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Abstract: The preoperative differentiation of breast phyllodes tumors (PTs) from fibroadenomas
(FAs) plays a critical role in identifying an appropriate surgical treatment. Although several imaging
modalities are available, reliable differentiation between PT and FA remains a great challenge for
radiologists in clinical work. Artificial intelligence (AI)-assisted diagnosis has shown promise in
distinguishing PT from FA. However, a very small sample size was adopted in previous studies. In
this work, we retrospectively enrolled 656 breast tumors (372 FAs and 284 PTs) with 1945 ultrasound
images in total. Two experienced ultrasound physicians independently evaluated the ultrasound
images. Meanwhile, three deep-learning models (i.e., ResNet, VGG, and GoogLeNet) were applied to
classify FAs and PTs. The robustness of the models was evaluated by fivefold cross validation. The
performance of each model was assessed by using the receiver operating characteristic (ROC) curve.
The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were also calculated. Among the three models, the ResNet model
yielded the highest AUC value, of 0.91, with an accuracy value of 95.3%, a sensitivity value of 96.2%,
and a specificity value of 94.7% in the testing data set. In contrast, the two physicians yielded an
average AUC value of 0.69, an accuracy value of 70.7%, a sensitivity value of 54.4%, and a specificity
value of 53.2%. Our findings indicate that the diagnostic performance of deep learning is better than
that of physicians in the distinction of PTs from FAs. This further suggests that AI is a valuable tool
for aiding clinical diagnosis, thereby advancing precision therapy.

Keywords: phyllodes tumor; fibroadenoma; deep learning; ultrasound; breast

1. Introduction

Breast fibroadenomas (FAs) and phyllodes tumors (PTs) are tumors with the same
origin: both have fibro and epithelial components in the breast tissue. FAs are the most
common benign tumors of breast and completely lack invasiveness. In contrast, despite the
low morbidity (0.3% to 1.0%), PTs are potentially invasive in nature [1,2]. The World Health
Organization (WHO) has classified PTs as benign, borderline, or malignant on the basis of
histological assessments of stromal features, such as hypercellularity, atypia, mitotic activity,
overgrowth, and the nature of the tumor borders [3]. Although FAs and PTs have the same
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histological origin [3], their clinical therapeutic strategies are substantially different. FAs are
usually treated nonsurgically or with simple enucleation, while PTs must be resected with
an extended margin of at least 1 cm surrounding the mass to avoid local recurrence. This is
because PTs have the biological behavior of locally destructive growth and even metastasis.
Specifically, previous studies have indicated that the local recurrence is approximately 8%,
21%, and 30% for benign, borderline, and malignant PTs, respectively [4–6]. In addition, the
incidence of distant metastasis to other organs following malignant PTs is approximately
22% [7]. Therefore, the preoperative diagnosis for differentiating PTs and FAs is critical for
tailored treatment.

The three imaging modalities, i.e., ultrasound (US), magnetic resonance imaging
(MRI), and mammography, are considered the main preoperational diagnostic methods
for breast diseases. USs are more commonly used in China thanks to the high density of
breast tissues among Asian women [8]. The US characteristics have been valuable in the
differentiation between PTs and FAs. Previous studies suggested that the internal cystic
areas and heterogeneous inner echo were typical US features for PTs [9,10]. However, in
daily clinical practice, a small and benign borderline or malignant PT can be easily mistaken
for an FA, whereas large-volume FAs may show similar visual US features to those of PTs.
Although combining certain clinical information and typical sonographic features may raise
the confidence of diagnosis, it is still challenging to make a reliable differentiation between
PTs and FAs with the naked eye. Moreover, these radiological evaluations are always
subjective and lack quantitative metrics. Beyond the imaging diagnosis, cytodiagnosis also
encounters difficulty in distinguishing PTs from FAs, because of overlapping pathology
features, especially for low-grade PTs [11,12].

