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Abstract: The field of computational paralinguistics emerged from automatic speech processing, and
it covers a wide range of tasks involving different phenomena present in human speech. It focuses on
the non-verbal content of human speech, including tasks such as spoken emotion recognition, conflict
intensity estimation and sleepiness detection from speech, showing straightforward application
possibilities for remote monitoring with acoustic sensors. The two main technical issues present in
computational paralinguistics are (1) handling varying-length utterances with traditional classifiers
and (2) training models on relatively small corpora. In this study, we present a method that combines
automatic speech recognition and paralinguistic approaches, which is able to handle both of these
technical issues. That is, we trained a HMM/DNN hybrid acoustic model on a general ASR corpus,
which was then used as a source of embeddings employed as features for several paralinguistic tasks.
To convert the local embeddings into utterance-level features, we experimented with five different
aggregation methods, namely mean, standard deviation, skewness, kurtosis and the ratio of non-zero
activations. Our results show that the proposed feature extraction technique consistently outperforms
the widely used x-vector method used as the baseline, independently of the actual paralinguistic task
investigated. Furthermore, the aggregation techniques could be combined effectively as well, leading
to further improvements depending on the task and the layer of the neural network serving as the
source of the local embeddings. Overall, based on our experimental results, the proposed method can
be considered as a competitive and resource-efficient approach for a wide range of computational
paralinguistic tasks.

Keywords: hidden Markov model; deep neural network; embedding; hybrid acoustic model;
computational paralinguistics

1. Introduction

Historically, the main research topic of automatic speech processing has been auto-
matic speech recognition (ASR). In ASR, we have to automatically create a transcription
for audio (e.g., recording or utterance). From the 1990s to the present, several other topics
have received more attention, such as speaker recognition and diarisation (“who’s speaking
when”) [1], speech compression [2], cognitive load measurement [3,4], detecting Parkin-
son’s [5–7] or Alzheimer’s [8–10] disease, identifying Multiple Sclerosis symptoms [11] or
assessing the level of depression [12]. Besides these tasks, a complete subfield has arisen,
concerning phenomena present in human speech, containing tasks such as age and gender
recognition [13], emotion recognition [14,15], identifying laughter events [16], estimating
the degree of sleepiness [17] or conflict intensity [18] and detecting whether the speaker
is intoxicated [19]. These subtopics belong to the field of computational paralinguistic,
which has recently started to receive more interest. In this field, instead of generating
transcriptions, we seek to identify other phenomena present in a speech signal, focusing
on the non-verbal content of human speech. It refers to the non-verbal aspects of human
communication such as tone of voice and other vocal cues. These cues play an essential
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role in understanding human communication and can significantly impact the meaning
and interpretation of spoken language. Paralinguistic features are often extracted from
audio data in machine learning applications, using techniques such as speech analysis and
audio signal processing. With the various acoustic sensors becoming increasingly cheaper
(and, in parallel, more and more widespread), they could allow the remote monitoring of
speaker traits and states. It can opening up a wide range of potential applications such as
warning when a vehicle driver is too tired or sleepy. A major boost for paralinguistic was
the Interspeech Computational Paralinguistic Challenge (ComParE, later renamed ACM
Multimedia Computational Paralinguistic Challenge), which has been held annually since
2009 [20–22]. It has led to the development of publicly available datasets and produced a
consensus among standard methods, tools and evaluation metrics.

We have to consider slight but really important differences between computational
paralinguistic and ASR. One important dissimilarity is the focus of the two area. In
automatic speech recognition, we concentrate on the spoken content of the speech signal
and try to ignore any other information present (such as the age, gender, native language
or the inner feelings of the speaker), as these are considered irrelevant. On the contrary,
in computational paralinguistics, we focus on one of the latter speaker states and traits,
and disregard the actual words uttered. This dissimilarity of focuses actually leads to a
significant technical difference as well.

