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Abstract: Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier
application and the future development trend of precision neuroscience. This review aimed to
render comprehensive and informative insights into the recent progress of deep learning and its
applications in medical imaging for brain monitoring and regulation. The article starts by providing
an overview of the current methods for brain imaging, highlighting their limitations and introducing
the potential benefits of using deep learning techniques to overcome these limitations. Then, we
further delve into the details of deep learning, explaining the basic concepts and providing examples
of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the
different types of deep learning models that can be used in medical imaging including convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network
(GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed
tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging,
and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain
monitoring and regulation provides a referrable glance for the intersection of deep learning aided
neuroimaging and brain regulation.
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1. Introduction

In recent years, the medical field has become one of the most important research and
application fields in the artificial intelligence (AI) industry. Machine learning and its subset,
deep learning, are branches of AI, and have shown promising findings in the medical field,
especially when applied to imaging data, which have been used in radiological diagno-
sis, bioinformatics, genome sequencing, drug development, and histopathological image
analysis [1,2]. Segmentation of brain disease lesions can provide imaging biomarkers of
disease burden that can help monitor disease progression and the imaging response to
treatment [3]. Particularly for histopathological diagnosis, AI has exhibited a potential
ability that matches that of medical experts. The AI aided neuroimaging and brain regula-
tion generally employed distinguished deep learning and conventional machine learning
(include rule-based learning). Classical machine learning methods such as support vector
machine (SVM) or random forest require a well-prepared feature engineering procedure, in
other words, need to manually segment morphological features and select import features,
which is extremely time consuming and tends to show a large performance difference
between different operators [4]. As AI techniques continue to be refined and improved,
deep learning has been proposed to dramatically change the health care monitoring and
regulation of the brain [5], which can not only improve the reconstruction accuracy of
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neuroimaging and achieve fast imaging, but also mine a large amount of pathological
and genetic data by processing and cross-referencing health and medical big data such
as images, pathology, and genes, and help pathologists to evaluate pathological sections
faster to improve the efficiency and prognosis of disease diagnosis [6]. Deep learning is
a special type of machine learning. The advantage of deep learning is to utilize a neural
network-like engineering architecture that can detect and extract import features automat-
ically, whose predicting label and assessment algorithm has developed several varieties
including prognosis, immune-score, microsatellite instability, histological subtyping, mi-
croenvironment analysis and segmentation, etc. Extensive studies have revealed high
accuracies and provided excellent examples of deep learning’s potential in brain health
care [7–9]. Thanks to advancements in neuroimaging technology, numerous neuroimaging
datasets of brains have been gathered from multiple imaging facilities utilizing various
scanners and imaging protocols. These datasets have been collected to study both typical
and atypical brain development [10]. Recent advancements in medical imaging of the brain
have greatly solved challenges from biopsy—an invasive, unrepeatable technique that
usually ignore heterogeneity within parenchyma. It uses data characterization algorithms
to convert conventional imaging information into data matrices by modern linear algebra
and statistics, which can be further extracted into information revealing a certain malady.

Currently, deep learning-aided medical imaging is becoming the hot spot of AI frontier
application and the future development trend of precision neuroscience. Clinical decision-
making, an essential element of medicine, involves judgement with the integration of
comprehensive data [11]. Especially in brain or central nervous system diseases, there are
unique challenges in medical decision-making due to their diverse forms and progression
as well as the need to consider individual patient factors such as their ability to receive
treatment and response to it. The early detection of cancer is crucial in saving thousands of
lives. Targeted therapy for cancer heavily relies on its grading [12]. Due to the invasive,
time-consuming, and expensive nature of cancer diagnosis, there is an urgent need to
develop non-invasive, cost-effective, and efficient tools to characterize and estimate the
grade of brain cancer. MRI, PET/CT, EEG/MEG, optical imaging, and other imaging
modalities offer quick and safer options for tumor detection during brain scans. The
utilization of deep learning in molecular diagnosis, prognosis, and treatment monitoring
has resulted in the creation of a structured resource for radiogenomic analysis of brain or
central nervous system diseases. Besides greatly reducing the scan time of neuroimaging
methods like MRI and PET/CT [13], the deep learning aided medical images acquired
better signal to noise ratio, higher contrast-to-noise ratio, and stronger brain or central
nervous system disease lesion detection ability. Therefore, radiomics was thought to be the
bridge between medical imaging and personalized medicine [14], which is a quantitative
approach to medical imaging that involves the extraction and analysis of large amounts
of quantitative data from medical images such as MRI and PET/CT. These data are then
used to create predictive models that can help doctors make more accurate diagnoses,
predict treatment outcomes, and develop personalized treatment plans. Deep learning
is a subset of machine learning that uses artificial neural networks to analyze and learn
from data. In radiomics, deep learning algorithms can be trained on large datasets of
medical images to identify patterns and features that are not visible to the human eye.
This can help radiologists and other medical professionals to more accurately diagnose
and treat a wide range of medical conditions including cancer, neurological disorders,
and cardiovascular disease. By applying deep learning to medical imaging, radiomics
has the potential to revolutionize the way we diagnose and treat disease. It can help to
identify early-stage disease, predict which patients will respond best to which treatments,
and develop new, personalized treatment plans based on a patient’s unique genetic and
environmental factors.