With the development of medical image analysis techniques, quantitative methods
such as radiomics analysis and AI have been widely used for assisting in the diagnosis
of breast diseases. For example, AI has been applied in the differentiation of benign
from malignant lesions of breast on MRI [13], predicting the risk of breast cancers from
screening mammograms [14], preoperatively predicting the extent of axillary lymph node
involvement in early-stage breast cancers [15], predicting neoadjuvant chemotherapy
response in breast cancers [16], assessing breast cancer molecular subtypes on the basis
of US images [17], and predicting the pathological grade of PTs [18,19]. The application
of AI techniques has also been explored in the differential diagnosis of PTs and FAs.
Several radiomic studies have shown that the quantitative MRI texture features, combined
with clinical characteristics, show better diagnostic performance, which distinguishes PTs
from FAs [20,21]. Based on ultrasound images, deep learning has also shown the ability
to differentiate between PTs and FAs with good diagnostic accuracy and high negative
predictive value (PPV) [22]. Although in these studies, AI shows promise in the distinction
of PTs from FAs, the relatively small sample size (fewer than 100 cases) weakens the
confidence of the deep-learning method.

In this study, we recruited a cohort of 656 patients with 656 breast lesions and a total
of 1945 ultrasound images, and we adopted deep-learning models to differentiate between
PTs and FAs. In addition, the ultrasound images were also independently evaluated by
two experienced US physicians. We expected that deep learning would show superior
performance in distinguishing PTs from FAs compared with US physicians.

2. Materials and Methods
Participants

This retrospective study was approved by the institutional review board of Fudan
University Shanghai Cancer Center, which waived the need for informed consent. From
January 2015 to February 2022, 656 female patients with the same number of breast lesions
(372 FAs and 284 PTs) were retrospectively reviewed for US images and pathological results.
Among the 284 PTs, 134 cases were benign PTs; 120 cases were borderline PTs; and 30 cases
were malignant PTs. The demographics and clinical characteristics are summarized in
Table 1. The inclusion criteria were as follows: (1) all cases were surgically resected and
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pathologically confirmed; (2) the pathological subtypes of PT (i.e., benign, borderline, and
malignant) were definitive; and (3) only grayscale ultrasound images were included. The
exclusion criteria were as follows: (1) patients with a maximum tumor diameter less than
5 mm or more than 50 mm [23]; (2) no clear definitions of benign, malignant, and borderline
lesions in the pathological diagnosis of PTs; and (3) poor image quality.

Table 1. Demographics and clinical characteristics of patients.

Characteristics PT (n = 284) FA (n = 372) T/χ2 Value p-Value

Age (years) 46.4 ± 10.9 40.1 ± 12.9 6.6 <0.0001
Max diameter (mm) 29.1 ± 9.9 18.9 ± 7.9 15.2 <0.0001
BI-RADS categories: 61.1 <0.0001

3 56 (20%) 76 (20%)
4A 158 (56%) 280 (75%)
4B 57 (20%) 15 (4%)
4C 10 (3.5%) 1 (0.3%)
5 3 (1%) 0 (0%)

Pathological types of PTs:
Benign 134 (47.2%)

Borderline 120 (42.3%)
Malignant 30 (10.5%)

Note: PT = phyllodes tumor; FA = fibroadenoma; BI-RADS = Breast Imaging Reporting and Data System,
n = the number of patients.

We divided the 656 patients into 6 subsets, in which 5 subsets (training data set and
validation data set) had 109 patients each and 1 subset (independent testing data set) had
111 patients. Five experiments were conducted. The training data set was used to train the
deep-learning models. The independent testing data set was used to verify the performance of
all deep-learning models that had been trained. A flowchart of this study is shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14 
 

 

January 2015 to February 2022, 656 female patients with the same number of breast lesions 
(372 FAs and 284 PTs) were retrospectively reviewed for US images and pathological re-
sults. Among the 284 PTs, 134 cases were benign PTs; 120 cases were borderline PTs; and 
30 cases were malignant PTs. The demographics and clinical characteristics are summa-
rized in Table 1. The inclusion criteria were as follows: (1) all cases were surgically resected 
and pathologically confirmed; (2) the pathological subtypes of PT (i.e., benign, borderline, 
and malignant) were definitive; and (3) only grayscale ultrasound images were included. 
The exclusion criteria were as follows: (1) patients with a maximum tumor diameter less 
than 5 mm or more than 50 mm [23]; (2) no clear definitions of benign, malignant, and 
borderline lesions in the pathological diagnosis of PTs; and (3) poor image quality. 

