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Abstract: The characterization of suspended dust near the Martian surface is extremely relevant to
understand the climate of Mars. In this frame, a Dust Sensor instrument, an infrared device designed
to obtain the effective parameters of Martian dust using the scattering properties of the dust particles,
was developed. The purpose of this article is to present a novel methodology to calculate, from
experimental data, an instrumental function of the Dust Sensor that allows solving the direct problem
and providing the signal that this instrument would provide given a distribution of particles. The
experimental method is based on recording the signal measured when a Lambertian reflector is
gradually introduced into the interaction volume at different distances from the detector and source
and applying tomography techniques (inverse Radon transform) to obtain the image of a section
of the interaction volume. This method provides a complete mapping of the interaction volume
experimentally, which determines the Wf function. The method was applied to solve a specific case
study. Among the advantages of this method, it should be noted that it avoids assumptions and
idealizations of the dimensions of the volume of interaction and reduces the time required to carry
out simulations.

Keywords: scattering sensor; nephelometer; angular weighting function; scattering of particles;
Martian dust; radon transform; tomography

1. Introduction

Dust suspended in the atmosphere of Mars is the main factor that governs its meteorol-
ogy and climate; therefore, the characterization of particles in suspension, in particular their
density and effective parameters (modal radius and variance), is essential to understand
and predict not only the Martian climate [1] but to evaluate its influence in Entry, De-
scent and Landing (EDL) systems [2] and the potential hazards for equipment and human
crews [3].

Over the past 50 years, many instruments (both orbiters and in situ instruments [4])
have measured the opacity of the Martian atmosphere in different spectral ranges and
conditions, resulting in multiple studies of dust size parameters [5–7]. However, it is known
that there are discrepancies between the particle size distributions and the dust densities of
different models; therefore, there is still a need for research in this field [8].

In this context, the use of in situ instruments capable of characterizing suspended
dust near the Martian surface is extremely relevant to understand the climate of Mars and
its atmospheric dynamics, as well as to provide ground truth for the models and in-orbit
instruments [9].

Such an instrument is the Dust Sensor [10], a device designed to obtain the effective
parameters of Martian dust. Its operating principle is based on the fact that the scattering of
light by dust particles depends not only on the effective parameters of the particles but also
on the wavelength of the incident light and its scattering angle. Therefore, the parameters
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can be determined by measuring the light scattered by the particles at different wavelengths
and different scattering angles and solving the inverse problem. For that reason, the Dust
Sensor instrument consists of a broadband IR emitter and two detectors of PbSe and PbS.
Each pair of PbSe–PBS detectors is placed in different orientations to measure the light
scattered by the particles in two different directions (forward and backward) and at two
wavelengths (3–5 µm and 1–3 µm, respectively); the effective parameters of suspended
dust can be determined by solving an inverse problem. Figure 1 shows a diagram of the
Dust Sensor, where S is the IR source, D is one of the detectors (forward) and P is the point
that scatters the light with a scattering angle of θ.

Obtaining the actual dust distribution parameters from the instrument signal requires
first solving the direct problem; that is, given a dust particle distribution, determining what
signal the instrument would provide. Since the signal not only depends on the particle
distribution but also on the geometry and spectral response of the instrument, it is essential
to calculate the contribution of the instrument’s characteristics to the signal. The objective
of this article is to obtain an instrumental function that describes the instrument response
in order to obtain a method that calculates, in a straightforward way, the signal that the
instrument would provide for a given a distribution of particles.

Figure 1. A diagram of the Dust Sensor. S is the IR source, D the forward detector and P is a generic
scattering point, located at angles γS and γD with, respectively, the axes of the source and the detector.

What is generally done is to define an ideal sampling volume as the intersection be-
tween the cone corresponding to the light emitted by the source and the Field of View (FoV)
cone of the detector. This ideal volume is then used to define the direct model, either by
Monte Carlo methods [11] or by angular weighting functions that encompass the behavior
of the instrument as a function of the scattering angle [12–14]. These methods require
further experimental calibration, either by media with known particle distributions [12] or
by targets of known emissivity [15].