Deep learning algorithms have been used to accurately segment brain tumors in MRI
scans, diagnosis of Alzheimer’s disease, brain–computer interfaces (BCI), brain stimulation,
and so on. For example, a study used a deep learning algorithm to segment brain tumors in
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MRI scans with high accuracy. The algorithm was trained on a large dataset of MRI scans
and was able to accurately segment tumors, even in cases where the tumor was irregularly
shaped or located close to the brain’s surface [15]. In another study, Xiaojun Bi and Haibo
Wang proposed a discriminative version of a contractive slab and spike convolutional deep
Boltzmann machine model (DCssCDBM) with a multi-task learning framework via EEG
spectral images based on identification and verification tasks for overfitting reduction for
the first time, and the method accurately predicted whether a patient had Alzheimer’s
disease or not [16]. Deep learning algorithms have also been used to improve the accuracy
and speed of BCI systems, which allow people to control computers or other devices with
their thoughts. For example, a study used a novel deep learning algorithm to improve
the accuracy of a BCI system for hand movement detection and the algorithm was able to
detect hand movements with high accuracy [17]. Deep learning algorithms have also been
applied to optimize brain stimulation techniques such as transcranial magnetic stimulation
(TMS), which is used to treat depression and other mental health conditions. For example,
a study used connectivity measures and an ensemble of pre-trained deep learning models
to predict the treatment outcome of repetitive TMS in major depressive disorder to improve
the treatment efficacy and reduce health care costs. The methodology possesses effective
connectivity, used for transforming EEG signals to images, and provides an informative
feature map [18].

Deep learning holds the potential to greatly improve the brain medical image quality,
metastasis detection, radiogenomics, and treatment response monitoring, which can assist
with volumetric delineation of brain lesions over time, extrapolation of the genotype and
biological course from radiographic phenotype, prediction of clinical outcomes, and assess-
ment of the impact of disease and treatment on the surrounding encephalic region [19,20].
By automating the initial image interpretation, deep learning may revolutionize the clinical
workflow of radiographic detection, management decisions, interventions, and follow-up
care in ways yet to be envisioned [21]. With more and more deep learning aided medical
imaging and therapy decision-making strategies entered into the national authoritative
professional society and cancer diagnosis and treatment guidelines that are followed by
across the country, deep learning assisted theranostic methods are widely recognized by
clinical doctors and lay a solid foundation for its large-scale clinical application. Therefore,
in vivo image acquisition and data signal analysis, data grouping storage, separate and
detailed recording of each sample’s experimental data, and through the professional analy-
sis module for high-precision quantitative analysis of imaging data, can analyze multiple
groups of data at the same time to ensure the consistency of the experimental data [22].
Although there are challenges to overcome such as inter-scanner variability, the need for
benchmark datasets, and prospective validations for clinical applicability, there is a signif-
icant opportunity for the development of optimal solutions for brain or central nervous
system disease stratification. These solutions can provide immediate recommendations for
further diagnostic decisions, the guidance of deep brain stimulation target identification
and personalized treatment plan optimization [23–25]. In a word, using deep learning to
assist medical imaging for brain theranostics has the characteristics of objectivity, high-
accuracy, and high efficiency beyond the abilities of human judgement from qualitative to
quantitative imaging. This review is schematically illustrated in Figure 1.
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Figure 1. Schematic illustration of the review on deep learning aided neuroimaging and brain regulation.

