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Abstract: Active radiometric reflectance is useful to determine plant characteristics in field conditions.
However, the physics of silicone diode-based sensing are temperature sensitive, where a change in
temperature affects photoconductive resistance. High-throughput plant phenotyping (HTPP) is a
modern approach using sensors often mounted to proximal based platforms for spatiotemporal mea-
surements of field grown plants. Yet HTPP systems and their sensors are subject to the temperature
extremes where plants are grown, and this may affect overall performance and accuracy. The purpose
of this study was to characterize the only customizable proximal active reflectance sensor available
for HTPP research, including a 10 ◦C increase in temperature during sensor warmup and in field
conditions, and to suggest an operational use approach for researchers. Sensor performance was
measured at 1.2 m using large titanium-dioxide white painted field normalization reference panels
and the expected detector unity values as well as sensor body temperatures were recorded. The white
panel reference measurements illustrated that individual filtered sensor detectors subjected to the
same thermal change can behave differently. Across 361 observations of all filtered detectors before
and after field collections where temperature changed by more than one degree, values changed an
average of 0.24% per 1 ◦C. Recommendations based on years of sensor control data and plant field
phenotyping agricultural research are provided to support ACS-470 researchers by using white panel
normalization and sensor temperature stabilization.

Keywords: active optical reflectance; NDVI; proximal phenotyping; high-throughput phenotyping

1. Introduction

The objective perception of healthy vegetation is an important human endeavor. Past
research used indices of vegetation reflectance [1,2] such as the most common Normalized
Difference Vegetation Index (NDVI) to evaluate photosynthetically active plant biomass in
field conditions from both remote and proximal sensing platforms [3–7]. NDVI normalizes
the ratio between Red and Near Infrared (NIR) light, where Red light is typically absorbed
by healthy vegetation and NIR light is reflected [8–10]. Given proper control, NDVI can
resolve plant nitrogen status [11] and indirectly plant water stress [12–15].

There are different approaches to NDIV measurement, such as using the active prox-
imal GreenSeeker [16] and in general, plant phenotyping leverages a fusion of multiple
metrics like thermal and imaging to gain understanding of how plants respond to their
growing environment [17]. However, due to high variability in environmental and veg-
etation data, reflectance sensor detector noise can become difficult to quantify absent a
standard reverence.
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The topic of this paper is to describe how phenotyping researchers who use the
proximal ACS-470 reflectance sensor could benefit from understanding minor detector
performance variance and temperature influences resolved by measurement of a white
panel over time. The aim of this paper is to example several instances of ACS-470 proximal
reflectance data that describe basic signal performance and possible sources of signal
noise, and to offer operational suggestions for research. The novelty of this paper derives
from robust experience, using two dozen ACS-470 sensors, measuring white panels for
hours over years, across different conditions, and using the sensors in many experiment
collections. Authors are not aware of other studies that present results informed by hours
of ACS-470 white panel control data with concurrent sensor temperature measurement and
offer guidance for research purposes.

This paper is structured to communicate an overview of NDVI sensing from the viewpoint
of using proximal active sensing for HTPP research and to describe elements specific to the
ACS-470 sensor. Section 2 speaks to the general measurement setup and approach that was
conducted. Section 3 offers several examples and explanations of data collected using the
ACS-470 in controlled and field conditions. Section 4 summarizes the meaning of those results
and relates findings to operational recommendations. Section 5 includes limitations and future
work ideas as well as a performance improvement generalization estimation.

Although NDVI is a common plant evaluation metric, any specific NDVI calculation
can be physically different based on the sensor elevation, the field of view sampled, as
well as the bandwidth and centering of the spectral radiometric inputs [18–20]. Along with
other vegetative indices, many sensor products and Earth observation satellites measure
NDVI. However, care can be taken when selecting or comparing between different NDVI
measurements because the specific detector view position, spectral input, and bandwidth
employed determines the responsive and descriptive extent that a calculated vegetation
index will represent [7,21,22]. Unlike remote sensed NDVI [23–28], proximal NDVI avoids
most terrain shadow, atmospheric condition, bidirectional reflectance, and anisotropy
effects since the sensor is typically positioned 2 m or less distant from its target.

Active proximal NDVI sensing using the CropCircle ACS-470 is different in approach
than other passive types of NDVI measurement. Passive NDVI sensors may use up looking
cosine diffuser radiometers to account for the spectral intensity of the incident solar radia-
tion [29,30] or calculate an atmospheric correction [31–33]. During a data collection period,
solar radiation can add substantial energy to the local sensing space [34,35]. Conversely,
the functional application of active NDVI sensing seeks to physically simulate and quantify
the Red and NIR elements of the natural passive solar reflectivity phenomena without the
inclusion of solar radiation.

ACS-470 reflectance measurement is ambient illumination independent [36]. The
sensor projects an active light beam width 0.82 × height according to the operator’s manual,
or a field of view approximately 32 by 6 degrees [37] and when positioned at a 1 m height,
it illuminates a full optical spectrum interface footprint of ≈1.25 m × 0.25 m onto the target
space which is then sampled by three onboard detectors. The consistent panchromatic LED
output of the ACS-470 enables a reflectivity value of biological consequence comparable to
passive reflectance sensing that is viable for research purposes [38–40], and the sensor also
operates at oblique angles or in darkness, although only nadir views during the day are
examined here.

CropCircle ACS-470 sensors are production grade active optical reflectance radio-
metric instruments used for proximal field vegetation assessment measurements such as
NDVI [41,42]. The reflectance measurement is achieved using pulse modulated band-pass
filtered light that is digitized to a raw serial numeric output [43–46]. Custom 12.5 mm filter
options and a manual sensor normalization are unique to the ACS-470 product. Therefore,
given an increased operational input including filter customization, the ACS-470 sen-
sor possesses improved measurement potential for plant phenotyping research purposes
compared to many other multi-spectral proximal sensors.
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ACS-470 generated NDVI is typically used to indicate a nitrogen status in green plant
presence within a working distance of 60 to 200 cm [47–50]. However, ACS-470 active
optical NDVI can be derived in different ways. The NDVI exampled in this paper is a
calculated normalized ratio using Andover Corporation custom bandpass filtered reflected
color Red 670 and NIR 800 or 820 nm spectral inputs, respectively of 10 and 20 nm widths,
NDVI = (NIR − Red)/(NIR + Red). Related research also uses the quality-controlled and
calibration documented filters from the Andover supplier [51–53] which can be ordered to
specification. Although the Holland Scientific supplied filters did appear to be of similar
quality and performance as those from Andover, they did not include calibration datasheets.
Because different 12.5 mm band-pass filters can be used in the ACS-470 sensor, and various
filters may be used in other passive sensors, it is a good practice for NDVI researchers to
delineate the light filter used for investigation.

