control theory, with VI and MR set to 5 and 3. The number of interfering targets
and clutter range partition is set to 4 and 16, which is a commonly used configuration in
the literature. In addition to the traditional CFAR-based methods, the data-driven method
SISOND is also considered, which is a single-input single-output echo waveform-based
method. The desired Pf a is set to 0.0001.

To evaluate the performance of the methods, three different scenes are considered:
homogeneous background, multiple targets, and complex environment.

4.2.1. Homogeneous Background

The homogeneous background scene is a common scenario in radar applications, and
it serves as a benchmark to evaluate the performance of different detection algorithms.
To ensure the accuracy of the Monte Carlo experiment, a set of data was generated in a
Gaussian white noise environment, with at least 1× 106 data points at each SNR. Figure 8
presents the results of the experiment in the single-target scenario. Traditional methods
such as CA-CFAR, SO-CFAR, GO-CFAR, OS-CFAR, and VI-CFAR exhibit good detection
performance, with a maintained Pf a of around 0.0001. However, the proposed SIDOND
achieves the best detection performance among all methods, thanks to its intelligent thresh-
old mechanism. It shows a slight advantage over the data-driven SISOND, indicating the
effectiveness of the proposed method.
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Figure 8. Detection performance (a) and false alarm rate (b) with a single target in homogeneous
environments.
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4.2.2. Multiple Targets Situation

A test dataset was generated that includes one or multiple interfering targets with
amplitudes ranging from 1.0 to 1.2 times that of the target under test. The interfering targets
were randomly and uniformly distributed in the reference cells.

Figures 9 and 10 show that, with the exception of SIDOND, the performance of
other detection algorithms deteriorates significantly when multiple interfering targets are
present in the reference cell. This degradation is mainly due to the randomly distributed
interfering targets in the leading and lagging windows. BVI-CFAR is the most robust of all
traditional methods as it can modify the reference cell model based on the uniformity of the
reference cell, thereby changing the Bayesian statistics. Under this strategy, BVI-CFAR can
maintain a better performance. OS-CFAR estimates the noise power by sorting the power
of the reference cells, which effectively avoids the influence of interference. CA-CFAR
and GO-CFAR have the worst performance among the traditional methods. However,
SIDOND can identify the interfering targets in the detection window and effectively reduce
performance loss by obtaining an intelligent threshold. The SIDOND has better Pd and Pf a
maintenance than SISOND, and this advantage increases with the number of interference
targets. The discontinuity observed in Figures 9b and 10b for the Pf a curves is attributed to
the Monte Carlo simulation process where Pf a becomes zero and cannot be represented
in exponential coordinates.
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Figure 9. Detection performance (a) and false-alarm rate (b) with one interference.
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Figure 10. Detection performance (a) and false-alarm rate (b) with two interferences.

Additionally, the average performance loss is defined as the average difference of all
Pd between multiple targets and homogeneous background within the range of [−15, 5] dB.
Figure 11 displays the average performance loss of SIDOND and SISOND up to seven
interferences, and the advantages of SIDOND become more apparent as the number of
interfering targets increases.
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Figure 11. Average performance loss for SIDOND and SISOND in different interfering target envi-
ronments.

Furthermore, the impact of interference power on algorithm performance is analyzed
to comprehensively evaluate the algorithm’s robustness. In this experiment, the target SNR
is set to −2 dB, and the interference INR is set from −15 dB to 15 dB. Figure 12 shows that
VI-CFAR, SO-CFAR, and BVI-CFAR sacrifice Pf a to strengthen Pd, and the Pf a of BVI-CFAR
beyond the preset standard is the smallest among the three algorithms. SIDOND and
OS-CFAR have the best robustness, with OS-CFAR maintaining some degree of Pd even in
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cases of high INR, while the performance of SIDOND has almost no loss when the INR is
lower than 5 dB.
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Figure 12. Detection performance (a) and false-alarm rate (b) with −2 dB target and one interference.

