Feasibility and Efficacy of Online Neuropsychological Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Recruitment for Experiment 1
2.3. Recruitment for Experiment 2
2.4. Online Interview: Neuropsychological Assessment and Medical Evaluation
2.5. Statistical Analysis
3. Results
Experiment 2
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lezak, M.D. Nature, Applications, and Limitations of Neuropsychological Assessment Following Traumatic Brain Injury. In International Handbook of Neuropsychological Rehabilitation; Christensen, A.-L., Uzzell, B.P., Eds.; Springer: Boston, MA, USA, 2000; pp. 67–79. ISBN 978-1-4757-5569-5. [Google Scholar]
- Zald, D.H.; Andreotti, C. Neuropsychological Assessment of the Orbital and Ventromedial Prefrontal Cortex. Neuropsychologia 2010, 48, 3377–3391. [Google Scholar] [CrossRef]
- O’Halloran, C.J.; Kinsella, G.J.; Storey, E. The Cerebellum and Neuropsychological Functioning: A Critical Review. J. Clin. Exp. Neuropsychol. 2012, 34, 35–56. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The Role of the Basal Ganglia in Learning and Memory: Neuropsychological Studies. Behav. Brain Res. 2009, 199, 53–60. [Google Scholar] [CrossRef]
- Saban, W.; Ivry, R.B. PONT: A Protocol for Online Neuropsychological Testing. J. Cogn. Neurosci. 2021, 33, 2413–2425. [Google Scholar] [CrossRef]
- Saban, W.; Sklar, A.Y.; Hassin, R.R.; Gabay, S. Ancient Visual Channels Have a Causal Role in Arithmetic Calculations. Sci. Rep. 2021, 11, 22795. [Google Scholar] [CrossRef]
- Moustafa, A.A.; Chakravarthy, S.; Phillips, J.R.; Gupta, A.; Keri, S.; Polner, B.; Frank, M.J.; Jahanshahi, M. Motor Symptoms in Parkinson’s Disease: A Unified Framework. Neurosci. Biobehav. Rev. 2016, 68, 727–740. [Google Scholar] [CrossRef]
- Goetz, C.C. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. 2003, 18, 738–750. [Google Scholar] [CrossRef]
- Holmes, G. The cerebellum of man. Brain 1939, 62, 1–30. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.S.; et al. Scale for the Assessment and Rating of Ataxia: Development of a New Clinical Scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple-Alford, J.C.; MacAskill, M.R.; Nakas, C.T.; Livingston, L.; Graham, C.; Crucian, G.P.; Melzer, T.R.; Kirwan, J.; Keenan, R.; Wells, S.; et al. The MoCA: Well-Suited Screen for Cognitive Impairment in Parkinson Disease. Neurology 2010, 75, 1717–1725. [Google Scholar] [CrossRef]
- Hoops, S.; Nazem, S.; Siderowf, A.D.; Duda, J.E.; Xie, S.X.; Stern, M.B.; Weintraub, D. Validity of the MoCA and MMSE in the Detection of MCI and Dementia in Parkinson Disease. Neurology 2009, 73, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, D.; Simuni, T.; Caspell-Garcia, C.; Coffey, C.; Lasch, S.; Siderowf, A.; Aarsland, D.; Barone, P.; Burn, D.; Chahine, L.M.; et al. Cognitive Performance and Neuropsychiatric Symptoms in Early, Untreated Parkinson’s Disease. Mov. Disord. 2015, 30, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.; van Vrekhem, T.; Stas, L.; Marinazzo, D. The Interplay between Emotion Regulation, Emotional Well-Being, and Cognitive Functioning in Brain Tumor Patients and Their Caregivers: An Exploratory Study. Psychooncology 2019, 28, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, D.; Aarsland, D.; Chaudhuri, K.R.; Dobkin, R.D.; Leentjens, A.F.; Rodriguez-Violante, M.; Schrag, A. The Neuropsychiatry of Parkinson’s Disease: Advances and Challenges. Lancet Neurol. 2022, 21, 89–102. [Google Scholar] [CrossRef]