Table 1. Demographics and clinical characteristics of patients. 

Characteristics PT (n = 284) FA (n = 372) T/χ2 Value p-Value 
Age (years) 46.4 ± 10.9 40.1 ± 12.9 6.6 <0.0001 

Max diameter (mm) 29.1 ± 9.9 18.9 ± 7.9 15.2 <0.0001 
BI-RADS categories:   61.1 <0.0001 

3 56 (20%) 76 (20%)   
4A 158 (56%) 280 (75%)   
4B 57 (20%) 15 (4%)   
4C 10 (3.5%) 1 (0.3%)    
5 3 (1%) 0 (0%)    

Pathological types of PTs:      
Benign 134 (47.2%)    

Borderline 120 (42.3%)    
Malignant 30 (10.5%)    

Note: PT = phyllodes tumor; FA = fibroadenoma; BI-RADS = Breast Imaging Reporting and Data 
System, n = the number of patients. 

We divided the 656 patients into 6 subsets, in which 5 subsets (training data set and 
validation data set) had 109 patients each and 1 subset (independent testing data set) had 
111 patients. Five experiments were conducted. The training data set was used to train the 
deep-learning models. The independent testing data set was used to verify the perfor-
mance of all deep-learning models that had been trained. A flowchart of this study is 
shown in Figure 1. 

 

Figure 1. Flowchart of this study. PT = phyllodes tumor; FA = fibroadenoma; n = the number of patients.

3. US Images Acquisition

The US images were acquired by using the different instruments in our department,
including the Philips EPIQ7 and iU22 (Philips Medical Systems, Sydney, Australia); the
GE LOGIQ E9, V730, and LOGIQ S8 (GE Healthcare, Chicago, IL, USA), Mindray-Resona7
(Mindray Medical, Shenzhen, China); and the Toshiba-Aplio 500 (Canon Medical Systems,
Ohtawara, Japan). All scans were performed with a linear array transducer with a broad-
band frequency of 5–12 MHz. For larger masses that cannot be completely displayed within
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the frame, the trapezoidal imaging mode that enlarges the field of view was adopted. For
lesions presented in multiple images, all available data were considered, thus resulting in
1217 images of FAs and 728 images of PTs.

3.1. Images Preprocessing

All raw DICOM (digital imaging and communication in medicine) images were first
converted into JPG format for further processing:

1. Image cropping—in order to avoid the influence of nontumor areas in US images
and reduce the computational load, the rectangular ROIs (regions of interest) were
manually cropped from raw US images.

2. Image enhancement—the grayscale transformation function was used to enhance
the contrast between the foreground and the background of US images. The image
enhancement can improve image quality, enrich information, and enhance image
interpretation and the recognition effect (Figure 2).
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3.2. Deep-Learning Models for US Image Analysis

It is hard to differentiate PTs from FAs because of the high visual similarity in grayscale
images of them (see Figures 3 and 4 for representative US images). In order to achieve an
optimal image classification, three deep-learning models, including ResNet [24], VGG [25],
and GoogLeNet [26], were applied. ResNet was constructed by using residual building
blocks, which can effectively solve the problems of gradient disappearance and explosion in
convolutional neural networks (CNNs). VGG used a 3 × 3 convolution kernel to stack the
neural network and thus deepen the whole neural network. Using a smaller convolution
kernel and increasing the depth of the convolutional neural network can improve the
performance of the model. GoogLeNet introduced an inception structure (fusion of feature
information with different scales) and used a 1 × 1 convolution kernel for dimensionality
reduction and mapping. At the same time, the full connection layer was discarded, and the
average pooling layer was used, which greatly reduced the model parameters compared
with those of VGG. The architecture of the three deep-learning models is shown in Figure 5.