4.2.3. Complex Environment

Due to the uneven distribution of clutter in the reference cell, clutter edges often cause
false alarms. A set of target detection data is generated based on the principle that clutter
edges are evenly distributed in reference cells and the CNR satisfies uniform distribution
of [10, 20] dB. Up to four interfering targets appear in the reference cell with random
amplitudes [1.0, 1.2] times that of the test target. The result is presented in Figure 13.
Traditional methods exhibit a significant performance deterioration, especially SO-CFAR,
due to the false alarm probability. SISOND’s performance deteriorates significantly when
the target power is relatively high. On the contrary, SIDOND, with its dynamic-intelligent
threshold mechanism, maintains high Pd and low Pf a.
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Figure 13. Detection performance (a) and false-alarm rate (b) in complex environments.
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4.3. Visualization of the SIDOND

A visual explanation technique called gradient-weighted class activation mapping
(Grad-CAM) is utilized to analyze the signal structure extracted by the SIDOND feature
extractor. This method has enabled us to assess the effectiveness of the feature extraction
process. Grad-CAM produces a rough localization map by utilizing the gradients of
any target that enters the periodic activation function-based convolutional (PBCN) layer.
The generated map highlights the critical areas in the image or signal. In other words,
the weighted feature map in PBCN is obtained by back-propagating the gradient of the
output category.

The features obtained by Grad-CAM are presented in Figure 14. In the case of an LFM
signal, the target echo or the target and interference echo can be obtained from the matched
filter output, as shown in Figure 15, without considering the noise. Figure 14 illustrates the
features in different SICLayers corresponding to the echo signals visualized by Grad-CAM
in four different scenarios, namely Target + Noise, Interference + Noise, Noise, and Target +
Interference + Noise. It can be found that for the Target + Noise and Interference + Noise
scenarios (the first two columns) that the deeper the PBCN layers, the more they resemble
the sampling of the LFM signal, although with different peak positions. In the figure, the
peak position and sinc shape are marked by the red circle. The PBCN fails to extract echo
waveform-related information in the presence of noise. When dealing with the scenario
Target + Interference + Noise, the SICLayer appears to sample the aliasing sinc function of
the target and interference echo, as illustrated in Figure 15. This implies that the proposed
PBCN progressively captures the representation of the target echo.
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Figure 14. The attribution map of some layers. The four columns represent four scenarios of different
input signals, and the five rows represent the activation mapping of five SICLayers in PBCN. The red
circle represents the peak position and sinc shape extracted by network learning.
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Figure 15. The magnitude of the echo from a target after matched filter (top) and the magnitude of
the echo from a target and a interference after matched filter (bottom).

4.4. Computational Complexity Analysis

The computational complexity of an algorithm is a vital metric to gauge its perfor-
mance [31]. The preprocessing of traditional methods involves matched filtering, whereas
SIDOND and SISOND data require normalization. The training of SIDOND involves
30 epochs using an NVIDIA Quadro P4000 GPU with 8GB of memory, which takes around
10 h. The average runtime of a single detection is presented in Table 5. The mean-level
CFAR, OS-CFAR, and VI-CFAR exhibit the lowest computational complexity. However, the
computational complexity of the BVI-CFAR is comparable to that of the proposed SIDOND.
Furthermore, the computational efficiency of SISOND can be enhanced through parallel
computing on the GPU. In practical applications, pruning techniques can be utilized to
improve computational efficiency [32].

Table 5. Runtime comparison for the processing of each detector.

Algorithms Runtime (CPU) Runtime (GPU)

SIDOND (proposed) 0.53 ms 0.0093 ms
SISOND 0.44 ms 0.0090 ms
Mean-Level-CFAR [3–5] 0.00013 ms –
OS-CFAR [2] 0.00034 ms –
VI-CFAR [9] 0.00052 ms –
BVI-CFAR [11] 0.23 ms –

5. Conclusions

This paper proposes a novel DNN-based approach to address the problem of target
detection in complex scenarios. The proposed method utilizes a single-input dual-output
network architecture consisting of a convolutional neural network with a periodic activation
function for feature extraction from waveform intrinsic structure information. Addition-
ally, two fully connected networks are employed to estimate the sufficient statistics and
threshold impact factor, leading to a dynamic-intelligent threshold detection mechanism.
The simulation results validate the efficiency and robustness of the proposed approach
in challenging scenarios such as multiple targets, clutter edges, and their superposition.
Furthermore,the visualization technique is adopted to demonstrate the effectiveness of the
proposed network architecture.
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Appendix A. Initialization Scheme and Proof of Distribution

