Counting Activities Using Weakly Labeled Raw Acceleration Data: A Variable-Length Sequence Approach with Deep Learning to Maintain Event Duration Flexibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Counting Approach
2.2. Dataset
2.3. Counting Algorithm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Azadi, B.; Haslgrübler, M.; Anzengruber-Tanase, B.; Grünberger, S.; Ferscha, A. Alpine skiing activity recognition using smartphone’s IMUs. Sensors 2022, 22, 5922. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Mittal, V. Wearable sensors for real-time kinematics analysis in sports: A review. IEEE Sens. J. 2020, 21, 1187–1207. [Google Scholar] [CrossRef]
- Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Inf. Fusion 2022, 80, 241–265. [Google Scholar] [CrossRef]
- Mark, B.G.; Rauch, E.; Matt, D.T. Worker assistance systems in manufacturing: A review of the state of the art and future directions. J. Manuf. Syst. 2021, 59, 228–250. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, H.; Gamboa, H.; Schultz, T. Sensor-Based Human Activity and Behavior Research: Where Advanced Sensing and Recognition Technologies Meet. Sensors 2023, 23, 125. [Google Scholar] [CrossRef]
- Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey. IEEE Access 2020, 8, 210816–210836. [Google Scholar] [CrossRef]
- Liu, H.; Schultz, T. How Long Are Various Types of Daily Activities? Statistical Analysis of a Multimodal Wearable Sensor-Based Human Activity Dataset. In Proceedings of the HEALTHINF, Online Streaming, 9–11 February 2022; pp. 680–688. [Google Scholar]
- Gao, H.; Guo, F.; Zhu, J.; Kan, Z.; Zhang, X. Human motion segmentation based on structure constraint matrix factorization. Sci. China Inf. Sci. 2022, 65, 119103. [Google Scholar] [CrossRef]
- Sopidis, G.; Haslgrübler, M.; Azadi, B.; Anzengruber-Tánase, B.; Ahmad, A.; Ferscha, A.; Baresch, M. Micro-activity recognition in industrial assembly process with IMU data and deep learning. In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022; pp. 103–112. [Google Scholar]
- Kim, J.Z.; Lu, Z.; Nozari, E.; Pappas, G.J.; Bassett, D.S. Teaching recurrent neural networks to infer global temporal structure from local examples. Nat. Mach. Intell. 2021, 3, 316–323. [Google Scholar] [CrossRef]
- Antar, A.D.; Ahmed, M.; Ahad, M.A.R. Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: A review. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, WA, USA, 30 May–2 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 134–139. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Fang, M.; Zhou, Z.; Chen, S.; McClelland, J. Can a recurrent neural network learn to count things? In Proceedings of the CogSci, Madison, WI, USA, 25–28 July 2018.
- Zhang, Y.; Shao, L.; Snoek, C.G. Repetitive activity counting by sight and sound. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14070–14079. [Google Scholar]
- Strömbäck, D.; Huang, S.; Radu, V. Mm-fit: Multimodal deep learning for automatic exercise logging across sensing devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 168. [Google Scholar] [CrossRef]
- Skawinski, K.; Montraveta Roca, F.; Findling, R.D.; Sigg, S. Workout type recognition and repetition counting with CNNs from 3D acceleration sensed on the chest. In Proceedings of the International Work-Conference on Artificial Neural Networks, Gran Canaria, Spain, 12–14 June 2019; Proceedings, Part I 15. Springer International Publishing: New York, NY, USA, 2019. [Google Scholar]
- Ferreira, B.; Ferreira, P.M.; Pinheiro, G.; Figueiredo, N.; Carvalho, F.; Menezes, P.; Batista, J. Deep learning approaches for workout repetition counting and validation. Pattern Recognit. Lett. 2021, 151, 259–266. [Google Scholar] [CrossRef]
- Bian, S.; Rey, V.F.; Hevesi, P.; Lukowicz, P. Passive capacitive based approach for full body gym workout recognition and counting. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications, Kyoto, Japan, 11–15 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Soro, A.; Brunner, G.; Tanner, S.; Wattenhofer, R. Recognition and repetition counting for complex physical exercises with deep learning. Sensors 2019, 19, 714. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, K.; He, J.; Zhang, L. Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors. IEEE Sens. J. 2019, 19, 7598–7604. [Google Scholar] [CrossRef][Green Version]
- Gao, W.; Zhang, L.; Teng, Q.; He, J.; Wu, H. DanHAR: Dual attention network for multimodal human activity recognition using wearable sensors. Appl. Soft Comput. 2021, 111, 107728. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, L.; Fen, W.; Xu, X.; Liang, X.; Xu, X. A robust step detection and stride length estimation for pedestrian dead reckoning using a smartphone. IEEE Sens. J. 2020, 20, 9685–9697. [Google Scholar] [CrossRef]