The specific procedures and parameters for deep-learning analysis are as follows:
(1) the size of all the images was uniformly adjusted to 224 × 224 pixels; (2) the cross-
entropy loss function was selected for the model to calculate the difference between the
predicted and real values. The BacthSize was set at 16 in consideration of the computer
memory, GPU (graphics processing unit), video memory, sample size of the data set, and
input image size; and (3) model validation was conducted with fivefold cross validation.
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We randomly divided all the patients into five folds for each group (four folds for training
and one fold for validation). Figure 2 shows the workflow of our proposed deep-learning
model. The model was trained for 30 rounds; that is, all the images were iterated 30 times
before the training was completed.
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Figure 3. US image comparisons of the FAs and PTs for relatively large lesions. Three couples
of similar lesions show an oval hypoechoic mass with circumscribed margins and heterogeneous
internal echogenicity. Histopathology confirmed: ((a): transverse section, (b): longitudinal section)
a 44-year-old woman with a 2.1 cm × 1.3 cm × 2.0 cm FA; ((c): transverse section, (d): longitudinal
section) a 35-year-old woman with a benign 1.7 cm × 1.0 cm × 1.5 cm PT; ((e): transverse section,
(f): longitudinal section) a 29-year-old woman with a borderline 2.4 cm × 1.4 cm × 1.7 cm PT.

Lesion size, a key feature, was usually measured for radiological diagnoses. In addi-
tion, demographic information such as age may also contribute to clinical diagnoses. We
therefore reperformed the above deep-learning analysis after including lesion size and age.
All the deep-learning models were run on the PyTorch deep-learning framework with a
16-core 3.20 GHz CPU, 16 GB of memory, and a GTX3060 GPU on a Windows 11 system.

3.3. Visual Assessment by US Physicians

The images were independently evaluated by two experienced US physicians (physi-
cian #1 and physician #2 have 9 and 13 years of experience in assessing breast ultrasounds,
respectively). The two physicians were mutually blinded, and both were blinded to previ-
ous radiological reports as well as the clinical information of the patients. The breast lesions
were visually assessed by physicians on the basis of the Atlas of the Fifth Edition of the



Sensors 2023, 23, 5099 6 of 12

Breast Imaging Reporting and Data System (BI-RADS), published by the American College
of Radiology [27]. In the present study, the final assessments from the two physicians were
made for each breast mass by using dichotomized forms: PT or FA. Given the potential
effect of lesion size on the performance of US physicians, all the patients were divided
into two subgroups according to lesion size: >2 cm and ≤2 cm. Assessments for these two
subgroups were also evaluated.
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Figure 4. Ultrasound image comparisons of the FAs and PTs for smaller lesions. Three couples
of similar lesions showed a round-shaped hypoechoic mass with microlobulated or angular mar-
gins and heterogeneous internal echogenicity. Histopathology confirmed: ((a): transverse section,
(b): longitudinal section) a 41-year-old woman with a 0.7 cm × 0.7 cm × 0.5 cm FA. ((c): transverse
section, (d): longitudinal section) a 34-year-old woman with a benign 1.2 cm × 1.3 cm × 1.0 cm PT.
((e): transverse section, (f): longitudinal section) a 42-years-old woman with a borderline 1.3 cm ×
1.4 cm × 1.8 cm PT.
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3.4. Statistical Analysis

The statistical analysis was performed using SPSS software (Version 23.0, IBM Corpo-
ration). Continuous variables were expressed as mean ± standard deviation and categorical
variables as counts (percentage, %). The statistical significance of the categorical variables
was evaluated by using chi-square tests, and the variables were continuously evaluated
by using independent sample t-tests. In all the analyses, a p-value less than 0.05 was
considered statistically significant. The diagnostic performance values of the deep-learning
models were assessed by using receiver operating characteristic (ROC) analysis and the
area under the curve (AUC), accuracy, sensitivity, specificity, PPV, and NPV. For the US
physicians’ diagnoses, the AUC, accuracy, sensitivity, specificity, PPV, and NPV were
likewise calculated.
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4. Results

A significant difference in age was found between patients with PTs (46.4 ± 10.9 years)
and FAs (40.1 ± 12.9 years) (p < 0.0001). A significant difference in tumor size was also
detected between PTs (29.1 ± 9.9 mm) and FAs (18.9 ± 7.9 mm) (p < 0.0001). The BI-RADS
categories of PTs were higher than those of FAs (p < 0.0001).

The diagnostic performance of the three deep-learning models in the fivefold cross
validation is shown in Table 2. Specifically, the performance of ResNet in the training data
set showed the highest accuracy, at 94.3%, 95.2%, 94.7%, 95.0%, and 94.3%, respectively;
and the accuracy was 96.3%, 92.7%, 94.5%, 93.6%, and 96.3% in the validation data set,
respectively. The accuracy of GoogLeNet and VGG ranged from 66.1% to 84.6% in the
training data set, and ranged from 62.4% to 81.5% in the validation data set.