- Dissanayaka, N.N.W.; Sellbach, A.; Matheson, S.; O’Sullivan, J.D.; Silburn, P.A.; Byrne, G.J.; Marsh, R.; Mellick, G.D. Anxiety Disorders in Parkinson’s Disease: Prevalence and Risk Factors. Mov. Disord. 2010, 25, 838–845. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Damián, J. Parkinson Disease: Depression and Anxiety in Parkinson Disease. Nat. Rev. Neurol. 2010, 6, 243–245. [Google Scholar] [CrossRef]
- Fancellu, R.; Paridi, D.; Tomasello, C.; Panzeri, M.; Castaldo, A.; Genitrini, S.; Soliveri, P.; Girotti, F. Longitudinal Study of Cognitive and Psychiatric Functions in Spinocerebellar Ataxia Types 1 and 2. J. Neurol. 2013, 260, 3134–3143. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Sherman, J.C. The Cerebellar Cognitive Affective Syndrome. Brain 1998, 121 Pt 4, 561–579. [Google Scholar] [CrossRef]
- Leroi, I.; O’Hearn, E.; Marsh, L.; Lyketsos, C.G.; Rosenblatt, A.; Ross, C.A.; Brandt, J.; Margolis, R.L. Psychopathology in Patients with Degenerative Cerebellar Diseases: A Comparison to Huntington’s Disease. Am. J. Psychiatry 2002, 159, 1306–1314. [Google Scholar] [CrossRef]
- Escalona, P.R.; Early, B.; McDonald, W.M.; Doraiswamy, P.M.; Shah, S.A.; Husain, M.M.; Boyko, O.B.; Figiel, G.S.; Ellinwood, E.H.; Nemeroff, C.B.; et al. Reduction of Cerebellar Volume in Major Depression: A Controlled MRI Study. Depression 1993, 1, 156–158. [Google Scholar] [CrossRef]
- Soares, J.C.; Mann, J.J. The Anatomy of Mood Disorders—Review of Structural Neuroimaging Studies. Biol. Psychiatry 1997, 41, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, D.R.; Delisi, L.E.; Perman, G.P.; Targum, S.; Jed Wyatt, R. Computed Tomography in Schizophreniform Disorder and Other Acute Psychiatric Disorders. Arch. Gen. Psychiatry 1982, 39, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Liotti, M.; Mayberg, H.S.; Brannan, S.K.; McGinnis, S.; Jerabek, P.; Fox, P.T. Differential Limbic—Cortical Correlates of Sadness and Anxiety in Healthy Subjects: Implications for Affective Disorders. Biol. Psychiatry 2000, 48, 30–42. [Google Scholar] [CrossRef]
- Chow, T.W. Personality in Frontal Lobe Disorders. Curr. Psychiatry Rep. 2000, 2, 446. [Google Scholar] [CrossRef]
- Picerni, E.; Petrosini, L.; Piras, F.; Laricchiuta, D.; Cutuli, D.; Chiapponi, C.; Fagioli, S.; Girardi, P.; Caltagirone, C.; Spalletta, G. New Evidence for the Cerebellar Involvement in Personality Traits. Front. Behav. Neurosci. 2013, 7, 1216. [Google Scholar] [CrossRef]
- Goldberg, L.R. An Alternative “Description of Personality”: The Big-Five Factor Structure. J. Pers. Soc. Psychol. 1990, 59, 34–48. [Google Scholar] [CrossRef]