Responsivity of a photoconductive radiant detector may be affected by tempera-
ture [54]. Due to physical material properties, the emission and transport of electrons
across a silicone photodiode device is increasingly resisted as temperature increases [55,56].
Although performance of the sensor’s electronic components is expected to drive the
fundamental quality of the sensing signal, the specific ACS-470 proprietary electronic com-
ponents and possible internal sensor thermal mitigation signal adjustments are unknown.
The influence of temperature is not addressed in the operator’s manual; however, the
optical radiometer product could theoretically exhibit a detector value drift due to a change
in thermal status. Moreover, the option of user selected band-pass optical filters placed in
front of the individual detectors could modify the sensor performance or otherwise change
the sensitivity of an individual detector response.

2. Materials and Methods

Sensors and data logging involved two dozen CropCircle ACS-470 reflectance sensors
and four corresponding GeoSCOUT X, two SC-1 normalization boxes, and associated con-
trol software (Holland Scientific Inc., Lincoln, NE, USA) and connective cabling including
12-volt power supply. Sensors were characterized for use in field phenotyping research by
recording the sensor temperature with nadir view reflectance at standardized distances.
Sensors were equipped with Type-T thermocouples (Omega Engineering Inc., Norwalk,
CT, USA) to determine continual thermal status and later insulation was added to the
sensor body for thermal stabilization. The thermocouples (TC) were surface mounted,
typically on top of the sensor bodies laterally between the emitting LEDs and radiance
detectors. This position was chosen as a representative sensor thermal status location,
visualized using T650sc thermal infrared camera imaging (Teledyne FLIR LLC, Wilsonville,
OR, USA) (Figure 1). TC temperature recording is a common method [57,58] used on sensor
bodies for control [59–61]. The TC junction tips were factory supplied or sealed using
viny liquid electrical coating or electrical heat shrink tubing. TC junctions placed on the
sensor housing outside surface were covered with Reflectix (Reflectix Inc., Markleville,
IN, USA) mylar bubble wrap insulation attached with adhesive aluminum foil metal duct
tape. TC junctions were also attached to a sensor internal electronic board for testing. TC
wires connected to either a CR1000 or CR3000 Campbell Scientific data acquisition system.
(Campbell Scientific, Logan, UT, USA) running CRBasic control software which provided
the temperature corrected analog to digital conversion logged at 1–5 Hz.
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Figure 1. FLIR thermal images show an ACS-470 warming and an optical image of the sensor (a) 
one minute after electrification; (b) ten minutes after energizing; (c) after one hour of operation with 
thermal status more normalized across the sensor housing; and (d) a color image of the active sensor 
bottom face. 

Sensor reflectance was standardized using a white normalization reference. ACS-470 
sensor detector signal performances were resolved using white painted field panels 
placed at a standard distance of 1.2 m below the leveled sensors in nadir view. The sensor 
raw detector signal light intensity of 5326.4 × distance in cmିଵ.ଶ was measured in a la-
boratory by moving the active sensor (SN#124) towards and away from the white panel 
at 5 cm increments (75 cm to 120 cm) using a #260061 Wesco mobile air lift table (Westco, 
Pittsburgh, PA, USA) (Figure 2a). To measure eight sensors simultaneously, a 4.88 m × 0.92 
m × 0.02 m (l × w × h) wood framed plywood hinged panel setup (Supplementary Mate-
rials, Figure S1) was painted white with high titanium-dioxide content (Behr Ultra-Pure 
White #1850, Behr, Santa Ana, CA, USA). Titanium-dioxide (TiO2) was used for all white 
panels and is known to have a flat refection (98–100% of solar irradiance) across the optical 
spectrum [62–64]. A 2.44 m × 1.22 m × 0.019 m (l × w × h) white painted plywood panel 
was used to measure two sensors concurrently (Supplementary Materials, Figure S2). The 
1.2 m distant white panel approach was sufficient to achieve sensor reflectance values 
equivalent with those produced by the Holland Scientific SC-1 single sensor field normal-
ization box, which notably is required to communicate with the sensor to achieve detector 
normalization (Figure 2b). For this study, filters were also removed, and the unfiltered 
reflectance normalized and recorded to determine basic sensor performance absent the 
band-pass filter influence. 

Figure 1. FLIR thermal images show an ACS-470 warming and an optical image of the sensor (a) one
minute after electrification; (b) ten minutes after energizing; (c) after one hour of operation with
thermal status more normalized across the sensor housing; and (d) a color image of the active sensor
bottom face.

Sensor reflectance was standardized using a white normalization reference. ACS-470
sensor detector signal performances were resolved using white painted field panels placed
at a standard distance of 1.2 m below the leveled sensors in nadir view. The sensor raw
detector signal light intensity of 5326.4 × distanceincm−1.762 was measured in a laboratory
by moving the active sensor (SN#124) towards and away from the white panel at 5 cm incre-
ments (75 cm to 120 cm) using a #260061 Wesco mobile air lift table (Westco, Pittsburgh, PA,
USA) (Figure 2a). To measure eight sensors simultaneously, a 4.88 m × 0.92 m × 0.02 m (l ×
w × h) wood framed plywood hinged panel setup (Supplementary Materials, Figure S1)
was painted white with high titanium-dioxide content (Behr Ultra-Pure White #1850, Behr,
Santa Ana, CA, USA). Titanium-dioxide (TiO2) was used for all white panels and is known
to have a flat refection (98–100% of solar irradiance) across the optical spectrum [62–64].
A 2.44 m × 1.22 m × 0.019 m (l × w × h) white painted plywood panel was used to
measure two sensors concurrently (Supplementary Materials, Figure S2). The 1.2 m dis-
tant white panel approach was sufficient to achieve sensor reflectance values equivalent
with those produced by the Holland Scientific SC-1 single sensor field normalization box,
which notably is required to communicate with the sensor to achieve detector normaliza-
tion (Figure 2b). For this study, filters were also removed, and the unfiltered reflectance
normalized and recorded to determine basic sensor performance absent the band-pass
filter influence.
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Figure 2. (a) Test sensor SN#124 recorded by GeoSCOUT X, with sensor internal and external ther-
mocouples and ambient air sensor, in the lab space 1.2 m above a white reference panel, and (b) the 
SC-1 hardware communications and normalization box. 