However, the emission pattern of the source and the angular response of the detector
are usually nonideal, and the sampling volume resulting from both will often be irregular
in shape; in addition, the response of the instrument will not be uniform within that
volume. To solve the nonidealities in integrating nephelemoters, some studies include
a truncated angular weighting function [16–18]. In a previous work [19], the authors
proposed a method to solve the problem of the idealization of the volume of interaction
by defining an angular weight function, W f (θ), based on the choice of an appropriate
coordinate system for the instrument, which depends only on the scattering angle θ and
groups all the geometric factors of the instrument, without assuming ideal emission or
FoV patterns.

In this work, a novel experimental method is proposed to obtain W f and to calibrate
this type of instrument. The method is based on recording the signal measured when
a Lambertian reflector is gradually introduced into the interaction volume at different
distances from the detector and source.
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At each distance, the instrument is rotated, and by applying tomography techniques
(inverse Radon transform), we are able to obtain a section of the interaction volume from
the scalar outputs provided by the detector. Repeating the process for different distances,
a complete mapping of the interaction volume is obtained. This determines experimentally
the W f function. Knowledge of this function and the emission pattern of the reflector
makes it possible to calculate the irradiance that reaches the detector and thus calibrate the
instrument by relating its output (Volts) to the radiative input in the detector (Watts).

Although other authors [15] have also experimentally obtained the instrument re-
sponse by measuring a reflector at different distances from the instrument, they need to
assign an effective scattering angle to each of these distances. The main novelty of the
method we propose is the use of tomographic techniques to obtain sections of the interac-
tion volume from the signal provided by a point detector. Therefore, our method avoids
the approach that involves defining an effective scattering angle. Furthermore, by using
W f , it does not have the problems associated with the idealization of the emission pattern
of the IR source and the FoV of the detector.

The structure of this paper is as follows. Section 2 explains the theoretical foundations
of this work. The proposed methodology to calculate W f from experimental data and the
set up required for the measurements are developed in Section 3. The partial results of
applying the methodology to the Dust Sensor as well as the final W f function are presented
in Section 4. In addition, Section 4 includes an application that shows the usefulness of this
methodology to solve a direct problem: to calculate the signal that the Dust Sensor would
provide for a distribution of spherical particles. Finally, Section 5 is devoted to discussing
the results and summarizing the main conclusions.

2. Theoretical Background

A backward/forward scatter instrument consists of a point source and a detector, both
usually collimated. A schematics of a forward arrangement can be found in Figure 1.

To calculate the radiant flux reaching the detector, ΦD [W], we can use the volume
scattering function, β [m−1sr−1], which depends on the medium (density and type of
scattering particles). This function is defined from the radiant intensity dI [W/sr] scattered
by a differential volume element dV, when an unpolarized plane wave with an irradiance
E [W/m2] illuminates it:

dI = E(λ) · β(θ, λ) · dV (1)

The spectral radiant flux dΦD(θ, λ) [W/µm] that reaches the detector from a dV at a
point P can be expressed as

dΦD(θ, λ) = E(λ) · σ(γD) · A
r2 · β(θ, λ) · dV (2)

where A
r2 [sr] is the solid angle defined by the area A of the detector as seen from the

scattering point P at a distance r, and σ(γD) takes into account the angular sensitivity of
the detector (for an ideal detector σ(γD) = cos(γD)). The signal measured by the detector
is, therefore,

〈Signal〉 =
∫

λ
dλ
∫

V
dV · E(x, y, z, λ) · σ(γD(x, y, z)) · A

r(x, y, z)2 · β(θ, λ)g(λ) (3)

where g(λ) is the spectral responsivity [V/W] of the detector. If the irradiance on P is
written as

E(x, y, x, λ) = Eλ(λ) · E0(x, y, z) (4)

then

〈Signal〉 =
∫

λ
dλ
∫

V
dV ·VWF(x, y, z) · β(θ, λ)Eλ(λ)g(λ) (5)
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where

VWF(x, y, z) ≡ E0(x, y, z)
σ(γD(x, y, z)) · A

r(x, y, z)2 (6)

is a function that groups the terms that depend only on the geometry of the instrument
and will be called from now on as volume weighting function (VWF). As explained in
detail in a previous work [19], there is a specific coordinate system (q1, q2, θ) that allow us
to express the VWF as a one-dimensional function, called angular weighting function (W f ),
that only depends on the scattering angle θ. This W f (θ) function can be calculated through
integration on the other two coordinates, q1 and q2:

W f (θ) =
∫

dq1

∫
dq2 VWF(q1, q2, θ) · J(q1, q2, θ) (7)

where J(q1, q2, θ) is the Jacobian determinant.
Using W f (θ), it is possible to express the integral in Equation (5) as a one-dimensional

integral of a function that only depends on the instrument,

〈Signal〉 =
∫

λ
dλ
∫

θ
dθ ·W f (θ) · β(θ, λ)Eλ(λ)g(λ) (8)

3. Methodology

As mentioned in the introduction, the objective of this work is to experimentally
determine the function W f that describes the geometric characteristics of the instrument.
This is explained in the following section. Here, the spectral dependence is omitted for
simplicity, and it is treated in Section 3.2.

3.1. Angular Weighting Function

Since W f is calculated by integration of the VWF function (Equation (7)), it is necessary
to develop a methodology to map the VWF of the instrument. This has been performed
by performing a tomography of the VWF using a Lambertian target. Figure 2 represents
a schematic of the procedure followed to apply this methodology. The basic idea is to
gradually introduce the target (a flat plate) into the interaction volume of the instrument at
a certain distance from it. As the target is introduced into the interaction volume with an
increasing horizontal displacement s, the signal that reaches the detector increases, since
there is more reflective surface within its FoV. The derivative of the signal with respect
to s provides the contribution to the signal from just the edge of the target (red line in
Figure 3). This value corresponds to the line integral of the VWF for a given horizontal
displacement s. By repeating this procedure for different rotation angles and representing
the derivative of the signal for each displacement s and angle α, we obtain what is known
as the sinogram. To obtain the VWF at that specific distance, it is necessary to apply
the inverse Radon transform to the sinogram and eliminate a reflection factor L due to
the target.

By repeating this procedure at different distances z, multiple sections of the VWF
are obtained to map this function over the whole of the interaction volume. Finally,
interpolating the measured VWF into the coordinate system dependent on θ and integrating
over the non-θ coordinates provides the W f .

The explanation of the different blocks of the process, depicted in the flowchart in
Figure 2, is provided in the following subsections. To begin with, in Section 3.1.1, we
describe the experimental setup necessary to carry out the measurements. Then, we
detail the blocks that make up the methodology. In Section 3.1.2, we explain how the
Radon transform is related to the VWF, as well as the process of obtaining a sinogram; in
Section 3.1.3, the VWF mapping procedure is described; and finally, in Section 3.1.4, the
method to obtain W f once VWF has been mapped is expounded.



Sensors 2023, 23, 5036 5 of 18

Figure 2. Flowchart that summarize the methodology followed to obtain an experimental W f .
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Figure 3. (a) Radon transform coordinates. (b) A scheme showing the coordinates in our problem
(the instrument is seen from the back of the instrument, in the direction of the z-axis).

3.1.1. Experimental Setup

The Dust Sensor instrument has been described previously in [10]. It uses a thermore-
sistive membrane capable of radiating in a broad IR spectral range as the source and has
two detectors (PbSe and PbS) for each configuration (forward and backward). In this
work, W f was obtained for the PbS detector in the forward configuration. The PbS detector
operates in the 1–3 µm spectral band and is enclosed within a parabolic mirror, which
reduces its field of view.

A Lambertian target of known reflectivity (Spectralon SPR-99 [20]) and a size of
25 × 25 cm2 was used. During the measurement, this target slides along a motorized linear
guide in the direction of the s-axis. In addition, the Dust Sensor is mounted on a rotating
platform that allows measurements to be taken at different angles α. This mechanical setup
makes it possible to acquire a sinogram with a spacing of 1 mm on the s-axis and a spacing
of 8.1◦ on the α axis. This process is repeated for 11 different distances, ranging from
1 to 10 cm.

To avoid interference from external light sources, the thermoresistive membrane source
is modulated and paired with a lock-in amplifier, as detailed in [21]. This causes a change
in the spectral signature of the source, which is taken into account in [22].