- Poletti, M.; Bonuccelli, U. Personality Traits in Patients with Parkinson’s Disease: Assessment and Clinical Implications. J. Neurol. 2012, 259, 1029–1038. [Google Scholar] [CrossRef]
- Manto, M.; Dupre, N.; Hadjivassiliou, M.; Louis, E.D.; Mitoma, H.; Molinari, M.; Shaikh, A.G.; Soong, B.W.; Strupp, M.; van Overwalle, F.; et al. Management of Patients with Cerebellar Ataxia during the COVID-19 Pandemic: Current Concerns and Future Implications. Cerebellum 2020, 19, 562–568. [Google Scholar] [CrossRef]
- Subramanian, I.; Hinkle, J.T.; Chaudhuri, K.R.; Mari, Z.; Fernandez, H.; Pontone, G.M. Mind the Gap: Inequalities in Mental Health Care and Lack of Social Support in Parkinson Disease. Park. Relat. Disord. 2021, 93, 97–102. [Google Scholar] [CrossRef]
- Pappa, K.; Doty, T.; Taff, S.D.; Kniepmann, K.; Foster, E.R. Self-Management Program Participation and Social Support in Parkinson’s Disease: Mixed Methods Evaluation. Phys. Occup. Ther. Geriatr. 2017, 35, 81. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Pohlig, R.T.; Habermann, B. Feasibility of Using PROMIS® in Individuals with Advanced Parkinson’s Disease and Their Caregivers. Res. Gerontol. Nurs. 2018, 11, 129–136. [Google Scholar] [CrossRef]
- Breska, A.; Ivry, R.B. Double Dissociation of Single-Interval and Rhythmic Temporal Prediction in Cerebellar Degeneration and Parkinson’s Disease. Proc. Natl. Acad. Sci. USA 2018, 115, 12283–12288. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.M.C.; Ivry, R.B. Comparison of Patients with Parkinson’s Disease or Cerebellar Lesions in the Production of Periodic Movements Involving Event-Based or Emergent Timing. Brain Cogn. 2005, 58, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Olivito, G.; Lupo, M.; Iacobacci, C.; Clausi, S.; Romano, S.; Masciullo, M.; Molinari, M.; Cercignani, M.; Bozzali, M.; Leggio, M. Structural Cerebellar Correlates of Cognitive Functions in Spinocerebellar Ataxia Type 2. J. Neurol. 2018, 265, 597–606. [Google Scholar] [CrossRef]
- Wang, R.Y.; Huang, F.Y.; Soong, B.W.; Huang, S.F.; Yang, Y.R. A Randomized Controlled Pilot Trial of Game-Based Training in Individuals with Spinocerebellar Ataxia Type 3. Sci. Rep. 2018, 8, 7816. [Google Scholar] [CrossRef]
- Casini, L.; Ivry, R.B. Effects of Divided Attention on Temporal Processing in Patients with Lesions of the Cerebellum or Frontal Lobe. Neuropsychology 1999, 13, 10–21. [Google Scholar] [CrossRef]
- Adjerid, I.; Kelley, K. Big Data in Psychology: A Framework for Research Advancement. Am. Psychol. 2018, 73, 899–917. [Google Scholar] [CrossRef]
- Casler, K.; Bickel, L.; Hackett, E. Separate but Equal? A Comparison of Participants and Data Gathered via Amazon’s MTurk, Social Media, and Face-to-Face Behavioral Testing. Comput. Hum. Behav. 2013, 29, 2156–2160. [Google Scholar] [CrossRef]
- Crump, M.J.C.; McDonnell, J.V.; Gureckis, T.M. Evaluating Amazon’s Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS ONE 2013, 8, e57410. [Google Scholar] [CrossRef]
- Chandler, J.; Shapiro, D. Conducting Clinical Research Using Crowdsourced Convenience Samples. Annu. Rev. Clin. Psychol. 2016, 12, 53–81. [Google Scholar] [CrossRef] [PubMed]