2. Evolution and Classification of Deep Learning Assisted Medical Imaging
2.1. Evolution of Artificial Intelligence in Medical Imaging

The development of AI and deep learning can be traced back to the 1950s and
1960s [26,27]. Early AI research included rule-based systems that relied on human-written
rules to solve specific problems. However, the capabilities of these systems were very
limited because they needed to manually write all the rules, and they struggled to cope
with complex and uncertain situations [28]. In the 1980s and 1990s, machine learning
became popular as improved computer power and large amounts of data became available.
The idea is for computers to learn patterns from data so they can better handle new data.
One of the important machine learning techniques is neural networks, which are algorithms
inspired by the human nervous system. However, early neural networks were very shallow,
with only a few layers, limiting their capabilities. With the development of deep learning
algorithms, neural networks have become deeper and more complex, which can better
handle large amounts of data and have achieved many breakthrough results. The most rep-
resentative examples are the application of deep learning in image and speech recognition
as well as its success in fields such as natural language processing and machine translation.
In recent years, with the improvement in computer performance and algorithms, the ap-
plication scope of AI and deep learning has been expanding, gradually penetrating into
various fields and achieving more and more success [29], showing its advantage in real
scenarios including lung nodules in chest CT, neuroimaging, mammography, and so on.

AI is transforming medical imaging and driving it forward toward the future at a rapid
pace. The evolution of AI in medical imaging has been a game-changer in the field of health
care. Medical imaging is a critical component of medical diagnosis and treatment, and
AI has significantly improved the accuracy, efficiency, and speed of medical imaging pro-
cesses [30,31]. The early application of AI in medical imaging focused on computer-aided
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diagnosis, which involved using algorithms to detect and classify lesions or abnormali-
ties in medical images [32–34]. However, with the rise of deep learning, the application
of AI in medical imaging has become more sophisticated, enabling the development of
predictive models, automatic image segmentation, and even image synthesis [35]. One of
the significant advantages of AI in medical imaging is its ability to analyze vast amounts
of data quickly and accurately, especially in image segmentation, registration, detection,
and recognition. This has led to the development of systems that can detect and diagnose
diseases with high accuracy such as lung cancer, head and neck cancer, breast cancer, and
diabetic retinopathy [36]. Moreover, AI has facilitated the automation of repetitive tasks,
freeing up time for medical professionals to focus on more complex cases [37,38]. AI has
also enabled the development of personalized medicine, where treatments can be tailored
to individual patients based on their genetic makeup, medical history, and imaging data.
This has led to better patient outcomes, reduced costs, and improved overall health care
efficiency. However, the adoption of AI in medical imaging is not without its challenges.
One of the main concerns is the potential for bias in AI algorithms, which can lead to
inaccurate diagnoses or treatment recommendations [1]. Moreover, there is a need for
transparent and ethical AI practices including the development of regulatory frameworks,
to ensure that AI is used safely and effectively. Generally, the evolution of AI in medical
imaging has revolutionized the field of health care, with the potential for improving patient
outcomes, reducing costs, and increasing overall efficiency. The continued development
and adoption of AI in medical imaging will undoubtedly lead to further advancements in
health care and personalized medicine, which has the potential to not only revolutionize
traditional medical imaging, but also enhance clinical workflows and transform various
aspects of the health care industry.

2.2. Convolutional Neural Networks (CNNs)

The application of convolutional neural networks (CNNs) in medical imaging, espe-
cially in brain monitoring and modulation, has made remarkable progress [39–41]. CNNs
are deep learning algorithms, which has been widely used in image recognition and clas-
sification. It can automatically extract features and patterns from a large amount of data.
In terms of brain monitoring, CNNs can be used to analyze neuroimaging data such as
MRI and CT scan results as well as physiological data such as EEG and MEG. CNNs can
automatically identify brain structures and activity patterns to help doctors diagnose and
treat them [42–45]. In terms of brain regulation, CNNs can be used in brain–computer in-
terface technology, which is a technology that converts electrical brain signals into machine
commands [46]. Using CNNs to analyze EEG signals, EEG patterns such as event-related
potentials and bands can be identified to help people realize brain-controlled devices and
applications such as wheelchairs and games. In addition, CNNs can also be used to predict
and monitor the progression of brain diseases and response to treatment. By analyzing
brain images and physiological data, CNNs can automatically identify pathological pat-
terns and features to predict disease progression and treatment effects [47–49]. In general,
the application of CNNs in medical imaging, especially in brain monitoring and regulation,
provides doctors and patients with more accurate, faster, and more effective treatment
methods, which is expected to bring more progress and innovation to the medical health
field in the future.