Assuming that the input data to the SICLayer is represented as Zi, it has two dimen-
sions: the depth dimension Li and the length dimension Hi. The output matrix of the
convolutional layer is represented as Di, and its dimensions are Lo and Ho. Similarly,
the output of the SICLayer is represented as Zo, and its dimensions are Lo and Ho. The
convolution kernel is represented as w, which is a weight matrix with three dimensions:
input depth Li, kernel length Nk, and output depth Lo. Each convolution operation can
be regarded as a vector dot product operation. Throughout the derivation process, the
matrices are expanded into one-dimensional vectors. This does not affect the convolution
result, but it simplifies the derivation process.

During the convolution process depicted in Figure A1, multiplication and summation
operations are required. In order to analyze the data distribution conveniently, only the data
from one convolution operation are considered at a time, which corresponds to the colored
part of Figure A1. The length of each expanded vector is always NkLi. When considering a
particular convolution operation, the data from Zi, Zo, Di, and w are vectorized as zi, zo,
di, and ~w, respectively.
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Figure A1. Convolution calculation process.

The data, after batch-normalization, meet the standard normal distribution. Then,
input of the first SICLayer is zi ∼ N (0, 1). The output of the convolutional layer is

di
j = ∑ zi � ~w = zi~wT. (A1)

In the following derivation, the specific subscripts of the vectors are not considered
since the Hadamard product can replace all the steps of the convolution operation. As
shown in Figure 3, before calculating the periodic activation function, the data must be
magnified by Nw. The initialization of Nw in (11) and its value at this position are ignored,
or it is set to 1 for simplicity.

The input of the first periodic activation function is di and its variance Var
[
di] =

Var
[
zi~wT] = Var

[
~wT]Var

[
zi] [33]. When w ∼ U(−c, c), the Var[~w] = c2/3. In the first

layer, c =
√

3/
(

NkLi
)

and the Central Limit Theorem with weak Lindenberg’s condi-

tion [34,35] can be used to obtain Var
[
di] = (NkLi)(c2/3

)
= 1. Then di ∼ N (0, 1).

The output of the periodic activation function, Zo, conforms to the arcsine distribution,
which can be proven by showing that Di ∼ N (0, 1) and Zo = Sin

(
Di). Specifically, it needs

to be demonstrated that when X ∼ N (0, 1), Y = Sin(X) satisfies Y ∼ ArcSin(−1, 1).
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The cumulative distribution function of X is [36]

FX(x) = P(X ≤ x) =
1
2
+

1
2

er f (x/sqrt(2)) ≈ 1
2
+

1
2

tanh(βx), (A2)

where The value of β is 0.690. The probability quality of X lies on the interval [−3, 3] with
99.7% probability. Therefore, the cumulative distribution function of Y can be approximated
as follows:

FY(y) = P(sin(x) ≤ y) = P(x ≤ arcsin(y)) ≈ FX(3)− FX(− arcsin(y)). (A3)

Putting (A2) into (A3), the FY(y) can be formulated as

FY(y) =
1
2

tanh(3β)− 1
2

tanh(− arcsin(y)β). (A4)

Using the Taylor expansion in arcsin(y) = 0, the FY(y) is rewritten to

FY(y) =
1
2

tanh(3β) +
β

2
arcsin(y) ≈ 1

2
+

1
π

arcsin(y). (A5)

Then, Y ∼ Arcsin(−1, 1). Simultaneously, Zo ∼ Arcsin(−1, 1). Next, the input Di

before the non-first layer periodic activation function conforms to the standard normal
distribution is only need to be proved. For the non-first floor, Zi ∼ Arcsin(−1, 1) and

c =
√

6/
(

NkLi
)
. Using the Central Limit Theorem with weak Lindenberg’s condition, the

variance of di is

Var
[
di
]
=
(

NkLi
)

Var
[
~wT
]
Var

[
zi
]
=
(

NkLi
)(

c2/3
)
(1/2) = 1. (A6)

The random variable Di is normally distributed with mean 0 and variance 1. The
initialization scheme used In this paper leads to the approximate normal distribution of
data before the activation function, and the approximate arcsine distribution of data after
the activation function.
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