Sensors were tested using an environment-controlled room. To determine the effects 
of sensor warm-up and changing ambient temperatures on reflectance values in a con-
trolled environment, the ACS-470 sensors with attached thermocouples and data loggers 
were measured in an Elliott-Williams Company temperature-controlled calibration room 
(Elliott-Williams Company Inc., Indianapolis, IN, USA). The room was 3 m × 3 m × 5.25 m 
in size and equipped with a Marley Engineered Products ST Series commercial slope-top 
convector heating unit (Marley Engineered Products, Bennettsville, SC, USA) with 1500 
watt metal sheath element and A421 PENN Johnson Controls electronic temperature con-
troller (Johnson Controls, Milwaukee, WI, USA), as well as a Russell extra low-profile unit 
Ceiling-Temp 4 motor 20-amp 14,000 BTU condensing forced air cooler (Russell, Scotts-
boro, AL, USA) with a Ranco Electronic Temperature Control ETC-111000-000 (ETC Sup-
ply, Delphos, OH, USA). The temperature stability and available 1 to 50 °C ambient range 
for testing the equipment was maintained by the temperature control room thermal enve-
lope and its heating and cooling powered equipment. Temperature measurements of the 
air and sensor bodies were independently recorded. Testing was also partially conducted 
in a laboratory with somewhat stable ambient conditions (≈23 °C) at the US Arid-Land 
Agricultural Research Center (ALARC) in Maricopa, Arizona. One sensor was tempera-
ture stress tested using a Hobbico HCAR7000 1000-watt heat gun (Hobbico, Champaign, 
IL, USA). 

Sensors were measured in field conditions as part of a phenotyping platform. After 
sensors were characterized in controlled conditions, they were mounted to a retrofitted 
LEE Avenger (AvengerPro) high-clearance tractor (LeeAgra Inc., Lubbock, TX, USA) with 
a modified front boom as described by [65], and to the in-house developed “Wolverine” 
proximal sensing cart, 1 m above an average crop canopy height and in nadir view for use 
in experiment data collections [66]. Field trials were conducted at the Maricopa Agricul-
tural Center (MAC) in Maricopa, Arizona, USA (33.079° N, 111.977° W, 360 m above sea 

Figure 2. (a) Test sensor SN#124 recorded by GeoSCOUT X, with sensor internal and external
thermocouples and ambient air sensor, in the lab space 1.2 m above a white reference panel, and (b)
the SC-1 hardware communications and normalization box.

Sensors were tested using an environment-controlled room. To determine the effects of
sensor warm-up and changing ambient temperatures on reflectance values in a controlled
environment, the ACS-470 sensors with attached thermocouples and data loggers were
measured in an Elliott-Williams Company temperature-controlled calibration room (Elliott-
Williams Company Inc., Indianapolis, IN, USA). The room was 3 m × 3 m × 5.25 m in
size and equipped with a Marley Engineered Products ST Series commercial slope-top
convector heating unit (Marley Engineered Products, Bennettsville, SC, USA) with 1500 watt
metal sheath element and A421 PENN Johnson Controls electronic temperature controller
(Johnson Controls, Milwaukee, WI, USA), as well as a Russell extra low-profile unit Ceiling-
Temp 4 motor 20-amp 14,000 BTU condensing forced air cooler (Russell, Scottsboro, AL,
USA) with a Ranco Electronic Temperature Control ETC-111000-000 (ETC Supply, Delphos,
OH, USA). The temperature stability and available 1 to 50 ◦C ambient range for testing
the equipment was maintained by the temperature control room thermal envelope and its
heating and cooling powered equipment. Temperature measurements of the air and sensor
bodies were independently recorded. Testing was also partially conducted in a laboratory
with somewhat stable ambient conditions (≈23 ◦C) at the US Arid-Land Agricultural
Research Center (ALARC) in Maricopa, Arizona. One sensor was temperature stress tested
using a Hobbico HCAR7000 1000-watt heat gun (Hobbico, Champaign, IL, USA).

Sensors were measured in field conditions as part of a phenotyping platform. After
sensors were characterized in controlled conditions, they were mounted to a retrofitted
LEE Avenger (AvengerPro) high-clearance tractor (LeeAgra Inc., Lubbock, TX, USA) with
a modified front boom as described by [65], and to the in-house developed “Wolverine”
proximal sensing cart, 1 m above an average crop canopy height and in nadir view for
use in experiment data collections [66]. Field trials were conducted at the Maricopa
Agricultural Center (MAC) in Maricopa, Arizona, USA (33.079◦ N, 111.977◦ W, 360 m
above sea level) between years 2012–2022 on a variety of row-crops including cotton, wheat,
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barley, sorghum, soybean, camelina, brassica and guayule. The data presented in this
paper was collected from upland cotton breeding trials conducted between years 2015–2022
production seasons (April–October). The field trials were arranged in a (0–1) alpha lattice
design with 10.60 m × 1.02 m experimental plots. For trials after 2015, additional solar
and thermal sensor isolation was provided by wrapping metalized polyethylene bubble
insulation (Reflectix) around the sensor bodies. Data recording began inside an open door
garage for the Avenger tractor, or outdoors in full sun for the Wolverine platform, with
sensors leveled and 1.2 m distant to measure the white panel reference over at least a one-
hour warm-up period (typically three hours, and sometimes more when time allowed) and
ended with a cool down period after the field data collection with sensors still recording
and returned to the white panel as described by [65]. Sensor detectors were normalized to
their white panel 1.0 unity value after warmup and before field collection using the SC-1
device connected to a PC.

By measuring each detector after normalization and just before and after field collec-
tions, any difference from unity could be quantified. The difference for the pre, or post, the
average, or a linear interpolation between pre and post unity offsets was available to adjust
raw detector values for any field collection, as determined on an experimental basis by the
principal investigator.

The Avenger and Wolverine platforms concurrently recorded air temperature and
relative humidity (HCS2S3, Rotronic AG, Grindelstrasse Bassersdorf, Switzerland), solar
radiation (SP-110, Apogee Instruments, Inc., Logan, UT, USA), as well as the temperatures of
the ACS-470 sensor bodies (TC), in addition to other phenotyping metrics. Environmental
conditions were also recorded by an Arizona Meteorological Network (AZMET) [67]
weather station located 0.8 km away from the experimental plots. The weather station
measured hourly air temperature, relative humidity, photosynthetically active radiation
(PAR), wind speed and direction, and several other metrics. Sensor temperature effects
from sun and wind were evaluated in field conditions. All sensor temperature stabilization
tests were conducted after the sensors had undergone a three-hour warm-up period and
achieved initial thermally stability.

Data handling and statistical analysis consisted of comma separated data tables that
were processed and charted using Excel version 2212 (Microsoft Corporation, Redmond
Washington, DC, USA). Linear regression models and descriptive statistics were applied
to reflectance and temperature data. Additional charting and statistical analysis were
performed using JMP (build 15.2.0 SAS Institute Inc., Cary, NC, USA).