One technical difference came from the relationship between the length of the input
and the output. In ASR the output is the correct phone sequence for a given speech
recording and the size of the input utterance is roughly proportional to the length of the
output: we expect more words uttered over a longer period of time. Technically, this means
that in the traditional speech recognition paradigm the classification step is performed at
the local level, handling the audio in small, equal-sized parts called frames. In this case,
traditional classifiers such as Gaussian Mixture Models (GMMs [23]), and more recently
deep neural networks (DNNs [24]), are used to estimate the local likelihood of the different
phones and phone-derived classes from standard frame-level features (such as MFCCs [23]).
These local likelihood estimates (the classes of the frames) are then combined over the time
axis in the subsequent step (for example, using a hidden Markov model [25]) to obtain
the utterance-level output [26] (i.e., a time-aligned sequence of phones). In contrast, in the
field of computational paralinguistics, we need to associate different lengths of audio
recording inputs with a single label output. Here, the input speech signal is split into
larger chunks of continuous speech (such as one sentence), and these chunks are treated as
separate units. A given artifact or speaker state (e.g., emotion) is assigned to these chunks
(“utterances” or “recordings”). From a machine learning perspective, this means that one
such utterance will be one machine learning example. The traditional machine learning
models can only process fixed-length inputs, so we need to convert our varying-length
recordings into fixed-length feature vectors. We have to calculate a fixed-length feature
vector out of these varying-length recording, because, traditional classifiers are unable
to handle a concatenation of frame-level attributes of varying lengths as input features.
Perhaps the most straightforward solution for that is to take the frames and aggregate the
local results instead of combining them. The name of aggregation, is refers to a process
rather than a specific mathematical method. The use of this statistic conversion allows us
to obtain a fixed-sized utterance-level vector, so the length of the output no longer depends
on the length of the input recording.

Another important difference between the two area concerns the size of the databases.
For ASR nowadays, hundreds or even thousands of hours’ worth of databases are available,
meaning tens or hundreds of millions training examples for frame-level phoneme classifi-
cation. This allows researchers to train DNN models, which are known to be data-greedy.
By comparison, computational paralinguistics typically has small corpora, because each
task usually requires specific recording protocols and annotations. This drawback means
that usually there are just a few hundred (or at most a few thousand) examples for a specific
paralinguistic subtopic or class. Therefore, traditional classifier models (which can be well
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trained on very few data) are used instead of end-to-end neural networks. It is common to
employ learning methods for classification such as Support Vector Machines (SVM [27]).
Deep neural network machine learning techniques (e.g., fine-tuning) are only rarely used in
computational paralinguistics. Standard solutions are still dominant, for example low-level
descriptors (e.g., energy, spectral and cepstral (MFCC)) and voicing-related attributes for
frame-wise computing; statistic conversion techniques, such as mean and standard devia-
tion for aggregation; and classification methods such as SVMs. In the last decade, there
have been few research studies that have applied complex machine learning models and
usually the performance is strongly task-dependent.

Based on our previous studies [28,29], we developed a method shown in Figure 1 that
combines ASR and paralinguistic approaches. For frame-wise computing, we followed
standard ASR principles and we used DNNs to perform a frame-level feature extraction.
Afterwards, to aggregate these features, we used more or less traditional computational par-
alinguistics techniques such as standard deviation and kurtosis. In the end, we employed
SVM models to perform the classification task.

Figure 1. Hybrid HMM/DNN model workflow for paraliguistics task.

2. Processing Paralinguistic Data

Figure 1 shows the complete workflow of our experimental method from the preprocess-
ing of the ASR corpus to the classification of the paralinguistics corpus. As mentioned above,
we created a hybrid method that follows ASR principles and computational paralinguistics
principles too. In this section, we will describe the workflow in a step-by-step fashion.

2.1. HMM/DNN Hybrid Model

Hidden Markov models (more specifically, HMM/GMMs) used to be the state of
the art in automatic speech recognition. They consisted of a local GMM module, being
responsible for supplying local (i.e., frame-level) phonetic probability estimates, while the
HMM part was responsible for combining these local estimates into utterance-level phone
sequences [30]. After deep neural networks were invented, these HMM/GMM models
were developed into HMM/DNN [31] hybrid models by replacing the GMM component
with a deep neural network, still operating locally (i.e., on the frame level). Soon it became
widespread knowledge how to efficiently train and employ HMM/DNN hybrid models.
In our study, we seek to employ this knowledge by training such a DNN acoustic model,
and using this as the base of our feature extractor for computational paralinguistic tasks.