2.3. Recurrent Neural Networks (RNNs)

The application of recurrent neural networks (RNNs) in medical imaging, especially
in brain monitoring and regulation, has also made some progress [50–52]. Unlike CNN,
cyclic neural networks can process data with a sequential structure such as time series
and speech signals [53–55]. In terms of brain monitoring, RNNS can be used to analyze
time series data such as EEG and MEG as well as functional magnetic resonance imaging
(fMRI) data. RNNs can recognize brain wave patterns and trends, and make predictions
and classifications based on the dynamic nature of the data. In terms of brain regulation,
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RNNS can be used in brain–computer interface technology (BCIs), which is a technique that
converts electrical signals in the brain into machine instructions. By analyzing EEG signals
with a RNN, patterns and dynamic changes of EEG can be identified to help people realize
more refined and flexible brain control devices and applications. In addition, RNNS can be
used to predict brain diseases and monitor therapeutic responses [56–58]. By analyzing
time series and dynamic data, RNNs can automatically identify brain pathological patterns
and features to predict disease progression and treatment effects [59]. In general, the
application of RNN in medical imaging, especially in brain monitoring and regulation,
provides doctors and patients with a more comprehensive, precise, and dynamic treatment
style, which is expected to bring more progress and innovation to the medical health field
in the future.

2.4. Generative Adversarial Networks (GANs)

The application of a generative adversarial network (GAN) in medical imaging, espe-
cially in brain monitoring and regulation, has also received more and more attention and
research. GAN is a deep learning algorithm that can be used to generate images and data
with specific characteristics and attributes [60–64]. In terms of brain monitoring, GAN can
be used to generate virtual brain images with specific brain structures and activity patterns.
This can help doctors understand the relationship between different brain structures and
activity patterns, and the impact on different brain diseases [65–70]. In addition, GAN can
also be used to synthesize brain images with different pathological features and trends
to help doctors diagnose and treat diseases. In terms of brain regulation, GAN can be
used in brain–computer interface technology (BCI) to help train and optimize brain-control
devices and applications by generating virtual images and data with specific patterns of
brain activity. In addition, GAN can be used to generate virtual images and data with
specific brain pathological patterns to help researchers explore mechanisms and treatments
for brain diseases [71–74]. Broadly speaking, the application of GAN in medical imaging,
especially in brain monitoring and regulation, provides a more comprehensive, targeted,
and innovative treatment for doctors and patients, and is expected to bring more progress
and innovation to the medical health field in the future. The applications of different
neuron network-assisted brain health care monitoring are illustrated in Figure 2.

Figure 2. Applications of different neuron network-assisted brain health care monitoring.

3. Deep Learning Aided Neuroimaging for Brain Monitoring and Regulation

Deep learning has shown tremendous potential in the field of neuroimaging and
brain regulation. Neuroimaging techniques such as MRI, CT, PET/CT, EEG/MEG, optical
imaging, and other imaging modalities generate large amounts of comprehensive and
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complex data, which can be challenging to analyze and interpret. Deep learning techniques
such as CNNs, RNNs, and GANs have been proven to be effective in extracting meaning-
ful information from these data and transforming the neuroimaging from qualitative to
quantitative imaging modality. The aforementioned information is merged with additional
patient data and processed using advanced bioinformatics software to create models that
could potentially enhance the accuracy in the diagnosis, prognosis, and prediction for brain
monitoring and regulation.