3. Results

The results presented include several data examples. The ACS-470 raw unfiltered
detector temperatures and signals for one sensor are shown during an initial warmup in
the laboratory to illustrate a typical sensor operational warming (Figure 3). Four sensor
temperatures and detector traces are shown when in a cooling condition inside a tempera-
ture control room to example a change in ambient temperature (Figure 4). Sensor detector
values with unfiltered, Red and NIR filter influence are presented for one sensor to param-
eterize a basic signal behavior (Table 1). Then HTPP field experiment data is provided
to show how sun (Figure 5) and wind (Figure 6) can influence sensor temperature and
how physical insulation around a sensor can help stabilize its thermal condition (Figure 7).
The sensor signal for Red and NIR filtered detectors is exampled from past experiment
operations to show individual detector signatures during warmup (Figure 8), and to relate
how temperature correlates with detector values (Figure 9). Finally, multi-year control data
results from HTPP experimentation are presented to quantify a case example of detector
change before and after field data collections (Figures 10 and 11).
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Figure 3. Chart of sensor SN#124 warmup temperature curves (in C, left axis) over 224 min in a 
controlled environment including ambient air (Air), a single external (TC = Top Center) and five 
internal thermocouples attached (labeled with sensor face up, LR = Left Rear, RR = Right Rear, RF = 
Right Front, M = Middle, and LF = Left Front). The raw unfiltered normalized detectors show change 
in their reflectance values (R1, R2 and R3 labeled left to right with sensor face up, right axis). 

Figure 3. Chart of sensor SN#124 warmup temperature curves (in C, left axis) over 224 min in a
controlled environment including ambient air (Air), a single external (TC = Top Center) and five
internal thermocouples attached (labeled with sensor face up, LR = Left Rear, RR = Right Rear, RF =
Right Front, M = Middle, and LF = Left Front). The raw unfiltered normalized detectors show change
in their reflectance values (R1, R2 and R3 labeled left to right with sensor face up, right axis).
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Figure 4. Four sensor body temperatures (CC1, CC2, CC3 and CC4), measured from top middle
external sensor body thermocouples, and ambient air temperature (Air) in ◦C (left axis), show the
sensor cooling effect measured in a temperature control room with active cooling. The reflectance
values of four normalized NIR filtered (820) center (R2) detector channels (right axis) show change in
values that track with the sensor temperatures (sensors CC1 = SN#306, CC2 = SN#345, CC3 = SN#145,
CC4 = SN#267).
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Table 1. A summary of detector signal characteristics and reduction dependent on filter status, for
unfiltered and filtered Red (670) and NIR (800) white panel measurements over 100 s (1 Hz samples)
across the three SN#124 sensor detectors (R1, R2 and R3).

Detector Median Maximum Minimum Standard
Deviation

Unfiltered Signal R1 0.98880 0.98890 0.98870 0.00005

R2 0.98890 0.98900 0.98880 0.00005

R3 0.98900 0.98910 0.98890 0.00005

670 no normalization R1 0.04920 0.04940 0.04900 0.00011

R2 0.04010 0.04040 0.03990 0.00009

R3 0.04630 0.04670 0.04610 0.00011

670 normalized R1 1.01265 1.01770 1.00610 0.00234

R2 1.01090 1.01990 1.00320 0.00294

R3 1.00405 1.01020 0.99880 0.00219

800 normalized R1 1.17520 1.28110 1.06910 0.04018

R2 1.05495 1.12790 1.00670 0.02218

R3 1.02105 1.10920 0.92940 0.03860
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Figure 5. A chart of the uninsulated sensor SN# 267 (mounted on the Avenger platform 18 November
2015, as shown in image insert) body temperature difference from air in ◦C, changing with the
sensor orientation while in the field environment moving in and out of direct sunlight. Changing
rig travel orientation relative to the sun during the field data collection operation caused the sensor
to experience more sun when traveling East, and more shade when traveling West. Ambient air
temperature 11.6 to 15 ◦C.
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Figure 6. Chart of eight sensors (mounted on Avenger platform 23 September 2015 as shown in
image insert) average temperature difference from air in ◦C and cooling with wind during a field
measurement. The sensors without external insulation were fully warmed inside a garage (37 ◦C)
then taken into the field where they encountered a breeze of cool air which decreased the sensor body
temperatures during the field collection period (air averaged 27.3 ◦C and moved 1.48 m−1 (wind
reported by AzMet Maricopa, year 2015, DOY 266, hours 9 to 13, https://ag.arizona.edu/azmet/
data/0615rh.txt, accessed on 24 September 2015)). A typical sensor warming trend occurred during
the field data collection due to ambient mid-day air warming, and then additional sensor warming is
evident once the sensor is taken back into the still air of the garage.
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bubble wrap insulation to the sensor bodies reduced the solar and convective thermal influences
of the environment. The chart shows the temperature spread and difference in ◦C of eight sensors
(mounted to the Avenger platform 11 September 2017 as shown in the image insert) from the ambient
air measured indoors during a warmup period and through a field data collection (CC1 = SN#335,
CC2 = SN#264, CC3 = SN#303, CC4 = SN#256, CC5 = SN#267, CC6 = SN#333, CC7 = SN#301, CC8 =
SN#217). Ambient air temperature was 38 to 41 ◦C.
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Figure 8. Panel of different detector performance signatures during the first 44 min of an initial
warmup period before an Avenger platform field data collection on 7 August 2017. The different
filtered detectors were measured in the shade of an open garage above a white panel as the sensors
warmed 7 ◦C (31.4 to 38.8) while the ambient air warmed 1 ◦C (32 to 33). (a) SN#333 with NIR 800,
(b) SN#256 with NIR 800, (c) SN#333 with Red 670, and (d) SN#264 with Red 670.
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Figure 9. A panel of four XY scatter charts show a correlation with temperature from white panel
reference data for sensors mounted to the “Wolverine” proximal sensing cart and warming outdoors
in the sun before a field data collection event on 3 August 2021 ambient temperature raising from
32 to 39 ◦C. (a) SN#252 NIR 820, (b) SN#201 NIR 820, (c) SN#252 Red 670, and (d) SN#201 Red 670.
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Figure 10. Chart of pre and post field data collections (years 2018–2021) sensor offset white panel
measurements (for NIR and Red filtered detectors from sensors SN#201, SN#240, SN#241 and SN#252
mounted on the “Wolverine” proximal sensing cart). The divergence is shown from unity before and
after each field data collection with the warmup and normalization process employed outside in
full sunlight.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 23 
 

 

before and after each field data collection with the warmup and normalization process employed 
outside in full sunlight. 

 
Figure 11. “Wolverine” proximal sensing cart years 2018–2021 field white panel summary data re-
gression (for NIR and Red filtered detectors from sensors SN#201, SN#240, SN#241 and SN#252), 
temperature versus detector change where each data point is the median of one hundred data sam-
ples (last and first 20 s respectively) before and after field collection events from the normalized 
sensor white panel reference reflectance values. 