When the Lambertian target is positioned close to the instrument, internal reflections
can occur at the target–instrument interface and potentially reach the detector. To minimize
this effect, the surface of the instrument was coated with a high-emissivity (low-reflectance)
paint. The edge of the Lambertian target was covered with a high-emissivity tape (ε = 0.95),
thus reducing potential reflections with the target’s edge.

Further information about the spectral characteristics of the emitter and the detector
can be found in the Appendix B.

3.1.2. Obtaining the Sinogram

The Radon transform (RT) is an integral transform that relates a function defined
on a plane, f (x, y), to its transformed function, R[ f ], defined in the space of straight
lines on the plane. If a line is defined by its minimum distance to the origin, s, and its
angle with the x-axis, α, its equation is x cos α + y sin α − s = 0. Figure 3a presents a
schematic of both coordinate systems, with the edge of the Lambertian target depicted in
red. In Figure 3b both coordinate systems are represented on a diagram of the instrument.
In this representation, the instrument (source and detector) is shown in the foreground.
The x-axis is on the line that joins both elements of the instrument. The angle of rotation
of the DS with respect to the horizontal direction is α. The Lambertian target is located in
this perspective in a medium plane. The target is introduced into the interaction volume,
which is represented by the intersection between the cone corresponding to the FoV of the
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detector (in green) and that of the emission pattern of the source (in red). The edge of the
target is highlighted in red, as in the Figure 3a. A top view of this schematic can be seen in
the first section of Figure 2.

The Radon transform assigns to (s, α) the value of the integral of f along that line, i.e.,

R[ f ](s, α) =
∫ +∞

−∞
dx
∫ +∞

−∞
dy f (x, y) · δ(x cos α + y sin α− s) (9)

It is common to represent the values of R[ f ](s, α) in a graph with axes α and s, called a
sinogram.

In our approach, R[ f ](s, α) is obtained experimentally, as explained next, and then
f (x, y) is retrieved by means of the inverse Radon transform.

To describe our experimental configuration for R[ f ](s, α) measurement, we start by
defining a coordinate system. The XY plane contains both the source and the detector,
with the SD line along the x-axis, and it is parallel to the Lambertian target, placed at the
plane z = h. The z-axis, in turn, coincides with the axis of rotation of the instrument (see
Figure 4).

Figure 4. Scheme showing the source, the detector and the Lambertian target, as well as the relation-
ship between the Cartesian and the Radon space coordinates. To acquire the sinogram, the Lambertian
target moves in the direction of s, and the instrument rotates around the z-axis.

For each distance h, the Lambertian target is introduced along the s-axis, measuring
continuously until the signal remains constant, which means that the target covers the
entire interaction volume (see block 3.1.1. in Figure 4). This process is repeated for an
interval of angles α from 0 to 180 degrees.

It is important to note that when the target does not completely cover the interaction
volume, the radiant flux received by the detector only comes from the area of the target
inserted into the volume. This situation can be described using the Heaviside function H(t).
Thus, the radiant flux received by the detector that comes from the area of the Lambertian
target within the interaction volume can be expressed as

ΦD(s, α) =
∫ +∞

−∞
dx
∫ +∞

−∞
dy VWF(x, y, z = h)·L(x, y, z = h)·(1− H(x cos α + y sin α− s)) (10)

where VWF(x, y, z = h) is a section of the VWF contained in the plane z = h, and
L(x, y, z = h) is a function that describes the diffuse reflection of the Lambertian tar-
get and plays a role analogous to that of β(θ(x, y, z)) in Equation (3). The factor
1− H(x cos α + y sin α− s) is used to restrict the integral to the area of the target em-
bedded in the interaction volume (gray area in Figure 3b), whose boundary is the line
x cos α + y sin α− s (red line in Figure 3b).
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As the Lambertian targets moves along the s-axis, varying the values of s, the succes-
sive increments in the value of ΦD are due not only to the edge of the target but to the
rest of the area that is gradually introduced into the volume of interaction. The derivative
with respect to s of Equation (10) provides the contribution of just the edge of the target
and therefore the value of the Radon transform of VWF·L. Mathematically, this derivative
gives rise to an equation analogous to Equation (9):

dΦD
ds

(s, α) =
∫ +∞

−∞
dx
∫ +∞

−∞
dy VWF(x, y, z = h)·L(x, y, z = h)·δ(x cos α + y sin α− s) (11)

Therefore, dΦ
ds (s, α) = R[ f ](s, α), being f (x, y) = VWF(x, y, z = h)·L(x, y, z = h).