3.1. Deep Learning Assisted MRI

MRI scans of the brain are considered the most effective approach for identifying
chronic neurological disorders such as brain tumors, dementia, stroke, and multiple scle-
rosis. They are also the preferred method for detecting conditions affecting the pituitary
gland, brain vessels, inner ear organs, and eyes due to their high sensitivity. In recent
years, several deep learning-based medical image analysis methods have been introduced
to facilitate health monitoring and diagnosis using brain MRI scans [75–77]. One of the
primary applications of deep learning in neuroimaging by MRI is the identification and
classification of neurological disorders. For example, CNNs have been used to accurately
diagnose Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis by analyzing MRI
scans. Deep learning has also shown potential in identifying different stages of brain devel-
opment, detecting early signs of neurological disorders, and predicting the progression of
these disorders.

Recent advancements in the classification of gliomas based on biological genotypes,
coupled with the utilization of computational deep learning models based on multi-modal
MRI biomarkers, offer a promising avenue for customized and effective treatment plans.
In this regard, deep learning-based assessment of gliomas using hand-crafted or auto-
extracted features derived from MRI has emerged as a critical tool, as genomic alter-
ations can be correlated with MRI-based phenotypes [78]. Deep learning algorithms have
been extensively explored for the purpose of classifying neurodegenerative diseases us-
ing medical imaging techniques such as magnetic resonance imaging. Utilizing CNNs
on MRI data has emerged as a promising technique for achieving exceptional levels of
precision in predicting the progression of neurological conditions such as brain tumors,
Alzheimer’s disease, multiple sclerosis, and stroke by capturing image features that are not
detectable using traditional methods. However, little attention has been given to utilizing
post-mortem immunofluorescence imaging studies of patients’ brains for this purpose.
These studies have the potential to be a valuable tool in detecting abnormal chemical
changes or pathological post-translational modifications of the Tau polypeptide. Therefore,
L. Diaz-Gomez et al. proposed a CNN pipeline that utilized transfer learning to analyze
post-mortem immunofluorescence images with different Tau biomarkers for the classifi-
cation of Tau pathology in Alzheimer’s disease and progressive supranuclear palsy. The
ResNet-IFT architecture was used to generate models, and interpretability algorithms such
as Guided Grad-CAM and occlusion analysis were employed to interpret the outputs of
these models. They tested four different architectures to determine the best classifier, and
the results showed that their design was able to classify diseases with an average accuracy
of 98.41%. Additionally, they were able to provide an interpretation of the classification,
which included different structural patterns in the immunoreactivity of the Tau protein in
NFTs present in the brains of patients with progressive supranuclear palsy and Alzheimer’s
disease [79]. O. Ozkaraca et al. created a new modular deep learning model to enhance the
classification accuracy of MRI images while simultaneously addressing the drawbacks of
prevalent transfer learning approaches like DenseNet, VGG16, and basic CNN architec-
tures. They employed brain tumor images from the Kaggle database to train and test their
model using two distinct data splitting methods: 80% for training and 20% for testing, and
10-fold cross-validation. Although the proposed deep learning model demonstrated better
classification performance compared to other transfer learning methods, it required more
processing time [75]. In another study, T. Chattopadhyay et al. utilized 3D CNN to forecast
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Abeta+ based on 3D brain MRI data derived from 762 elderly participants (mean age:
75.1 years ± 7.6SD; 394F/368M; 459 healthy controls, 67 with MCI, and 236 with dementia)
who were scanned as part of the Alzheimer’s Disease Neuroimaging Initiative. The 3D
CNN accurately projected Abeta+ with a 76% balanced accuracy from T1w scans [80].
Exploring CNN-generated attention maps, which identify the most significant anatomical
features used for CNN-driven decisions, holds the potential to unveil crucial disease mech-
anisms that contribute to the accumulation of disability. L. Coll et al. predicted a class of
multiple sclerosis disability using whole-brain MRI scans as input by a 3D-CNN model,
which achieved a mean accuracy of 79% and proved to be superior to the equivalent logistic
regression model (77%). The model was also successfully validated in the independent
external cohort without any re-training (accuracy = 71%) [81]. Perinatal arterial ischemic
stroke has been linked to unfavorable neurological outcomes. However, the evaluation
of ischemic lesions and the subsequent development of the brain in newborns requires
time-consuming manual inspection of brain tissues and ischemic lesions. Therefore, R. Zoet-
mulder et al. proposed an automatic method that used CNNs to segment brain tissues
and ischemic lesions in the MRI scans of infants suffering from perinatal arterial ischemic
stroke. This method eliminates the need for the labor-intensive manual assessment of brain
tissues and ischemic lesions [82]. This study indicates that the automatic segmentation of
brain tissue and ischemic lesions in the MRI scans of patients is feasible and may allow for
the evaluation of the brain development and efficacy of treatment in large datasets.