• Sensor temperature influence on unfiltered detector signals 
Sensor thermal status and unfiltered detector values change during a three-hour 

warmup period while in a stable environment. Measurement of the uninsulated external 
housing surface on the top middle of the sensor showed 8 °C increase above ambient tem-
perature after one hour of warming in a laboratory environment (Figure 2). This differen-
tial increased to 10 degrees °C above ambient air temperature after three hours. A three 
hour logarithmic sensor warmup curve can be described (R2 = 0.9791) as temperature in-
crease in °C = 3.6217 × log(time in minutes) + 12.517, when the ambient temperature was 
22.4 °C. Concurrently, the unfiltered detector white panel nadir view measurements 
changed with the sensor thermal status (Figure 3). 
• Temperature influence on filtered detector signals 

Fully warmed sensor detector values were sensitive to changes in ambient tempera-
ture when measured in the controlled environment room. Sensor reflectance values were 
affected as the temperature in the control room was changed. Sensors were normalized at 
10 °C then allowed to increase in temperature to 33 °C. By using forced air cooling to 
decrease the ambient room temperature from 26 to 2 °C, the sensor body temperatures 
decreased and consequently so did the reflectance values of center detectors from four 
different sensors. (Figure 4). 
• Filter influence 

Band-pass filters influence the sensor reflectance signal and how it responds to tem-
perature change. The individual optical band-pass filter employed defines the amplitude 
and raw signal variance measured for each detector. Testing the ACS-470 sensor SN#124 
in the laboratory environment positioned 1.2 m horizontal and level to a white painted 
reference panel, and normalized to unity, when at an internal 20 °C above ambient fully 
warmed operating temperature (after three hours of operation), for the unfiltered, the 

Figure 11. “Wolverine” proximal sensing cart years 2018–2021 field white panel summary data
regression (for NIR and Red filtered detectors from sensors SN#201, SN#240, SN#241 and SN#252),
temperature versus detector change where each data point is the median of one hundred data samples
(last and first 20 s respectively) before and after field collection events from the normalized sensor
white panel reference reflectance values.

• Sensor temperature influence on unfiltered detector signals

Sensor thermal status and unfiltered detector values change during a three-hour
warmup period while in a stable environment. Measurement of the uninsulated external
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housing surface on the top middle of the sensor showed 8 ◦C increase above ambient
temperature after one hour of warming in a laboratory environment (Figure 2). This
differential increased to 10 degrees ◦C above ambient air temperature after three hours. A
three hour logarithmic sensor warmup curve can be described (R2 = 0.9791) as temperature
increase in ◦C = 3.6217 × log(time in minutes) + 12.517, when the ambient temperature
was 22.4 ◦C. Concurrently, the unfiltered detector white panel nadir view measurements
changed with the sensor thermal status (Figure 3).

• Temperature influence on filtered detector signals

Fully warmed sensor detector values were sensitive to changes in ambient temperature
when measured in the controlled environment room. Sensor reflectance values were
affected as the temperature in the control room was changed. Sensors were normalized
at 10 ◦C then allowed to increase in temperature to 33 ◦C. By using forced air cooling to
decrease the ambient room temperature from 26 to 2 ◦C, the sensor body temperatures
decreased and consequently so did the reflectance values of center detectors from four
different sensors. (Figure 4).

• Filter influence

Band-pass filters influence the sensor reflectance signal and how it responds to temper-
ature change. The individual optical band-pass filter employed defines the amplitude and
raw signal variance measured for each detector. Testing the ACS-470 sensor SN#124 in the
laboratory environment positioned 1.2 m horizontal and level to a white painted reference
panel, and normalized to unity, when at an internal 20 ◦C above ambient fully warmed
operating temperature (after three hours of operation), for the unfiltered, the filtered Red
670, and the filtered NIR 800 measurements, showed different point-to-point variances
across 100 samples recorded at 1 Hz. The unfiltered raw signal was the least variant both in
total, and across the three detectors, with values of 2.7 × 10−9, 2.4 × 10−9 and 2.1 × 10−9,
for the R1, R2 and R3 detectors respectively (detectors are typically numbered left to right
if the sensor is turned upside down to face up at an observer). However, when three Red
670 nm filters were placed in front of the detectors, the variance increased to 5.5 × 10−6,
8.6 × 10−6 and 4.8 × 10−6, for R1, R2 and R3 detectors respectively. Use of the NIR 800 nm
filters resulted in the highest variance. Repeating the test and installing NIR 800 nm filters,
normalizing values to 1.0 and measuring another 100 samples after the sensor had fully
thermal stabilized showed a variance of 1.6 × 10−3, 4.9 × 10−4 and 1.5 × 10−3 for the R1,
R2 and R3 detectors respectively (Table 1).

Band-pass filters greatly reduce the magnitude of the raw unfiltered reflectance signal
received by the ACS-470 sensor and determine the sensor signal final behavior. After
normalizing an ACS-470 sensor SN#124 without filters, and then installing three Red
670 nm filters, results showed a raw signal reduction of 95.5% (Table 1). Likewise, the
NIR 800 filters reduced the raw unfiled values by 99.7%. Therefore, because the band-pass
filters only allow a small amount of the reflected radiation to enter the sensor detector,
and the detector is likely not uniformly sensitive across a working range of 350 to 850 nm,
it is suggested that the performance characteristics of the filter drive most of the filtered
detector character differences. For example, when the sensor was normalized with the three
Red 670 nm filters, brought to thermal equilibrium with the environment of the laboratory
overnight, and then measured during the first hour of initial sensor warmup of 20 ◦C,
detectors drifted 0.05%, −0.01%, and 0.01% per ◦C increase respectively for the R1, R2, and
R3 detectors. However, when NIR 800 nm sensors were installed to the sensor and the
sensor normalized at its full operating temperature, then brought to thermal equilibrium in
the laboratory environment overnight and again measured for the first hour of the initial
warmup period, results showed increased individual detector drifts of −0.33%, −0.19%,
and −0.95% per ◦C across a 20 ◦C temperature increase.
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• Influence of Environment in Field Conditions

1. Sun and Wind

The ACS-470 sensor thermal status can change when operated in the field environ-
ment due to sun and wind influence, but these effects are mitigated when the sensor is
insulated. Environmental insolation can increase the ACS-470 sensor body temperature
during operation. Sunlight that directly hits the sensor housing serves to increase sensor
temperature beyond what the active illumination warming alone would induce. Likewise,
solar shading of the sensor during operation serves to decrease sensor temperature relative
to the sun-lit operational environment instance (Figure 5).

Ambient air temperature can influence the thermal status of the ACS-470 sensor and
this influence increases with air velocity. Likewise, an impinging cool wind decreases the
ACS-470 sensor body temperature due to convection (Figure 6). Hotter than sensor air
will cause an inverse effect, but typically air that is cooler than the fully warmed sensor
body temperature is encountered in a field data collection operation. Moving air is more
influential on sensor temperature than is still air. The larger the temperature differential
between the sensor and the ambient atmosphere, the more air temperature will affect sensor
temperature status.