To summarize, since the signal provided by the instrument is proportional to ΦD,
by taking several continuous measurements of the Lambertian target as it enters the inter-
action volume, varying s, (with constant h and for a interval of α values from 0◦ to 180◦) a
sinogram can be obtained experimentally that is the Radon transform of VWF·L. Repeating
this process at different distances, h, and applying the inverse Radon transform to each
sinogram allows us to achieve a complete mapping of VWF·L.

3.1.3. VWF Mapping

In order to obtain VWF, however, the contribution of the reflector, summarized in the
L factor, must be removed. In order to do that, it is necessary to find an equation for the
radiant flux that reaches the detector. This equation will be the analogue to Equation (2),
which was valid for radiation scattered by particles in a volume dV, but now due to diffuse
(lambertian) reflection on a dA from the rectangular plate.

If the angles of incidence and reflection at dA are, respectively, η1 and η2 (Figure 5),
the radiant flux that reaches dA can be written as

dφi,L = E · cos (η1) · dA (12)

where the subindexes {i,L} stand for “input” and “Lambertian”, respectively, and the radiant
intensity coming out of dA is

dIe,L = dI0,e,L · cos (η2) (13)

where the subindex e stands for “exit”. The radiant intensity coming out of dA for η2 = 0 is

dI0,e,L =
R · dφi,L∫
cos(η2)·dΩ

=
R · dφi,L

π
(14)

where R is the reflectance of the plate. Finally, the radiant flux from dA reaching the
detector is

dφD = dIe,L·ΩD = dI0,e,L · cos (η2)ΩD =
R · dφi,L

π
· cos (η2)ΩD =

=
R · dφi,L

π
· cos (η2)

Aσ

r2 = VWF · R · cos(η1) · cos(η2)

π
· dA

(15)

Therefore,

L(x, y, z = h) =
R · cos(η1) · cos(η2)

π
(16)

Dividing each VWF·L(x, y, z = h), obtained as the inverse Radon transform of the
sinograms, by L(x, y, z = h), we obtain our experimental measurement of the volume
weighting function, VWFexp(x, y, z). In conclusion, omitting for simplicity the dependence
on (x, y, z),

VWF =
1
L

R−1
[

ΦD
ds

]
(17)
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Figure 5. Schematics of the angles involved in the diffuse reflection of the Lambertian source.

3.1.4. Experimental Determination of W f

To obtain W f as defined by Equation (7), it is necessary to express VWF(x, y, z) in
a coordinate system (q1, q2, θ), where one of its coordinates is the scattering angle. This
coordinate system has been defined in [19]. To numerically calculate the integral in (7),
an interpolation of VWF(x, y, z)exp is performed on an (equispaced) mesh of the new
coordinate system (Figure 6). Thus,

W f (θk) = ∑
i

∑
j

∆q1∆q2 J(q1,i, q2,j, θk)VWF(q1,i, q2,j, θk) (18)

In this expression, ∆q1 and ∆q2 is the mesh spacing at the coordinates q1 and q2, and
VWF(q1,i, q2,j, θk) are the experimental VWF interpolated at point (q1,i, q2,j, θk). Although
points are equally spaced in the new coordinate system, in the Cartesian coordinate system
they are not, which is the reason why the Jacobian determinant evaluated at the point
J(q1,i, q2,j, θk) must be included in the equation.

Figure 6. Interpolation Scheme: The blue mesh corresponds to a grid of points in the Cartesian
system, where each point represents an experimental measurement on a section of the VWF. The red
points are the values obtained through interpolation in the new coordinate system (q, p, θ).