The HMM/DNN model has two parts. The first part is the deep neural network,
while the second part is a hidden Markov model. The outputs of the DNN will be the
input of the HMM. The DNN gives frame-level estimations, which will be a posterior
probability (P(ck | xi)). The next part, the HMM, expects a class-condition likelihood
(p(xi | ck)), so before utilising the output of the DNN in the HMM, we have to transform it.
The transformation can be processed with Bayes’ theorem. If the posterior estimation is
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divided by a priori probabilities of phonetic classes (P(ck)); then, we obtain class-condition
likelihood value within a scale factor. The a priori probabilities are usually estimated using
simple statistical methods. However, the scale factor can be ignored because it has no
influence on the subsequent search process.

Nowadays, recurrent neural architectures have become the state of the art in ASR [26].
Applying units such as long short-term memory (LSTM) [32] and Gated Recurrent Units
(GRU) [33] as building blocks leads to a better performance. Nevertheless, there are several
reasons for employing an HMM/DNN model instead of applying a recurrent neural
network. The simple feed-forward DNN structure employed in the HMM/DNN acoustic
model makes the training steps easier: it has lower computational complexity and uses less
memory. These networks still have a competitive performance [34,35] in the case where
training data are scarce.

2.2. DNN Embedding Extraction

To extract embeddings for further classification, first we have to train our hybrid model.
We can see the acoustic HMM/DNN model training in the left top corner of Figure 1. Here,
we need a larger ASR corpus that has time-aligned phonetic labels. From this corpus,
we have to extract frame-level features. The extraction can be handled using different
techniques, such as calculating filter banks, deltas, spectrograms or using neural networks.
Now, we can use these frame-level features to train our hybrid model for a general language
structure. When the training phase is over, we need to make a slight modification to our
model to use it for DNN embedding extraction. We have to detach the DNN from the
hybrid model and fix its weights. In this case, we are not interested in the original output
layer of our DNN, which produces the posterior estimates. Now, we will focus on the
previous hidden layers and their activation values, because hidden layers can provide
more abstract information. We can see the process of embedding extraction in the left
bottom corner of Figure 1. Here, we have to extract frame-level features from a smaller
paralinguistics corpus. The length of a frame-level feature has to be the same as a feature
from the ASR corpus. The best way to achieve this is to use the same method here as before.
Afterwards, we can feed them into the modified deep neural network. The output of the
hidden layers will be our embedding features.

2.3. DNN Embedding Aggregation

When we have acoustic frame-level embeddings, we have to convert them into
utterance-level features in order to perform a classification. Figure 1 shows the final
classification workflow in the bottom right corner. Since databases contain recordings with
different lengths, we have a different number of embedded features for each recording.
Traditional classifiers handle only fixed-sized inputs for one utterance, so we cannot create
utterance-level features with a simple frame-level concatenation. We need to aggregate
embeddings and Figure 2 shows the method in more details. This could be performed in a
straightforward way by calculating statistical values along their time axis, such as mean,
standard deviation or others. The final size of the aggregated vector is independent of the
length of the original recording and it only depends on the number of neurons in the last
given hidden layer and on the aggregation technique used. In the end, these utterance-level
feature vectors can be fed into any traditional classification or regression model, where the
output will be a label (class or real number) for each recording.
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Figure 2. Creating fixed sized feature vectors with statistic conversion.