2. Insulation Mitigation

Physical insulation around the sensor body increased sensor temperature and miti-
gated environmental thermal fluctuation. Short duration solar impingement and gaseous
cold convection thermal effects were decreased by providing one or more layers of insula-
tion material around the ACS-470 sensor bodies, while excepting the areas of light emission
and measurement (Figure 7). Adding two separated layers of the 0.64 cm mylar Reflectix
bubble wrap (or 3.8 cm of DuPont Great Stuff polyurethane foam insulation, DuPont,
Mississauga, Ontario) around the sensor, empowered the sensor self-warming effect to
increase the sensor body 20 ◦C above ambient air when in a still condition. However, the
rugged ACS-470 sensor design can handle high temperatures during operation. To verify
heat tolerance, sensor SN# 124 with Red filters installed was stress tested using the heat
gun, where thermocouples affixed to the electronics board inside the sensor measured
over 100 ◦C, yet the filtered sensor did not error nor was performance subsequently dam-
aged other than a positive average 0.043 per ◦C raw detector value drift expected for that
sensor setup.

• Sensor signal response outdoors

1. Warmup before field measurement

In field experimental practice, sensor reflectance values changed during initial warmup
periods and due to change in outdoor ambient temperature. Once filters are applied to
sensor detectors, the signature of data measured from white panels relative to changing tem-
peratures was not consistent between one detector and another (Figure 8). Most detectors
increased in value with increasing temperature, however some decreased, and there were
instances of initial value drift reversal during a consistent warmup period (Appendix A,
Table A1), and less change in the post collection period (Appendix A, Table A2). Therefore,
each sensor showed its own performance character as a function of the sensor serial number,
the individual of the three detectors onboard a sensor, and most importantly the band-pass
filter applied. This cumulative effect was largely consistent across repeated measures of the
same detector setup.

2. Reflectance and temperature

Sensor detector influence is correlated with temperature status. Two insulated sensors
mounted to the “Wolverine” proximal sensing cart were placed outside over the white
panel reference and allowed to warm in full sun prior to a field data collection while
their body temperatures and reflectance values were recorded (Supplementary Materials,
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Figure S2). Results show the degree to which each detector response is associated with the
sensor thermal status (Figure 9 and Supplementary Materials Video S1).

3. Pre and post field collection reference measurements

Measuring a white panel before and after field operation illustrated sensor per-
formance and filter influence. The white panel measurement resolved sensor detector
post-normalization offsets and signal drift that occurred during a field collection period
(Figure 10 and Supplementary Materials File S1). Field normalization of the detectors to
unity was typically achieved within ± 0.01 (or 1%) before a field collection. If detectors were
found to be offset ± 0.02 or more from unity, a second normalization could decrease the de-
tector offset to between 0 and 0.01. However, achieving a normalization offset less than 0.01
usually did not occur with several additional normalizations. Therefore, detector offsets of
plus or minus 1% from unity after normalization were considered functionally optimized.

4. Detector changes during field measurements

ACS-470 detector median drift was 0.0029 (standard deviation 0.074, standard error
0.0037, ±0.0073 confidence interval at 0.95) for 400 observations between 2018 to 2021 of
the Red and NIR filtered detectors, or 0.28% per ◦C (data in Figure 11 and included in
Supplementary Materials File S2), measured from sensor thermal stabilization and unity
normalization before to after field collections. However, other individual detector drifts
were different depending on the final detector configuration and specific recording event
(Appendix A, Tables A1 and A2 examples).

4. Discussion

After conducting 9 years of field investigation since 2013 involving two dozen ACS-
470 sensors, authors consider the Holland Scientific ACS-470 CropCircle a customizable
product that is illumination and angle independent and that provides reliable performance
in field conditions. It supports nitrogen management as intended but can also be custom
managed to further support research activity through individual detector characterization
which includes specific filter selection, applying a reference normalization, and control
of thermal influence [68]. An implication for research purposes is that previous ACS-470
reflectance data has been corrected using protocol which involved sensor body temperature
stabilization, field normalization, and detector performance tracking over time [69] and
raw datasets [70–72]. Authors are not aware of other experimental usages where ACS-470
detector signals were reported to be corrected in this way.

The ACS-470 has proven resistant to harsh environmental variables such as high
temperatures, blowing dust, and physical vibration. As intended by the manufacturer the
sensor can supply prolonged field data collections like NDVI sensing for crop production
nitrogen management. However, a key finding is that the active sensor properties, custom
filter implementation option, and manual sensor normalization function using white panels
make the ACS-470 a unique technology option able to support research grade proximal
multi-spectral field data collections to include NDVI, or other vegetation indices, which
could support crop breeding or crop simulation modeling.

It is important to allot 30 to 180 min of powered ACS-470 sensor warmup time (tem-
perature increase in ◦C at 23 ambient = 4.6224 × log(time in minutes) + 4.3004) before re-
search measurement to let the LED active lighting induced sensor body full temperature
increase to occur, and thereby effect a more stable thermal sensor electronics operation condi-
tion. Also, the sensor field of view and the geometric sensitivity (percent of signal reduced
= 0.00001 × cm3 − 0.0005 × cm2 + 0.0098 × cm − 0.004, and 0.0003 × cm2 − 0.0114 × cm +
0.1066 for the length and width respectively) across that field directly determines the reflectance
result beyond the white panel. This is mentioned because signal geometric response area is
suggested to be determined relative to the plant and soil space [73].

White panel usage supports consistent measurement across long periods to charac-
terize sensor warmup as well as basic detector performance. The white panel approach
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allows documentation of detector point-to-point variance and temperature effects on the
signal by resolving filtered detector reflectance across different ambient and sensor body
temperatures while in view of the same reference target. The use of white panels also
supports control data for the purpose of data quality, which could extend over months or
years of individual sensor use in field experimentation. NDVI reflectance measurement of
soil and plants is too variable to determine minor detector drift effect with temperature or
to resolve a change in sensor performance over long periods of time. Likewise, the basic
comparison parameters of the detector signal such as the baseline data variance point-
to-point are unresolvable when measuring only soil and plant targets. Using the white
panel approach supplied a control target which revealed the basic signal noise for individ-
ual sensor detectors and resolved the signal modifying effects that individual band-pass
filters introduce.

Parameterizing individual filtered detectors allows a final directed placement of the
filters to optimize the sensor setup by pairing most important reflection metrics with most
consistent performance filtered detectors, and to support generation of the vegetation index
using detector responses which agree (may drift in the same direction due to temperature
change). Authors are unaware of other work describing the specific characterization and
direction of filter placement in ACS-470 sensors. Finally, by using white panel measurement
before and after every field collection (along with the standard normalization routine), an
adjustment of raw values based on the actual sensor signal status before, and any changes
that may occur during a field collection event is possible. This approach may support an
improved data result for research purpose [74].