- Buhrmester, M.D.; Talaifar, S.; Gosling, S.D. An Evaluation of Amazon’s Mechanical Turk, Its Rapid Rise, and Its Effective Use. Perspect. Psychol. Sci. 2018, 13, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Sangarapillai, K.; Norman, B.M.; Almeida, Q.J. An Equation to Calculate UPDRS Motor Severity for Online and Rural Assessments of Parkinson’s. Park. Relat. Disord. 2022, 94, 96–98. [Google Scholar] [CrossRef]
- Pilkonis, P.A.; Choi, S.W.; Reise, S.P.; Stover, A.M.; Riley, W.T.; Cella, D. Item Banks for Measuring Emotional Distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, Anxiety, and Anger. Assessment 2011, 18, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Merz, E.L.; Roesch, S.C.; Malcarne, V.L.; Penedo, F.J.; Llabre, M.M.; Weitzman, O.B.; Navas-Nacher, E.L.; Perreira, K.M.; Gonzalez, F.; Ponguta, L.A.; et al. Validation of Interpersonal Support Evaluation List-12 (ISEL-12) Scores among English- and Spanish-Speaking Hispanics/Latinos from the HCHS/SOL Sociocultural Ancillary Study. Psychol. Assess. 2014, 26, 384. [Google Scholar] [CrossRef]
- Johnson, J.A. Measuring Thirty Facets of the Five Factor Model with a 120-Item Public Domain Inventory: Development of the IPIP-NEO-120. J. Res. Pers. 2014, 51, 78–89. [Google Scholar] [CrossRef]
- Kandiah, N.; Zhang, A.; Cenina, A.R.; Au, W.L.; Nadkarni, N.; Tan, L.C. Montreal Cognitive Assessment for the Screening and Prediction of Cognitive Decline in Early Parkinson’s Disease. Park. Relat. Disord. 2014, 20, 1145–1148. [Google Scholar] [CrossRef]
- Aminah, S.; Huda, F.; Gamayani, U.; Pusparini, I.; Mochyadin, M.F.A.; Sribudiani, Y.; Ibrahim, N.M.; Achmad, T.H. Clinical and Genetic Profile in Index Patients with Spinocerebellar Ataxia Type 3 in Indonesia: Case Report. Heliyon 2021, 7, e07519. [Google Scholar] [CrossRef] [PubMed]
- Butcher, P.A.; Ivry, R.B.; Kuo, S.H.; Rydz, D.; Krakauer, J.W.; Taylor, J.A. The Cerebellum Does More than Sensory Prediction Error-Based Learning in Sensorimotor Adaptation Tasks. J. Neurophysiol. 2017, 118, 1622–1636. [Google Scholar] [CrossRef]
- Wu, X.; Liao, X.; Zhan, Y.; Cheng, C.; Shen, W.; Huang, M.; Zhou, Z.; Wang, Z.; Qiu, Z.; Xing, W.; et al. Microstructural Alterations in Asymptomatic and Symptomatic Patients with Spinocerebellar Ataxia Type 3: A Tract-Based Spatial Statistics Study. Front. Neurol. 2017, 8, 714. [Google Scholar] [CrossRef]
- Goldman, J.G.; Stebbins, G.T.; Leung, V.; Tilley, B.C.; Goetz, C.G. Relationships among Cognitive Impairment, Sleep, and Fatigue in Parkinson’s Disease Using the MDS-UPDRS. Park. Relat. Disord. 2014, 20, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Wild, L.B.; de Lima, D.B.; Balardin, J.B.; Rizzi, L.; Giacobbo, B.L.; Oliveira, H.B.; de Lima Argimon, I.I.; Peyré-Tartaruga, L.A.; Rieder, C.R.M.; Bromberg, E. Characterization of Cognitive and Motor Performance during Dual-Tasking in Healthy Older Adults and Patients with Parkinson’s Disease. J. Neurol. 2013, 260, 580–589. [Google Scholar] [CrossRef]