3.2. Spectral Dependence

In the previous subsection, the spectral dependence was omitted for simplicity, i.e,
the problem was treated as if the source were monochromatic. In the real sensor, the source
has a spectrum Eλ, and the detector has a spectral responsivity g(λ). Since the detector
integrates in λ, the left-hand side of Equation (18) is multiplied by

∫
λ dλ · Eλ(λ)g(λ),

and the equation for W f needs to be divided by this factor:

W f (θk) =
∑i ∑j ∆q1∆q2 J(q1,i, q2,j, θk)VWFexp(q1,i, q2,j, θk)∫

λ dλ · Eλ(λ)g(λ)
(19)



Sensors 2023, 23, 5036 10 of 18

4. Results

The procedure described provides, for each distance h and each α value, a signal
profile along the s-axis (see Figure 7, left). The next step is to obtain their s-derivatives,
so that they can be interpreted as the line integral of a VWF section. Since the Radon
transform is sensitive to noise, it is necessary to previously filter the noise measured by the
instrument (in our case coming mainly from the electrical network). Figure 7 (right) shows
this result.

Figure 7. (Left): The 23 s-profiles (one for each α value) of signal measured for a fixed h distance (in
this case h = 11 mm. (Right): Derivatives of the previous profiles, after noise filtering.

All the signal derivatives for a fixed h value are joined together to form the sinogram
(Figure 8a), whose inverse Radon transform shows the VWF with a superimposed Lamber-
tian pattern. This Lambertian pattern is removed, as explained in Section 3.1.3, giving rise
to a section of the VWF (Figure 8b).

Figure 8. (a) Sinogram obtained for a distance h = 13 mm. (b) Inverse Radon transform applied to
the sinogram.
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To map the VWF, a total of 11 sections were obtained, covering the following z
positions: [10, 13, 16, 20, 30, 40, . . . , 100] mm. Figure 9 shows the mapping of the first
6 sections.

Figure 9. Schematics of the VWF sections obtained at different heights h.

Once the sections are obtained, it is necessary to interpolate them in the coordinate
system (q1, q2, θ) mentioned before. This process is shown in Figure 10. In this figure, some
of the interpolated isosurfaces can be observed (the rest are omitted for clarity reasons).
Thus, the integral of VWF in one of these surfaces, or in other words, the sum of the values
of its points (Equation (18)), gives rise to a specific value of W f .

Figure 10. VWF interpolated for different scattering angle isosurfaces (represented in a
Cartesian system).

Repeating this sum for all the isosurfaces results in W f (θk) for the entire scattering
angle interval (Figure 11). Although the figure shows that the intensity of VWF is higher
in the 50-degree isosurface, the highest values of W f are found near 80 degrees. This is
because, although more intense, this isosurface is smaller.
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Figure 11. Angular weighting function of the forward configuration of the Dust Sensor.

The following subsection includes an example of the application of the method to
solve the direct problem (in the case of spherical particles).

Particle Density Gain

In this example, a response factor of the instrument (M) to particles of a given radius
R is calculated. The M value allows establishing a direct relationship between the signal
that the instrument would provide and the density of particles in the interaction volume.
The versatility of the method makes it possible to quickly calculate the sensitivity of the DS
to particle size by simply calculating the M factor for different particle radii. The density
of suspended dust is essential in various applications, including air quality monitoring,
workplace safety and environmental studies. Since the volume scattering function β
depends on the particle density ρ, our method can be applied to establish a relationship
between the instrument signal and ρ. Since the functions of the instrument W f and g(λ)
are already known, it is only necessary to express β as a function of ρ.

β(θ, λ) = ρ · 〈S11〉(θ, λ)

k2 (20)

where S11 is the first element of the scattering matrix, which specifies the angular distri-
bution of scattered light when the incident light is unpolarized, and k is the wavenumber.
In this equation, 〈S11〉 represent the statistical average over all the particle states of S11.

This would allow us to calculate the particle density gain, M, for a given dust distribution.

〈Signal〉 = ρ ·
∫

dλ
∫

dθ W f (θ) · g(λ) · Eλ(λ) ·
〈S11〉(θ, λ)

k2 = M · ρ (21)

Since M is to be calculated for different monodisperse distributions of spherical
particles, statistical averaging is not required. In addition, the spherical symmetry al-
lows to calculate the parameter S11 from the Mie theory as a function of the radius of
the particles R of each distribution and of the complex refractive index m; therefore,
〈S11〉(θ, λ) = S11(R, m, θ, λ), and M can be expressed as

MMie(Ri) =
∫

dλ
∫

dθ W f (θ) · g(λ) · Eλ(λ) ·
S11,Mie(m, Ri, θ, λ)

k2 (22)

For these calculations, we used the complex refractive index for Martian dust proposed
by [23] in the region between 1 and 5 microns. Specifically, the real part of the refractive
index is 1.5, and the imaginary part can be neglected, since it is less than 1% in this region.
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Table 1 shows the different values of gain in particle density M calculated for the Dust
Sensor and spherical particles of different radii.