The increased operator input process for ACS-470 research function showed that white
reference panel measurement was instrumental in data quality control. The procedure steps
involve the following. First the sensor was made ready for field measurement by observing
the warmup period to signal stabilization. Then the field normalization was performed to
set each detector output to 1.0 when positioned nominally 120 cm away from and in nadir
view of the white reference panel. This also included setting the sensor output to 0.0 with
the detectors and LED emitter covered by an opaque foam or with folded cloth. Next, to
parameterize potential detector drift during the field data collection period, the sensors
were brought back to the original white panel position after field collections were finished
and measurements taken again. Often, the post field collection white panel measurement
showed that sensor detectors were no longer reading the previously set unity value. Instead,
they could be a one or more percent offset, where different detectors behaved differently.
The amount of offset was associated with environmentally induced thermal change, but
this did not explain all the measured difference. Therefore, it is suggested that a correction
to the raw values of individual detectors can best be made when at minimum pre and post
field collection white panel standard normalization measurements are employed.

Knowing a generalized thermal drift allowance for each detector in use offers a
potential data correction based on temperature. Although a temperature measurement of
the electronics board can better represent the actual detector thermal environment, this
is a difficult measurement to take because it would require opening the sensor housing
and compromising the environmental seal of the unit. Therefore, measuring the sensor
temperature status on the top of the sensor is much easier to achieve, and when insulation
is placed over the sensor surface temperature measurement area, the approach is adequate
to estimate the logarithmically related internal sensor thermal status. Lastly, once the
sensor has come to full warmup thermal stability, the ambient air temperature change can
be used to loosely approximate a thermal status of the sensor body, where lack of wind
and use of insulation around the sensor improves this estimation. Applying insulation
around an ACS-470 sensor prior to operation and consequently operating the sensor at a
10 to 20 ◦C higher temperature, can aid sensor thermal condition stability by mitigating
heat loading from direct solar radiation, warming ambient air, or cool breeze convection
without harming sensor signal quality. However, ambient and sensor body temperature
alone did not explain all the differences measured in white panel values pre and post field
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data collections. There were instances when temperature was within 1 ◦C from before to
after the field collection, yet detectors changed by 2% or more (Figure 11). Therefore, it is
the white panel measurement that is suggested to be used as the basis of any signal status
determination and possible correction (Figure 10), where the temperature change is used
only as a proxy when no white panel reference data is possible.

Drift in a raw detector value affects an NDVI calculation. If the two detectors which
contribute to the NDVI calculation were to exhibit the same thermal drift influence and
shift value with temperature to the same degree, then although the raw signal would
change with temperature, the NDVI calculation would not. However, if the detectors
drifted in the same direction with temperature change but to different degrees, which
is usually the case, then the difference between the two detector drifts would influence
NDIV in a small way. For example, if the Red detector drifted by 0.4% per ◦C while the
NIR detector drifted in the same direction by 0.2%, NDVI would be influenced by 0.1%
per ◦C. Moreover, if the detectors were to drift in opposite directions with temperature
change, then the NDVI bias would be compounded. If the Red detector were to drift
by 0.3% per ◦C while the NIR detector drifted by −0.3%, this would result in an NDVI
change of 0.3% per ◦C. Because each ACS-470 sensor, detector and chosen filter employed
determine the actual thermal induced value drift encountered during measurement, it is
important to characterize specific detector setup bias to understand any likely thermal
effect on NDVI calculation.

The practical application of measuring the ACS-470 detector values on a white ref-
erence panel before and after a field data collection is to allow characterization of each
individual detector performance and enable a possible data correction. This could improve
subsequent active optical reflectance analysis.

A summary list of the improvement techniques is provided.

1. Sensor thermal status measurement application
2. Sensor insulation application
3. Individual filtered detector characterization
4. Sensor warmup before field collection
5. Sensor unity white panel normalization
6. Pre-field collection white panel measurement
7. Post-field collection white panel measurement
8. Possible data correction using pre/post unity offsets

5. Conclusions

CropCircle ACS-470 multi-spectral reflectance sensors perform well in field conditions
and support nitrogen management. The active optical ACS-470 sensors are unique to allow
manual normalization plus use of custom frequency 12.5 mm band-pass filters where they
enable NDVI to sense green biomass or generate other optical vegetation indices. However,
the sensor detector band-pass filter used drives resultant small temperature influenced
signal changes. Understanding specific filtered detector performance enables mitigation or
correction. The objectives of this study were to evaluate sensor performance across several
experiment configurations and environments and make operational recommendations
that could improve data quality for research. Although the sensors achieve their intended
purpose when used as directed by the manufacturer, additional functionality for purposes
of agricultural research are possible by measuring individual detector response, directing
the custom filter option, and utilizing the expanded user protocol involving (TiO2 painted)
white normalization reference panels and sensor temperature tracking or control.

Regarding future work, active thermal control could be an additional way to increase
the research potential of the ACS-470 sensor. The solid state bi-metal junction electric cur-
rent induced Peltier heat pump is well described and commonly used in electronics [75–78].
Application of Thermoelectric cooling (TEC) could hold an ACS-470 sensor at an optimized
temperature setpoint. Although not tested for this paper, it is theorized based on applica-
tions supporting other radiometric sensing, that the application of several 12-volt 60-watt
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TEC chips could stabilize ACS-470 sensor temperature and provide a more optimal sensor
energetic status for field data collections. Although additional work is warranted to prove
this concept, TEC was successful to prolong Nikon camera field operations for field phe-
notyping data collections in 2019 [79], and to stabilize the thermal operating environment
supporting an ASD FieldSpec3 measurement cotton in 2022 [80].

Limitations to defining an overall quality of the ACS-470 reflectance signal for research
include an underlying detector/filter/sensor/temperature/target “stack” induced noise in
the final optical reflectance, and that differences occur between detectors at different times
and in different environments. There were also few instances of anomalous transient data
points. These make difficult the determination of a clear statistical significance across all
cases. Additionally, although a single point of basic signal performance can be resolved
by measuring a white panel, anytime the sensor is in-field measuring unknown targets,
the quality of that data is less known. Authors suggest that bracketing a field collection
with a pre and post white panel reference measurement is sufficient to characterize sensor
performance for that day of collection, however, measuring a white panel more frequently
in the field between transects may offer further control. It is also difficult to directly compare
the ACS-470 performance with other reflectance products due to its proprietary unique
technology with customizable nature.

As a generalized guidance, the enhanced protocol for research described in this paper is
expected to improve raw ACS-470 detector signal quality a median of 0.41% per ◦C change
(standard deviation 3.13%, standard error 0.13%, confidence interval of ±0.26% at 0.95).
This estimation is informed by 522 observations measuring all detectors of four sensors
after normalization and again after field collection 2018 to 2021 (Supplemental File S2).
However, it is important for researchers to characterize every sensor detector used in each
research collection over time using a white reference panel to determine their actual signal
correction potential.

The USDA is an equal opportunity provider and employer. Mention of a trade names
or commercial products in this publication is solely for the purpose of providing specific
information and does not imply recommendation or endorsement by any part herein.
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Appendix A

Table A1. A 263-min Avenger platform collection of sensor values with temperature change during a
(7 August 2017) pre-field collection 21 ◦C warmup period (31.4 to 52.3). By comparing the performance
of different filtered sensor detectors as they internally warm while measuring a white panel before a
field data collection, individual detector performances can be identified. The first and last 300 data
points (5 Hz) were averaged to determine the “start” and “stop” values respectively.