Table 2. The performance of three deep-learning models in the fivefold cross validation.

Data Sets Models ACC1 (%) ACC2 (%) ACC3 (%) ACC4 (%) ACC5 (%)

Training
(n = 436)

ResNet 94.3 (90.0–96.8) 95.2 (92.1–97.3) 94.7 (91.6–97.7) 95.0 (91.9–98.1) 94.3 (91.0–97.5)
GoogLeNet 83.9 (79.6–87.8) 81.9 (77.5–86.1) 83.5 (79.2–87.1) 84.6 (80.3–88.0) 84.4 (80.1–87.9)

VGG 66.1 (60.4–71.8) 67.0 (61.3–72.7) 66.3 (60.6–72.0) 67.4 (61.7–73.1) 65.4 (59.6–71.2)

Validation
(n = 109)

ResNet 96.3 (90.5–99.2) 92.7 (85.3–97.0) 94.5 (88.8–98.3) 93.6 (86.8–98.1) 96.3 (88.8–98.1)
GoogLeNet 78.9 (68.8–85.7) 81.5 (73.3–89.7) 78.0 (66.7–89.3) 78.9 (67.8–90.0) 78.9 (67.8–90.0)

VGG 65.1 (53.4–76.8) 62.4 (50.4–74.4) 65.1 (53.4–76.8) 67.0 (55.2–78.8) 66.1 (54.4–77.8)

Note: ACC = accuracy, n = the number of patients, and the 95% confidence intervals are in parenthesis.

The performance of three deep-learning models in the testing data set is shown in
Table 3. ResNet had the best diagnostic performance, with an AUC value of 0.91, an
accuracy value of 95.3%, a sensitivity value of 96.2%, a specificity value of 94.7%, a PPV of
93.1%, and an NPV of 97.1% in the testing data set. GoogLeNet yielded an AUC value of
0.66, an accuracy value of 76.0%, a sensitivity value of 66.6%, a specificity value of 96.1%, a
PPV of 97.1%, and an NPV of 59.4%. Lastly, VGG yielded an AUC value of 0.64, an accuracy
value of 73.7%, a sensitivity value of 63.6%, a specificity value of 94.4%, a PPV of 95.1%,
and an NPV of 56.8% in the testing data set. The ROC curves of the deep-learning models
are shown in Figure 6. In addition, after including lesion size and age in the ResNet model,
we found a slightly enhanced diagnostic performance value, specifically an AUC value
of 0.94, an accuracy value of 96.4%, a sensitivity value of 95.9%, and a specificity value of
96.8% in the testing data set.

Table 3. The performance comparison of different models for the testing data set.

Models AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

ResNet 0.91 (0.88–0.95) 95.3 (91.4–99.3) 96.2 (92.5–99.8) 94.7 (89.6–99.9) 93.1 (77.1–98.6) 97.1 (77.2–99.6)
GoogLeNet 0.66 (0.59–0.73) 76.0 (61.4–90.6) 66.6 (48.3–84.9) 96.1 (93.0–99.0) 97.1 (94.8–99.5) 59.4 (30.6–88.1)

VGG 0.64 (0.58–0.69) 73.7 (69.2–78.2) 63.6 (58.5–68.8) 94.4 (66.5–99.3) 95.1 (90.8–99.9) 56.8 (43.2–70.3)

Note: AUC = area under the curve, ACC = accuracy, SENS = sensitivity, SPEC = specificity, PPV = positive
predictive value, NPV = negative predictive value, and the 95% confidence intervals are in parenthesis.

Table 4. Visual assessment of US images by physicians.