3.2. Deep Learning Assisted PET/CT

PET/CT provides powerful diagnosis methods for neurodegenerative disorder by identi-
fying disease-specific pathologies. Deep learning techniques have shown great promise in
enhancing PET and CT imaging for neuroimaging and brain monitoring/regulation. These
techniques can help improve the accuracy, speed, and efficiency of image processing, en-
abling more effective analysis and interpretation of neuroimaging data. Three-dimensional
CNN can be trained to denoise the PET images for each disease cohort of neurodegenera-
tive disorders [83] and predict the diagnosis of dementia with Lewy bodies, Alzheimer’s
disease, and mild cognitive impairment [84] as well as amyloid standardized uptake value
ratio through PET for Alzheimer’s prognosis [85]. One example of deep learning-assisted
neuroimaging is the use of convolutional neural networks (CNNs) to improve the accuracy
of PET image segmentation. In one study, the researchers developed a CNN-based seg-
mentation method that achieved higher accuracy (96%), sensitivity (96%), and specificity
(94%) than the traditional methods in the evaluation of neuro images for the diagnosis
of Alzheimer’s disease, which was evaluated using the 18FDG-PET images of 855 pa-
tients including 635 normal control and 220 Alzheimer’s disease patients from the ADNI
database, thus capable of discriminating the normal control from the Alzheimer’s disease
patients [86].

Another example is the use of deep learning techniques to enhance the quality and
resolution of CT imaging in neuroimaging. In a study published in the journal Radiology,
the researchers constructed and trained a deep learning-based stenosis and plaque clas-
sification algorithm for head and neck CT angiography that achieved 85.6% consistency
between radiologists and the DL-assisted algorithm, and reduced the time needed for
diagnosis and report writing by the radiologists from 28.8 min ± 5.6 to 12.4 min ± 2.0
(p < 0.001) [87]. In addition to image processing, deep learning techniques have also been
used to analyze neuroimaging data such as semantic segmentation and quantification of
intracerebral hemorrhage (ICH), perihematomal edema, and intraventricular hemorrhage
on non-contrast CT scans of patients with spontaneous ICH [88]. Overall, deep learning
techniques hold great promise for improving the accuracy, speed, and efficiency of PET
and CT imaging for neuroimaging and brain monitoring/regulation. With further develop-
ment and refinement, these techniques could revolutionize the field of neuroimaging and
contribute to a better understanding of brain function and dysfunction.
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3.3. Deep Learning Assisted EEG/MEG

Deep learning has become an increasingly popular tool in EEG/MEG neuroimaging
and brain monitoring/regulation. With the ability to analyze large datasets and detect
subtle patterns in neural activity, deep learning has shown great potential in enhancing our
understanding of brain function and informing clinical applications [89,90]. Deep learning
has also been used to improve brain regulation techniques such as EEG neurofeedback.
EEG neurofeedback is a non-invasive technique that aims to regulate brain activity by
providing real-time feedback to the patient. Deep learning algorithms can analyze EEG
data in real-time, detect patterns, and provide targeted feedback to patients to help them
regulate their brain activity. One of the main applications of deep learning in EEG/MEG is
in the classification of brain states or disorders. For example, Chambon et al. used a CNN
to classify EEG data into three different cognitive states, achieving an accuracy of up to
90% [91]. In another study, Lawhern et al. used a deep learning model to classify EEG data
into different types of epileptic seizures with high accuracy, demonstrating the potential of
deep learning in aiding clinical diagnosis [92].