Detector Start Stop Change Max Min Mean Median Count Std Dev Var

SN#335_590 1.056 0.968 −8.77% 1.076 0.959 0.993 0.989 77,097 0.0155 0.0004
SN#335_730 1.097 0.943 −15.41% 1.115 0.927 0.983 0.973 77,097 0.0268 0.0011
SN#335_530 1.092 0.950 −14.23% 1.122 0.934 0.984 0.976 77,097 0.0231 0.0008

SN#264_550 1.040 0.999 −4.02% 1.079 0.938 1.016 1.016 75,622 0.0101 0.0002
SN#264_800 0.990 1.004 1.38% 1.064 0.958 1.011 1.011 75,622 0.0091 0.0001
SN#264_670 0.996 0.978 −1.81% 1.006 0.972 0.991 0.991 75,622 0.0049 0.0000

SN#303_590 1.002 1.003 0.16% 1.018 0.982 1.000 1.000 77,269 0.0020 0.0000
SN#303_730 1.065 0.969 −9.59% 1.082 0.948 0.997 0.990 77,269 0.0195 0.0006
SN#303_530 1.028 0.985 −4.25% 1.042 0.969 0.996 0.995 77,269 0.0076 0.0001

SN#256_550 1.020 0.999 −2.11% 1.026 0.988 1.005 1.005 77,182 0.0041 0.0000
SN#256_800 0.997 1.009 1.25% 1.051 0.973 1.012 1.012 77,182 0.0076 0.0001
SN#256_670 1.007 0.986 −2.07% 1.013 0.981 0.994 0.992 77,182 0.0049 0.0000

SN#267_590 0.983 1.011 2.88% 1.019 0.973 1.007 1.009 76,700 0.0044 0.0000
SN#267_730 1.030 0.987 −4.26% 1.045 0.971 1.000 0.997 76,700 0.0102 0.0002
SN#267_530 1.041 1.012 −2.83% 1.053 0.996 1.019 1.017 76,700 0.0064 0.0001

SN#333_550 1.077 1.013 −6.42% 1.086 0.998 1.017 1.015 77,777 0.0067 0.0001
SN#333_800 1.009 1.019 1.02% 1.056 0.956 1.011 1.013 77,777 0.0107 0.0002
SN#333_670 1.056 1.012 −4.39% 1.065 1.000 1.014 1.012 77,777 0.0054 0.0001

SN#301_590 1.007 1.003 −0.34% 1.024 0.992 1.004 1.003 76,929 0.0025 0.0000
SN#301_730 1.040 0.981 −5.92% 1.067 0.962 0.997 0.992 76,929 0.0135 0.0003
SN#301_530 1.032 1.000 −3.25% 1.049 0.980 1.006 1.004 76,929 0.0069 0.0001

SN#217_550 1.026 0.998 −2.75% 1.032 0.987 1.005 1.004 77,459 0.0055 0.0000
SN#217_800 0.995 1.017 2.19% 1.054 0.972 1.013 1.013 77,459 0.0085 0.0001
SN#217_670 1.004 0.989 −1.50% 1.011 0.983 0.993 0.991 77,459 0.0044 0.0000

https://data.nal.usda.gov/dataset/high-throughput-phenotyping-data-proximal-sensing-cart
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Table A2. A collection of sensor values with temperature change during a post-field collection 43-min
1 ◦C cooldown period (53.4 to 52.3). Status of different filtered sensor detectors is resolved directly
after an Avenger platform field collection (15 June 2017) by measuring white panel reflectance. The
table summarizes how sensor values change when brought into the shade of a garage. The first and
last 300 data points (5 Hz) were averaged to determine the “start” and “stop” values respectively.

Detector Start Stop Change Max Min Mean Median Count Std Dev Var

SN#335_590 0.954 0.951 −0.34% 0.962 0.938 0.950 0.950 12,665 0.0026 0.0000
SN#335_730 0.933 0.931 −0.17% 0.949 0.910 0.929 0.929 12,665 0.0043 0.0000
SN#335_530 0.927 0.927 −0.07% 0.945 0.908 0.924 0.924 12,665 0.0037 0.0000

SN#264_550 0.956 0.959 0.36% 0.982 0.925 0.954 0.954 12,572 0.0059 0.0001
SN#264_800 0.969 0.969 −0.05% 1.004 0.930 0.964 0.964 12,572 0.0080 0.0001
SN#264_670 0.950 0.952 0.22% 0.957 0.938 0.947 0.947 12,572 0.0026 0.0000

SN#303_590 1.001 0.998 −0.25% 1.006 0.989 0.998 0.998 12,687 0.0017 0.0000
SN#303_730 0.957 0.953 −0.31% 0.976 0.933 0.952 0.952 12,687 0.0043 0.0000
SN#303_530 0.970 0.970 −0.03% 0.985 0.951 0.968 0.968 12,687 0.0035 0.0000

SN#256_550 0.986 0.983 −0.27% 0.995 0.937 0.983 0.983 12,667 0.0023 0.0000
SN#256_800 1.007 0.998 −0.84% 5.393 0.957 1.001 0.999 12,667 0.0102 0.0070
SN#256_670 0.976 0.973 −0.38% 2.130 0.965 0.973 0.972 12,667 0.0023 0.0004

SN#267_590 1.008 1.005 −0.32% 1.015 0.996 1.005 1.005 12,578 0.0019 0.0000
SN#267_730 0.981 0.975 −0.58% 0.996 0.957 0.976 0.976 12,578 0.0041 0.0000
SN#267_530 1.003 1.002 −0.11% 1.020 0.984 1.001 1.001 12,578 0.0035 0.0000

SN#333_550 1.022 1.020 −0.18% 1.245 0.730 1.019 1.019 12,782 0.0030 0.0001
SN#333_800 1.039 1.033 −0.64% 4.911 0.992 1.034 1.032 12,782 0.0109 0.0052
SN#333_670 1.026 1.021 −0.45% 2.417 0.939 1.022 1.021 12,782 0.0023 0.0004

SN#301_590 1.001 1.001 −0.06% 1.008 0.992 0.999 0.999 12,634 0.0017 0.0000
SN#301_730 0.979 0.982 0.36% 0.998 0.958 0.979 0.979 12,634 0.0042 0.0000
SN#301_530 0.992 0.994 0.24% 1.008 0.973 0.992 0.992 12,634 0.0034 0.0000

SN#217_550 0.983 0.989 0.57% 1.001 0.971 0.984 0.984 12,714 0.0029 0.0000
SN#217_800 1.014 1.015 0.19% 1.051 0.972 1.011 1.011 12,714 0.0079 0.0001
SN#217_670 0.980 0.984 0.43% 0.990 0.973 0.980 0.980 12,714 0.0019 0.0000
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