Table 1. Particle density gain for different particle radii.

R [µm] M [V/(part/cm3)]

0.5 0.31 · 10−6

1 3.0 · 10−6

2 12 · 10−6

5 42 · 10−6

10 150 · 10−6

20 520 · 10−6

From the simulations carried out, a calibration table for spherical particles could be
obtained. Then, knowing the radius of the particles, the density could be obtained.

It is important to note that the relationship between the instrument signal and particle
density, ρ, through the volume scattering function β, can be established for various types
of particles, regardless of their shape or size. The spherical case, such as raindrops, is
just one example where this relationship can be expressed mathematically. In practice,
however, the shape and size of the particles can significantly affect the scattering properties,
making it necessary to consider more complex particle models. Nonetheless, our method
provides a framework for determining the relationship between the instrument signal and
particle density, allowing for the accurate measurement and analysis of suspended dust in
various applications.

5. Discussion and Conclusions

In the previous section, the W f function for the forward configuration of the PbS
sensor of the Dust Sensor was obtained experimentally. The results are in good agreement
with the values obtained in a previous article [19], where it was found that the scattering
angles measured in this configuration range roughly from 30 to 130 degrees.

However, the method proposed in this work has several advantages over the previ-
ous one:

• In [19], W f was calculated from the measurement of the irradiance pattern of the
source and the angular sensitivity of the detector. Both were measured separately
and then the detector and the IR source were assembled in the instrument. However,
the assembly introduced modifications to the interaction volume geometry that the
calculation did not take into account and had to be introduced a posteriori by applying
a mask on the obtained W f function. In the present work, the angular function of the
instrument, W f , is measured experimentally, thus taking into account by design any
effect of the final assembly reflected in the W f .

• Moreover, as the W f is measured experimentally, it inherently includes a calibration
factor that takes into account the effect of the optics and electronics of the system,
and it avoids the use of specific calibration procedures.

• The novelty of the use of the tomographic techniques implemented in our method
prevents assumptions or idealizations about the dimensions of the volume of interac-
tion made. Being an experimental procedure, it realistically and quickly solves the
direct model with a lower time investment than the time required by other simulation
models, such as models based on Monte Carlo methods.

In addition:

• Although the aim here has been to determine the W f function, the method worked
out implies the experimental determination of the volume of interaction and therefore
is applicable of measuring the volume of interaction of other instruments.
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• Another factor to consider is that the volume scattering function represents a single-
scattering property. That is, the higher the particle density of the medium, the less
reliable the use of W f will be. This assumption implies that the particles only scatter
the light coming from the emitter (ignoring the scattered light from other particles).
Thus, the lower the particle density of the medium, the more reliable the W f computed
by this method [24].

• In Section 4, an application to relate the signal to a density of a spherical particles
is shown. With the method proposed in this article, the instrument response factor
(particle density gain) is calculated for spherical particles of different radii, which
makes it possible to determine the sensitivity of the instrument to the radius of the
particles. Although monodisperse distributions are not very realistic, this method will
allow to simulate the signal in an equivalent way due to distributions of particles with
variable radii. With this method, it will be possible to determine the W f function
of the backward detector and calculate the signal that both detectors would receive
for different distributions with varying densities and particle sizes. This extensive
database will serve to solve the inverse problem and to relate the parameters that
characterize the distributions (radius and effective variance) with the signals in the
detectors in backward and forward configuration.

To conclude, the proposed method stands as an agile tool to solve the direct problem,
i.e., to know the signal provided by the instrument given the characteristics of the particle
distribution. Solving the direct problem is a key requirement to be able to design strategies
and algorithms to solve the inverse problem, to carry out sensitivity studies and even to
optimize the design of the instrument.
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Appendix A. Error Estimation

In this appendix, three simulations are presented to estimate the error.
The first simulation focuses on the error associated with the mapping used to sam-

ple the interaction volume, specifically the target positions along the z-axis. The error
associated with this discretization propagates during the interpolation and integration
process of the VWF sections obtained in the new coordinate system. This study helps us
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estimate the optimal number of sections to be obtained and their positions, in other words,
the optimal mapping.