3. The Databases Used

Next, we will introduce the datasets that we employed in our experiments. Different
aspects were taken into account when selecting the databases. On the one hand, we
preferred databases that were easily accessible to the research community, and thus the
databases used in the ComPare challenge were chosen. The other aspect was that they
should be easily comparable, which is why we chose three German language databases
so possible language differences would not affect the results. To cover different topics,
we used three paralinguistic corpora (AIBO, URTIC and iHEARu-EAT). Although these
corpora cover different topics, the recording conditions (such as sampling rate, language
and background noise) are quite similar. Table 1 showes a summary from these three
paralinguistic database. The fourth database utilized in our experiments (called BEA) was
not a paralinguistic one, but it was used for training our hybrid acoustic model.

Table 1. The number of speakers and utterances for the three paralinguistics databases used.

Dataset Language No. of Classes
No. of Utterances No. of Speakers Total Duration (hh:mm:ss)

Train Dev Test Train Dev Test Train Dev Test

AIBO German 5 7578 2381 8257 26 6 25 03:45:18 01:11:46 03:53:44
URTIC German 2 9505 9596 9551 210 210 210 14:41:34 14:54:47 14:48:18
iHEARu-EAT German 7 657 287 469 14 6 10 01:20:37 00:31:44 01:00:39

3.1. AIBO

The FAU AIBO Emotion Corpus [36] contains speech taken from 51 native German
children. The children were selected from two schools. The database contains 9959 record-
ings from the Ohm school, and 8257 recordings from the Mont school. The total duration
is approximately 9 h. The subjects had to play with a pet robot called AIBO. They were
told that AIBO responds to their commands, but it was actually remotely controlled by a
human. The Ohm school recordings are commonly used for training (with speaker-wise
cross validation). The Mont school recordings were used for the test set. Because of the
size of the training set, we were able to define a development set. We kept recordings of
20 children in the training set (7578 utterances) and used recordings of 6 children in the
development set (2381 utterances). The original 11 emotional classes were merged to form
a 5-class problem. The new classes were constructed from the originals: Anger (angry,
irritated, reprimanding), Emphatic, Neutral, Positive (motherese and joyful), and the Rest
(helpless, surprised, bored, non-neutral but not belonging to the other categories). This
database was also employed in the INTERSPEECH 2009 Emotion Challenge.

3.2. URTIC

The Upper Respiratory Tract Infection Corpus (URTIC) [37] was provided by the Insti-
tute of Safety Technology, University of Wuppertal in Germany. It contains native German
speech from 630 subjects (248 female, 382 male). The total duration is approximately 45 h.
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The recordings have a sampling rate of 44.1 kHz downsampled to 16 kHz. They were split
into 28,652 chunks of 3 to 10 s. The participants had to complete different tasks. They had
to read short stories (e.g., a well-known story in the field of phonetics “The North Wind and
the Sun”), had to produce voice commands (such as stating numbers from 1 to 40) and they
also had to narrate spontaneous speech (e.g., say something about their best vacation).
The number of tasks varied for each speaker. The database was split speaker-independently
into training, development and test sets where each one contained 210 speakers. The train-
ing and development sets contained 37 infected participants and 173 participants with no
cold. There were two classes, namely cold and no cold. The purpose of the classification
was to decide whether the speaker had a cold. This database was also employed in the
INTERSPEECH 2017 Computational Paralinguistics Challenge.

3.3. iHEARu-EAT

The iHEARu-EAT corpus [38] was provided by the Munich University of Technology.
It contains close-to-native German speech taken from 30 subjects (15 female, 15 male). It
was recorded in a quiet, slightly echoing office room. It contains approximately 2.9 h of
speech (sampled at 16 kHz). The recordings were segmented into roughly equal parts.
The participants had to perform speaking exercises while eating different type of foods.
Speakers had to complete different tasks, e.g., read the German version of “The North Wind
and the Sun” story, and they had to give a spontaneous narrative about their favourite
activity or place. The number of completed activities varied for each speaker because not
everyone was willing to eat every type of food offered. The database was split speaker-
independently into a training set (20 speakers) and test set (10 speakers). There were seven
classes determined by the consistency: apple, nectarine, banana, crisp, biscuit, gummy bear
and without any food. The aim of the classification was to recognise what the subject was
eating while speaking. These type of foods typically allowed the participants to eat while
speaking. This database was also employed in the INTERSPEECH 2015 Computational
Paralinguistics Challenge.