- Khan, S.S.; Abedi, A. Step Counting with Attention-based LSTM. arXiv 2022, arXiv:2211.13114. [Google Scholar]
- Shen, C.; Ho, B.J.; Srivastava, M. Milift: Efficient smartwatch-based workout tracking using automatic segmentation. IEEE Trans. Mob. Comput. 2017, 17, 1609–1622. [Google Scholar] [CrossRef]
- Prabhu, G.; O’connor, N.E.; Moran, K. Recognition and repetition counting for local muscular endurance exercises in exercise-based rehabilitation: A comparative study using artificial intelligence models. Sensors 2020, 20, 4791. [Google Scholar] [CrossRef]
- Taborri, J.; Bordignon, M.; Marcolin, F.; Donati, M.; Rossi, S. Automatic identification and counting of repetitive actions related to an industrial worker. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT), Naples, Italy, 4–6 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 394–399. [Google Scholar] [CrossRef]
- Ishii, S.; Nkurikiyeyezu, K.; Luimula, M.; Yokokubo, A.; Lopez, G. Exersense: Real-time physical exercise segmentation, classification, and counting algorithm using an imu sensor. In Activity and Behavior Computing; Ahad, M.A.R., Inoue, S., Roggen, D., Fujinami, K., Eds.; Springer: Singapore, 2021; pp. 239–255. [Google Scholar] [CrossRef]
- Folgado, D.; Barandas, M.; Antunes, M.; Nunes, M.L.; Liu, H.; Hartmann, Y.; Schultz, T.; Gamboa, H. Tssearch: Time series subsequence search library. SoftwareX 2022, 18, 101049. [Google Scholar] [CrossRef]
- Rodrigues, J.; Liu, H.; Folgado, D.; Belo, D.; Schultz, T.; Gamboa, H. Feature-Based Information Retrieval of Multimodal Biosignals with a Self-Similarity Matrix: Focus on Automatic Segmentation. Biosensors 2022, 12, 1182. [Google Scholar] [CrossRef]
- Nishino, Y.; Maekawa, T.; Hara, T. Few-Shot and Weakly Supervised Repetition Counting With Body-Worn Accelerometers. Fron. Comput. Sci. 2022, 4, 925108. [Google Scholar] [CrossRef]
- Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition from on-body sensors: Accuracy-power trade-off by dynamic sensor selection. In Proceedings of the Wireless Sensor Networks: 5th European Conference, EWSN 2008, Bologna, Italy, 30 Januar–1 February 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–33. [Google Scholar] [CrossRef]
- Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley, CA, USA, 2019. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Liu, H.; Xue, T.; Schultz, T. On a Real Real-Time Wearable Human Activity Recognition System. In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023), Lisbon, Portugal, 16–18 February 2023. [Google Scholar]
- Hartmann, Y.; Liu, H.; Schultz, T. Interactive and Interpretable Online Human Activity Recognition. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 109–111. [Google Scholar]
Training A/A | Activity | No of Samples in Original Dataset | Training Seq. | Range Counts in Test Seq. | Test Seq. | Test Dataset Accuracy | MAE | Mean % Accuracy in Test Seq. |
---|---|---|---|---|---|---|---|---|
1 | Steering wheel | 51,904 | 500 | 0–08 | 100 | 60/100 | 0.4 | 72.19 |
2 | Check trunk gaps | 70,000 | 500 | 0–07 | 100 | 89/100 | 0.11 | 91.66 |
3 | Notepad | 74,000 | 500 | 0–06 | 100 | 92/100 | 0.08 | 96.12 |
4 | Open close hood | 186,399 | 800 | 0–07 | 100 | 70/100 | 0.3 | 78.58 |
5 | Open close left door | 82,000 | 600 | 0–12 | 100 | 68/100 | 0.33 | 80.22 |
6 | Gaps front door | 60,000 | 500 | 0–09 | 100 | 84/100 | 0.18 | 90.38 |
7 | Close both left door | 72,000 | 500 | 0–06 | 100 | 75/100 | 0.25 | 79.22 |
8 | Open close trunk | 95,000 | 600 | 0–10 | 100 | 74/100 | 0.26 | 81.65 |
9 | Combined activities | 705,904 | 7000 | 0–11 | 1000 | 765/1000 | 0.242 | 81.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sopidis, G.; Haslgrübler, M.; Ferscha, A. Counting Activities Using Weakly Labeled Raw Acceleration Data: A Variable-Length Sequence Approach with Deep Learning to Maintain Event Duration Flexibility. Sensors 2023, 23, 5057. https://doi.org/10.3390/s23115057
Sopidis G, Haslgrübler M, Ferscha A. Counting Activities Using Weakly Labeled Raw Acceleration Data: A Variable-Length Sequence Approach with Deep Learning to Maintain Event Duration Flexibility. Sensors. 2023; 23(11):5057. https://doi.org/10.3390/s23115057
Chicago/Turabian StyleSopidis, Georgios, Michael Haslgrübler, and Alois Ferscha. 2023. "Counting Activities Using Weakly Labeled Raw Acceleration Data: A Variable-Length Sequence Approach with Deep Learning to Maintain Event Duration Flexibility" Sensors 23, no. 11: 5057. https://doi.org/10.3390/s23115057
APA StyleSopidis, G., Haslgrübler, M., & Ferscha, A. (2023). Counting Activities Using Weakly Labeled Raw Acceleration Data: A Variable-Length Sequence Approach with Deep Learning to Maintain Event Duration Flexibility. Sensors, 23(11), 5057. https://doi.org/10.3390/s23115057