Moreover, deep learning techniques have been used in the development of brain–
computer interfaces (BCIs) that allow patients to control external devices such as prosthetic
limbs or computer interfaces using their brain activity. Deep learning algorithms can
extract meaningful information from EEG or fMRI data and translate it into commands
for external devices. Deep learning has also been used for brain activity prediction and
regulation. For instance, M. Dinov et al. used deep reinforcement learning in closed-loop
behavioral-and neuro-feedback to track and optimize human performance [93], in which a
deep learning model was established to predict individualized EEG signals and applied to a
closed-loop system for real-time neurofeedback, achieving the successful regulation of brain
activity. Recent technological advances such as wireless recording, deep learning analysis,
and real-time temporal resolution have increased interest in EEG-based brain–computer
interface approaches [94,95]. A deep learning model was developed for real-time decoding
of MEG signals, which was applied to a brain–computer interface system for regulating
motor imagery tasks [96]. Epilepsy is a chronic brain disorder in which functional changes
may precede structural ones and which may be detectable using existing modalities [97].
Functional connectivity analysis using EEG and resting state-functional magnetic resonance
imaging (rs-fMRI) can localize epilepsy [98,99]. Finally, deep learning has been used for
feature extraction and representation learning in EEG/MEG data. For example, R. Hussein
et al. used a deep learning model to learn features from raw EEG data, which were
then used for the classification of epileptic seizures [100]. Similarly, Roy et al. used a
deep learning smart health monitoring model with the spectral analysis of scalp EEG to
automatically predict epileptic seizures [101].

In summary, deep learning has shown great potential in enhancing EEG/MEG neu-
roimaging and brain monitoring/regulation. By enabling accurate classification of brain
states and disorders, predicting and regulating brain activity, and learning meaningful
representations from EEG/MEG data, deep learning has the potential to revolutionize our
understanding of brain function and inform clinical applications.

3.4. Deep Learning Assisted Optical Neuroimaging and Others

Optical imaging is a non-invasive technique that uses light to visualize tissue structure
and function. Optical neuroimaging holds great promise for imaging guided brain regu-
lation. For example, a study published in Nature Neuroscience in 2020 used deep learning
to predict behavior from functional imaging data in mice, demonstrating the potential
for using deep learning in real-time behavioral prediction and manipulation [102]. The
non-invasive guidance of therapeutic strategies would enable the removal of cancerous
tissue while avoiding side effects and systemic toxicity, preventing damage to healthy
tissues and decreasing the risk of postoperative problems such as bioluminescence imaging
(BLI), fluorescence imaging (FI), Cerenkov luminescence imaging (CLI), and photoacoustic
imaging (PAI). BLI is always used in small animal imaging for the in vivo tracking of
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therapeutic gene expression and cell-based therapy. In contrast, FI is highly promising for
clinical translation. The applications of FI include image-guided surgery, radiotherapy,
gene therapy, drug delivery, and sentinel lymph node fluorescence mapping. CLI is a
novel radioactive optical hybrid imaging strategy for animal and clinical translation. Deep
learning has shown significant promise in optical imaging modalities for neuroimaging
and brain regulation including photoacoustic imaging and photoacoustic tomography.
Photoacoustic imaging is a hybrid imaging technique that combines the advantages of
optical and ultrasound imaging. It uses laser light to generate acoustic signals, which are
then used to create high-resolution images of tissue structure and function. Deep learning
has been applied to photoacoustic imaging for neuroimaging, and there have been several
relevant studies in this area. Using deep learning to reconstruct high-resolution images of
the cerebral vasculature from photoacoustic tomography data can significantly improve
image quality and reduce imaging artifacts in photoacoustic tomography [103]. In 2020, a
new deep learning method called Pixel-DL was proposed by S. Guan et al., which involved
pixel-wise interpolation based on the physics of photoacoustic wave propagation followed
by the use of CNN to reconstruct images. Synthetic data and data from phantoms of the
mouse-brain, lung, and fundus vasculature were used to train and test the model. The
results showed that Pixel-DL performed similarly or better than the iterative methods and
consistently outperformed other CNN-based approaches in correcting artifacts. Further-
more, Pixel-DL is a computationally efficient approach that enables real-time photoacoustic
tomography rendering and improves the quality of image reconstruction for limited-view
and sparse data [104].