3.4. BEA

We used a subset of the BEA Hungarian corpus [39] to pretrain our acoustic model.
This was not a specific paralinguistics corpus like the three above, but it is also a speech
corpus. It contains only spontaneous speech and it is good for generalising a neural network
for speech processing. We applied a subset of this database, which contained the speech of
165 subjects (≈60 h). This subset contained only spontaneous speech with special events
such as filled pauses, breathing sounds, laughter, gasps and so on. It had a transcription,
where the phonetics set and the special events were also marked.

4. Experimental Setup
4.1. Frame-Level Features

For both the ASR and paralinguistics corpora, the frame-level feature extraction was
carried out by 40 Mel-frequency filter banks with the standard values of 25 ms window
width and 10 ms frame step. We also extended it with the log-energy value, and calculated
the first- and second-order derivatives (i.e., ∆ and ∆∆ [40]). The final number of features in
a frame-level vector was 123.

4.2. HMM/DNN Hybrid Model

We trained the hybrid model with the large BEA corpus. It has a standard feed-forward
deep neural network (DNN). During DNN training and evaluation, we used the standard
solution of applying a 15-frames-wide sliding window, so the input layer of the network
contained 15× 123 = 1845 neurons. The DNN has five hidden layers, where each one
contains 1024 ReLU neurons. The final softmax layer of the network had as many neurons
as the number of phonetic states, namely 911. For embedding extraction, we used the
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activation values of the middle five hidden layers (i.e., layer 1, 2, 3, 4 and 5). Each layer
generated 1024-sized frame-level feature vector.

4.3. Embedding Aggregation

In the conversion step, we transformed the frame-level embeddings into utterance-
level feature vectors by aggregating them with a statistical function along the time axis.
The statistical approaches used were the following: arithmetic mean, standard deviation,
kurtosis, skewness and “zero ratio”. Zero ratio represents how many times out of each
embedding an output neuron fired (it means a feature has a non-zero value, as we used
ReLU neurons). The used aggregations has the following mathematical formula, if we have
N frame-level embeddings in the form x1, x2, . . . , xi, . . . , xN :

Arithmetic mean: x = 1
N ∑n

i=1 xi

Standard deviation: σ =
√

1
N ∑N

i=1(xi − x)2

Kurtosis = 1
N ∑N

i=1
(xi−x)4

σ4

Skewness = 1
N ∑N

i=1
(xi−x)3

σ3

Zero ratio = 1
N ∑N

i=1 yi, where yi =

{
1 if xi > 0,
0 otherwise

Notice that, having N embeddings with m frames, any of these formulas produce
m utterance-level aggregated features.

4.4. Classification

For optimal results, we separated all paralinguistic corpora into training, development
and test sets. We determined the optimal parameters of the classifier while training with the
training set end evaluating with the development set. After the optimisation, we measured
the overall efficiency while training with the combination of training and development
sets and evaluating with the test set. During the classification step, our classifier was a
Support Vector Machine (i.e., SVM) [41]. We optimized the complexity parameter using
10 powers between 10−5 and 100. In the case of AIBO and URTIC, we always standardised
and downsampled the actual training set before feeding it into the SVM. In the case of
iHEARu-EAT, we only performed a speaker-wise standardization.

To measure the efficiency, we calculated the Unweighted Average Recall (i.e., UAR) [42]
from the posteriors of our SVM model. UAR measures the average recall across all classes
without considering class imbalance. To calculate UAR, you compute the recall for each
class and then take the average across all classes. Recall, also known as sensitivity or
true-positive rate, is the proportion of true-positive instances (correctly identified instances)
out of all actual positive instances. UAR is called “unweighted” because it treats each
class equally, regardless of class size or prevalence. This makes it suitable for datasets with
imbalanced class distributions, where some classes may have significantly fewer instances
than others. It provides a balanced view of the overall performance of a classification system,
taking into account the performance across all classes equally. In an emotion recognition
task with an imbalanced dataset (Happy: 500, Sad: 300, Neutral: 2000), accuracy can
be misleading. For instance, a classifier that predicts the majority class (Neutral) for all
instances would have high accuracy (2000/2800 ≈ 71.4%). However, UAR (Unweighted
Average Recall) gives a better evaluation by considering the recall for each class separately.
In this case, UAR would indicate poor performance (UAR: (0 + 0 + 1)/3 ≈ 0.333) as
the classifier fails to identify instances of the minority classes (Happy and Sad) while
performing well on the majority class.