- Witt, K.; Nühsman, A.; Deuschl, G. Intact Artificial Grammar Learning in Patients with Cerebellar Degeneration and Advanced Parkinson’s Disease. Neuropsychologia 2002, 40, 1534–1540. [Google Scholar] [CrossRef]
- Payne, T.J.; Andrew, M.; Butler, K.R.; Wyatt, S.B.; Dubbert, P.M.; Mosley, T.H. Psychometric Evaluation of the Interpersonal Support Evaluation List–Short Form in the ARIC Study Cohort. Sage Open 2012, 2, 2158244012461923. [Google Scholar] [CrossRef]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) Developed and Tested Its First Wave of Adult Self-Reported Health Outcome Item Banks: 2005–2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Loring, D.W.; Block, C.; Staikova, E.; Miocinovic, S. Patient-Reported Outcomes Measurement Information System (PROMIS) Assessment of Non-Motor Features in Deep Brain Stimulation Candidates: Relationship to the Beck Depression and Anxiety Inventories. Arch. Clin. Neuropsychol. 2021, 36, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Vedel, A.; Gøtzsche-Astrup, O.; Holm, P. The Danish IPIP-NEO-120: A Free, Validated Five-Factor Measure of Personality. Nord. Psychol. 2019, 71, 62–77. [Google Scholar] [CrossRef]
- Klinke, I.; Minnerop, M.; Schmitz-Hübsch, T.; Hendriks, M.; Klockgether, T.; Wüllner, U.; Helmstaedter, C. Neuropsychological Features of Patients with Spinocerebellar Ataxia (SCA) Types 1, 2, 3, and 6. Cerebellum 2010, 9, 433–442. [Google Scholar] [CrossRef]
- Shulman, L.M.; Velozo, C.; Romero, S.; Gruber-Baldini, A.L. Comparative Study of PROMIS® Self-Efficacy for Managing Chronic Conditions across Chronic Neurologic Disorders. Qual. Life Res. 2019, 28, 1893–1901. [Google Scholar] [CrossRef]
- Malek-Ahmadi, M.; O’Connor, K.; Schofield, S.; Coon, D.W.; Zamrini, E. Trajectory and Variability Characterization of the Montreal Cognitive Assessment in Older Adults. Aging Clin. Exp. Res. 2018, 30, 993–998. [Google Scholar] [CrossRef]
- Rossetti, H.C.; Lacritz, L.H.; Munro Cullum, C.; Weiner, M.F. Normative Data for the Montreal Cognitive Assessment (MoCA) in a Population-Based Sample. Neurology 2011, 77, 1272–1275. [Google Scholar] [CrossRef] [PubMed]
- Glosser, G.; Clark, C.; Freundlich, B.; Kliner-Krenzel, L.; Flaherty, P.; Stern, M. A Controlled Investigation of Current and Premorbid Personality: Characteristics of Parkinson’s Disease Patients. Mov. Disord. 1995, 10, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.S. Epidemiology of Cerebellar Diseases and Therapeutic Approaches. Cerebellum 2018, 17, 4–11. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Years) | Years of Education | # of Women | Years since Diagnosis |
---|---|---|---|---|
Control (n = 39) | 49.7 ± 11.6 (28–79) | 16.1 ± 8.2 (11–20) | 23 | n/a |
PD (n = 73) | 66.7 ± 8.8 (47–82) | 17.2 ± 2.4 (12–27) | 35 | 7.8 ± 5.8 (0–28) |
CA (n = 60) | 59.5 ± 12.4 (29–88) | 16.4 ± 2.6 (12–25) | 36 | 14.0 ± 12.9 (0–48) |
Group | Age (Years) | Years of Education | # of Women | Years since Diagnosis |
---|---|---|---|---|
Control (n = 16) | 61.3 ± 11.0 (46–78) | 17.4 ± 1.4 (15–20) | 11 | n/a |