Physicians AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

Physician #1 0.70 (0.65–0.74) 72.6 (65.6–79.4) 47.2 (40.1–54.8) 91.9 (85.9–97.4) 81.7 (72.8–89.3) 69.5 (61.4–76.3)

Physician #2 0.68 (0.64–0.72) 68.9 (62.7–75.1) 61.6 (54.1–68.7) 74.5 (67.7–80.7) 64.8 (56.7–71.2) 71.8 (65.8–77.3)

Average 0.69 70.7 54.4 83.2 73.3 70.7

Note: AUC = area under the curve, ACC = accuracy, SENS = sensitivity, SPEC = specificity, PPV = positive
predictive value, NPV = negative predictive value, and the 95% confidence intervals are in parenthesis.
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Figure 6. Comparison of receiver operating characteristic (ROC) curves between the three models in
the testing data set. In contrast, the two US physicians yielded an average AUC value of 0.69 (for
physician #1: AUC = 0.70; for physician #2: AUC = 0.68). The average diagnostic accuracy, sensitivity,
specificity, PPV, and NPV for the two US physicians were 70.7%, 54.4%, 83.2%, 73.3%, and 70.7%,
respectively (for physician #1: accuracy = 72.6%; sensitivity = 47.2%; specificity = 91.9%; PPV = 81.7%;
and NPV = 69.5%; for physician #2: accuracy = 68.9%; sensitivity = 61.6%; specificity = 74.5%; PPV
= 64.8%; and NPV = 71.8%) (Table 4). After the patients were further divided into two subgroups
according to lesion size, the US physicians showed low sensitivity (25.4%) and high specificity (88.3%)
for lesions less than 2 cm; conversely, the sensitivity (64.1%) increased and the specificity (73.2%)
decreased when the tumor size was larger than 2 cm.

5. Discussion

The differential diagnosis of PTs and FAs is clinically important for breast surgeons
to determine appropriate surgical plans. Meanwhile, it is also beneficial for patients to
avoid a second surgery when a PT is misdiagnosed as an FA. As PTs and FAs have the
same cellular origin, their imaging appearance is quite similar, and therefore, the exact
differentiation is challenging for radiologists. In recent years, AI has shown that it can
play a promising role in medical image analysis, particularly for aiding clinical diagnosis.
Thanks to its great performance, increasing studies have used deep learning to help in
the diagnostic classification of PTs and FAs. However, in these previous studies, only
a limited number of patients were included, in particular those who had PTs, because
of the low prevalence of PTs [20,22,23]. For example, a previous deep-learning study of
26 patients showed that AUC for a differential diagnosis of FA and PT was 0.73 [22].
In the present study, with a relatively large data set of US images and a comparable
number of patients for the two categories (i.e., 284 patients with PTs and 372 patients with
FAs), three deep-learning models were applied for the differential diagnosis of PTs and
FAs. We found that the AUC values were 0.91, 0.66, and 0.64 for ResNet, GoogLeNet,
and VGG, respectively. Although the diagnostic performance was not the poorest with
the small data set, sample size may affect the reliability of classification, especially for
deep-learning models.

Among the three models, we found that the ResNet model showed the best perfor-
mance in diagnosing FA and PT in ultrasound images. This is probably attributed to the
differences in the model structure and the internal modules [24]. First, the ResNet model
used a deeper and wider network structure than GoogLeNet and VGG did, which can
effectively improve network performance. Second, ResNet used the residual structure to
mitigate degradation problems, which derived from the increase of the number of layers.
Finally, ResNet used batch normalization to solve the problem of gradient disappearance
or gradient explosion, which can effectively prevent the decline of accuracy. Given that no
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other classification tasks were tested in current study, our finding may be not generalized
to other classification problems.

The performance of the ResNet model surpassed that of the two experienced US
physicians. Previous studies have reported that it is very difficult for US physicians to
distinguish the subtle differences in the grayscale images because of the overlapping
features of FAs and PTs [28,29]. AI can extract objective and quantitative image information
from lesions thanks to its powerful computing and learning abilities, which makes it
superior to human experience [30]. However, a deep-learning study of 26 patients showed
that the PPV of radiologists was better than that of deep learning for the diagnosis of PTs
and FAs [22]. In contrast, our results with three deep-learning models consistently revealed
that the PPV of the deep-learning model was superior to that of US physicians. This further
suggests that the number of patients may bias the diagnostic performance. Importantly,
the two US physicians were experts working at the top-ranked cancer hospital in China
with a huge number of outpatients who helped them accumulate rich experiences in breast
diseases. This not only further suggests the outperformance of the deep-learning model
but also implies its potential value in helping less-experienced US physicians.