To perform this simulation, a VWF (referred to as WVFsim) was simulated using an
emission pattern of the source E0(x, y, z) and a detector angular sensitivity σ(γD(x, y, z))
that were experimentally determined and can be found in the appendix in [19].

This VWF was evaluated in two different ways:

• In the coordinate system (q1, q2, θ), where its integral provides us with a ground
truth W f .

• In the Cartesian coordinate system (Figure A1). This allows us to emulate the error
introduced during the interpolation described in Section 3.1.4.

Figure A1. Mapping scheme of WVFsim. The black lines indicate the Z positions where the function
is evaluated.

Figure A2 compares the W f evaluated in (q1, q2, θ) with the interpolated WVFsim
using different mappings. As shown in Figure A2 (left), a mapping with a 5 mm interval
perfectly reproduces the WVFsim. In fact, if we compare the mapping used in this work
with the WVFsim, Figure A2 (left), we can observe that the error induced by the mapping
is negligible.

Figure A2. W f obtained by integrating WVFsim. WVFsim was obtained by evaluating it in the
coordinate system (q1, q2, θ), or by evaluating it in the Cartesian coordinate system with different
samplings and interpolating it into the coordinate system (q1, q2, θ). (Left) Comparison of W f
evaluated in (q1, q2, θ) with three W f mapped with equispaced z positions of 5, 10, and 20 mm.
(Right) Comparison of W f evaluated in (q1, q2, θ) with W f mapped using the same scheme as in
this work.
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The second simulation aims to estimate the tolerance of the mapping, or in other
words, determine the error in W f associated with the uncertainty in the positioning of the
different sections.

For this simulation, WVFsim was evaluated using the same mapping as in this work
(X = Y = [−100,−99, . . . , 99, 100] mm, Z = [10, 13, 16, 20, 30, 40, . . . , 100] mm).

To obtain W f , it is necessary to interpolate WVFsim in the (q1, q2, θ) coordinate system.
To estimate the uncertainty in W f caused by the uncertainty in the placement of the Lam-
bertian target, we added random uncertainty, ∆z, to each Z position before interpolating
WVFsim. As a result, the integrated interpolated VWF will exhibit a small error. This
process can be repeated a large number of times to estimate the uncertainty of W f .

Figure A3 shows the median and 90% confidence interval after 1000 simulations. ∆z
was randomly generated for each simulation and each position in the Z vector following a
normal distribution with a standard deviation of 0.5 mm, which is the estimated uncertainty
in Z according to the experimental setup described in Section 3.1.1.

Figure A3. Confidence interval of 90%.

Finally, due to the sensitivity of the inverse Radon transform to noise, we want to
emphasize the importance of obtaining noise-free sinograms. To achieve this, a sinogram
was simulated and Gaussian noise was added to it, equivalent to an SNR of 0.01 and
0.05. The results are shown in Figure A4, where it can be observed that an SNR of 0.05
significantly degrades the obtained sinogram.

Figure A4. Reconstructed images from a sinogram without noise and with Gaussian noise with an
SNR of 0.01 and 0.05.

Appendix B. Spectral Characteristics

In this appendix, we present the spectral characteristics of the source and the detector.
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The emitter is the JSIR-350, a thermal emitter with behavior similar to that of a
gray body [25]. Since it implements lock-in amplification, it is necessary to consider
the processing described in [22]. Eλ is shown in Figure A5a.

Figure A5. (a) E(λ). (b) g(λ).

The detector is a PBS on which an interferential filter from 1 to 3 um was deposited.
g(λ) is calculated as the product of the specific detectivity of the PBS at the experimental
temperature and the transmittance of the filter, shown in Figure A5b.

To fully determine the direct model, it is necessary to know the spectral factor included
in Equation (19). The product between the spectral functions Eλ and g(λ) is shown in
Figure A6.

Figure A6. Product of g(λ) and Eλ(λ).
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