Recent advancements in deep learning assisted optical neuroimaging have greatly
solved challenges from biopsy—an invasive, unrepeatable technique that usually ignores
heterogeneity within the brain. From a resolution perspective, current optical images for
brain disease diagnosis include two branches of cytological and histopathological. The
former cytological examination is generally inexpensive, minimally invasive, and easily
repeatable compared to histopathological examination. However cytological examinations
are also labor intensive and insensitive compared to histopathological examination. Image
interpretation is a highly subjective task and deep learning has revealed its ability for a
more objective and straightforward diagnosis. Specifically, most deep learning research
has focused on optical images on a histopathological scale [105]. Deep learning began to
gain more attention in the health care sector due to its promising results in recent years,
which use data characterization algorithms to convert conventional imaging information
into data matrices by modern linear algebra and statistics that can further be extracted
into information revealing certain patterns. These deep learning approaches have been
used in radiological diagnosis, bioinformatics, genome sequencing, drug development,
and histopathological image analysis. Particularly for histopathological diagnosis, deep
learning has surpassed that of clinical experts. The core advantage of deep learning is that it
utilizes a complex neural network-like engineering architecture that can detect and extract
import features automatically. The predicting label and assessment of the deep learning
algorithm has developed several varieties including prognosis, PD-L1 status, microsatellite
instability, histological subtyping, microenvironment analysis, and segmentation. More-
over, deep learning can solve the problem that some neuroimaging is difficult to quantify in
three dimensions. However, the use of deep learning in neuroimaging and brain regulation
also presents challenges. The interpretation of deep learning models is often opaque, mak-
ing it difficult to understand the reasoning behind the model’s decisions. Moreover, deep
learning algorithms require large amounts of data to be trained effectively, which can be
challenging to acquire in the field of neuroimaging. In conclusion, deep learning has shown
significant promise in various imaging modalities for neuroimaging and brain regulation
including fluorescence imaging, photoacoustic imaging, and photoacoustic tomography.
These studies demonstrate the potential for using deep learning to improve the image
quality, reduce imaging artifacts, and develop predictive models for the diagnosis and
treatment of neurological disorders.
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4. Conclusions

In recent years, deep learning and sensing technologies have made impressive ad-
vances in medical health care monitoring. The following are several specific directions:

1© Deep learning-based medical imaging diagnosis: Deep learning technology can make
an intelligent diagnosis of medical images to improve the accuracy of the diagnosis. For
example, deep learning algorithms can identify image features of diseases such as brain tu-
mors and neurodegenerative disorders and provide accurate diagnosis results. 2© Medical
monitoring based on sensor technology: Sensor technology enables real-time monitoring of
biological signals such as electroencephalography (EEG), electrocardiogram (ECG), etc. By
analyzing these biological signals through deep learning technology, accurate physiological
parameter measurement and abnormal detection can be achieved, providing important
reference information for doctors. 3© Health management based on deep learning: Deep
learning technology can analyze a large amount of health data such as biological signals,
movement tracks, eating habits, etc. By analyzing these data, more accurate health manage-
ment suggestions and personalized health intervention programs can be provided to the
users. 4© Health risk prediction based on sensor technology and deep learning: Sensor tech-
nology can collect a large amount of physiological data such as blood pressure, blood sugar,
oxyhemoglobin saturation, blood flow velocity, etc. The analysis of these data through
deep learning technology can build health risk prediction models and provide users with
personalized prevention and intervention recommendations. In general, the application of
deep learning and sensing technology in the field of medical monitoring provides doctors
and patients with more intelligent and precise services and treatments, which is expected
to bring more progress and innovation in the field of medical health in the future. However,
the use of deep learning in neuroimaging and brain regulation also presents challenges. The
interpretation of deep learning models is often opaque, making it difficult to understand
the reasoning behind the model’s decisions. Moreover, deep learning algorithms require
large amounts of data to be trained effectively, which can be challenging to acquire in
the field of neuroimaging. In conclusion, deep learning has shown great promise in the
field of neuroimaging and brain regulation, with the potential to improve the accuracy
and speed of diagnosis and the treatment of neurological disorders as well as enable new
forms of brain–computer interfaces. However, the challenges associated with deep learning
must be addressed to ensure that these techniques can be used safely and effectively in
clinical settings. Overall, this article reviewed the recent progress of how deep learning
is being applied in the medical field of neuroimaging and brain regulation. As research
in this field continues to grow, we can expect to witness, and even participate in, more
innovative applications of deep learning that will improve our understanding of the brain
and advance our ability to treat neurological disorders.
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