Beyond the information from ultrasound images, demographic characteristics also
contributed to the differentiation between PTs and FAs. Our results showed that the per-
formance of the ResNet deep-learning model was slightly improved after incorporating
age and tumor size into the model. Prior studies showed that age was statistically asso-
ciated with the occurrence of PTs [20,31]. We noticed that the average age of a PT patient
(46.4 ± 10.9 years) was significantly higher than that of an FA patient (40.1 ± 12.9 years),
which aligns with the details of previous studies. This may explain the improved perfor-
mance after including age in the ResNet model. Tumor size is one of the key factors that
must be considered in the differential diagnosis of PTs and FAs [10,20,32,33]. In accordance
with previous studies, we found that PTs are usually larger than FAs in tumor size. The
performance of US physicians was tumor size dependent. When patients were divided
into two subgroups by using a cutoff of 2 cm, the US physicians showed low sensitivity
and high specificity for lesions less than 2 cm; conversely, the sensitivity increased and the
specificity decreased when the tumor size was larger than 2 cm. This indicates that tumor
size should be considered when using AI algorithms to differentiate PTs from FAs.

Our study has several limitations. First, any retrospective single-center study may
have a selection bias and may need to be validated with other comprehensive external
cohorts to determine the value of the model in clinical practice and improve confidence in
its performance. Second, the model was trained to distinguish between two types of breast
masses, PTs and FAs. However, it may be not generalized for the differential diagnosis of
other breast diseases, such as invasive cancers or inflammation. Moreover, the differential
diagnosis for different pathological types of PTs was not studied. This will be considered
in the future. Third, deep-learning approaches have been widely used in medical image
analysis. Although many models might be effective for classification problems, the purpose
of this study is to explore whether deep-learning approaches can make better differential
diagnoses of FAs and PTs compared with those of ultrasound physicians. Accordingly, we
adopted three commonly used deep-learning models with the same loss function for the
differential diagnosis of FAs and PTs and found that the ResNet model showed a great
classification performance value (ACC of ~95%). Therefore, no other models, such as
deep distance learning [34], were included in this study. Lastly, the AUC values for the
deep-learning models and the US physicians were difficult to directly compare because
they were acquired with different algorithms.

6. Conclusions

In conclusion, our study demonstrates that the deep-learning ResNet model based on
US images is superior to experienced US physicians in differentiating PTs from FAs and
may serve as a complementary tool to assist in clinical decision-making by US physicians.
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34. Kaya, M.; Bilge, H.Ş. Deep Metric Learning: A Survey. Symmetry 2019, 11, 1066. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12885-020-07129-0
https://www.ncbi.nlm.nih.gov/pubmed/32660435
https://doi.org/10.1038/s41523-020-0169-8
https://doi.org/10.1007/s00330-020-06991-7
https://www.ncbi.nlm.nih.gov/pubmed/32594207
https://doi.org/10.1148/radiol.2021203758
https://www.ncbi.nlm.nih.gov/pubmed/34491131
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1007/s00330-021-08293-y
https://doi.org/10.1007/s00330-020-07544-8
https://doi.org/10.1002/jmri.28286
https://doi.org/10.1186/s40644-021-00398-3
https://doi.org/10.1007/s00330-021-08510-8
https://doi.org/10.3389/fonc.2019.01021
https://www.ncbi.nlm.nih.gov/pubmed/31681572
https://doi.org/10.1016/j.ejro.2018.09.002
https://www.ncbi.nlm.nih.gov/pubmed/30258856
https://doi.org/10.21037/qims-20-919
https://doi.org/10.1046/j.1469-0705.2002.00736.x
https://doi.org/10.4048/jbc.2012.15.2.224
https://doi.org/10.3390/cancers11091235
https://doi.org/10.21873/anticanres.14048
https://doi.org/10.1002/dc.24965
https://doi.org/10.1259/bjr.20210342
https://www.ncbi.nlm.nih.gov/pubmed/34233487
https://doi.org/10.3390/sym11091066

	Introduction 
	Materials and Methods 
	US Images Acquisition 
	Images Preprocessing 
	Deep-Learning Models for US Image Analysis 
	Visual Assessment by US Physicians 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