PD (n = 16) | 72.9 ± 16.4 (57–84) | 17.9 ± 2.6 (14–25) | 5 | 6.5 ± 5.4 (1–17) |
CA (n = 18) | 58.1 ± 11.5 (30–75) | 17.1 ± 3.0 (12–25) | 15 | 5.9 ± 4.8 (0–19) |
Feature | PD (n = 73) | PD Literature (n = 225) | CA (n = 60) | CA Literature (n = 35) | Control (n = 39) | Control Literature (n = 90) | Significance (p-Value) |
---|---|---|---|---|---|---|---|
MoCA score | 27.0 ± 2.6 (19.7–30) | 26.8 ± 2.4 | 26.0 ± 3.1 (17.6–30) | 23.6 ± 5.6 | 27.8 ± 1.9 (23.8–30) | 27.4 ± 2.0 | No difference (0.834) |
Age | 66.7 ± 8.5 (48–82) | 64.2 ± 8.8 | 59.5 ± 12.4 (29–88) | 46.0 ± na | 49.6 ± 11.9 (28–79) | 72.8 ± 8.9 | Significant (p < 0.001) |
Years of Education | 17.2 ± 3.1 (12–27) | 13.6 ± 8.8 | 16.4 ± 2.3 (12–25) | Na | 16.1 ± 5.6 (11–20) | 13.3 ± 3.1 | Significant (p < 0.001) |
Feature | PD (n = 73) | PD Literature n = 381) | CA (n = 60) | CA Literature (n = 119) |
---|---|---|---|---|
Motor | 19.4 ± 6.7 (4–37) | 20.9 ± 8.7 | 16.2 ± 7.0 (3–33) | 15.9 ± 8.7 |
Age | 66.7 ± 8.5 (47–82) | 68.33 ± 35.1 | 59.5 ± 12.4 (29–88) | 50.3 ± 13.0 |
Feature | PD (n = 16) | CA (n = 18) | Control (n = 16) | Control Literature | Significance (p-Value) |
---|---|---|---|---|---|
Anxiety | 54.4 ± 10.4 (36.3–72.9) | 54.0 ± 8.9 (36.3–72.9) | 52.0 ± 9.2 (36.3–67.7) | 48.5 ± 9.8 | No difference (0.156) |
Depression | 53.1 ± 11.2 (37.1–68.3) | 53.0 ± 9.3 (37.1–69.3) | 49.6 ± 8.0 (37.1–66.4) | 49.3 ± 9.6 | No difference (0.864) |
Interpersonal Support | 38.1 ± 7.2 (27–48) | 37.1 ± 6.8 (24–48) | 37.1 ± 6.8 (25–46) | 39.8 ± 6.7 | No difference (0.146) |
Neuroticism | 63.3 ± 17.6 (38–96) | 67.1 ± 14.0 (44–103) | 60.6 ± 14 (44–86) | 61.7 ± 15.7 | No difference (0.755) |
Extraversion | 69.8 ± 14.4 (44–92) | 68.0 ± 14.8 (39–90) | 80.4 ± 8.8 (55–89) | 78.9 ± 14.3 | No difference (0.498) |
Openness | 83.1 ± 10.0 (66–103) | 80.8 ± 13.6 (47–110) | 90.3 ± 10.4 (73–108) | 83.1 ± 12.6 | Significant (0.01) |
Agreeableness | 94.9 ± 10.4 (81–110) | 100.3 ± 8.1 (84–114) | 94.9 ± 10.4 (74–107) | 93.3 ± 11.2 | No difference (0.562) |
Conscientiousness | 90.9 ± 16 (55–113) | 94.2 ± 8.9 (74–106) | 93.4 ± 12.0 (70–114) | 93.8 ± 13.3 | No difference (0.903) |
Age | 72.2 ± 9.2 (57–84) | 58.1 ± 11.5 (30–75) | 61.3 ± 11.2 (46–78) | n/a | n/a |
Years of Education | 17.9 ± 2.4 (14–25) | 17.14 ± 3.0 (12–25) | 17.4 ± 1.6 (15–20) | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binoy, S.; Woody, R.; Ivry, R.B.; Saban, W. Feasibility and Efficacy of Online Neuropsychological Assessment. Sensors 2023, 23, 5160. https://doi.org/10.3390/s23115160
Binoy S, Woody R, Ivry RB, Saban W. Feasibility and Efficacy of Online Neuropsychological Assessment. Sensors. 2023; 23(11):5160. https://doi.org/10.3390/s23115160
Chicago/Turabian StyleBinoy, Sharon, Rachel Woody, Richard B. Ivry, and William Saban. 2023. "Feasibility and Efficacy of Online Neuropsychological Assessment" Sensors 23, no. 11: 5160. https://doi.org/10.3390/s23115160
APA StyleBinoy, S., Woody, R., Ivry, R. B., & Saban, W. (2023). Feasibility and Efficacy of Online Neuropsychological Assessment. Sensors, 23(11), 5160. https://doi.org/10.3390/s23115160