4.5. Baseline Method

X-vector networks [43] nowadays are receiving more attention in the field of par-
alinguistics. Previous studies have successfully applied x-vector embeddings in various
paralinguistic tasks [5,17]. This feed-forward deep neural network was originally designed
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for speaker identification, but with a slight modification it can be used for feature extraction
as well [43]. Figure 3 shows the structure of our baseline network. It has nine layers, in the
following order: five time-delayed frame-level layers, one statistics pooling layer, two
segmentation layers and one softmax layer. The statistics pooling layer is responsible for
transforming frame-level information into utterance-level information. It aggregates over
the output of the fifth frame-level layer and calculates different metrics such as mean or
standard deviation. The segmentation layers can capture meaningful information about
the speaker, e.g., age and gender. The last layer of the network contains the speaker id.

...

Stats pooling layer

embedding

embedding

frame

level

segment

level

Frame-level features (e.g. MFCCs)

Speaker posterior estimates

Figure 3. The x-vector neural network structure used as the baseline.

In order to use x-vector DNNs for paralinguistic feature extraction, we trained the
model on the BEA corpus and we evaluated separate baselines for each of the AIBO, URTIC
and iHEARu-EAT databases. In parallel, we calculated different frame-level features from
each database, such as mfcc, fbank and spectrogram values. After training different x-vector
models on them, we fixed the weights of the models and removed the last two layers from
each. We extracted utterance-level information from the seventh hidden layer as a network
embedding and examine traditional classification on them. We also tried out a noise
augmentation technique. To find the best baseline, we always carried out a quick search of
the frame-level feature sets with and without augmentation for each database separately.

5. Experimental Results
5.1. AIBO

When we used the AIBO database, we had a five-class classification task. Figure 4
shows all the results with different statistic conversion techniques on the development set.
The best baseline result was obtained using f-bank features with augmentation and it came
to 39.3% (indicated by the grey horizontal line in the figure).

Regarding the layers, we can state that the fourth layer always outperforms the
baseline. Moreover, the fourth layer achieved the best performance scores with all the
aggregation techniques used. In view of aggregation, there were no significant differences
between the robustness of aggregations. Kurtosis and skewness had the worst performance
scores overall. In the majority of cases, we cannot beat the baseline with them. The
mean and standard deviation performed the best. In most cases, they outperformed the
x-vector baseline. The average performance of a conversion technique is represented by a
black column. The mean and standard deviation of the fourth and fifth layers had better
performance scores than their average layer performance scores and these gave the best
results overall.
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Figure 4. AIBO results on the development set. Extracting embeddings from each of the 5 layers.
The black columns denote the average performance of all five layers. The baseline is represented by a
grey line.

5.2. URTIC

When we used the URTIC database, we had a two-class classification task. Figure 5
shows all the results obtained with different aggregations with the development set.
The best baseline result was obtained using MFCC features with augmentation and it
was 66.9% (indicated by the grey horizontal line in the figure).

Here we can state that the third and fourth layers always reach or outperform the
average performance of a conversion technique (represented by a black column), but in
the majority of cases they cannot beat the x-vector baseline. The standard deviation is a
bit more robust than the others, but again there is no significant difference. The kurtosis
and skewness statistic conversions again had the worst performance scores. Here, the best
results can beat the baseline. One of them is the mean of the third and fourth layers.
The other is the zero ratio statistic conversion for the second and fourth layers.

Figure 5. URTIC results on the development set. Embeddings from each of the 5 layers. The black
columns denote the average performance of all five layers. Baseline represented by a grey line.

5.3. iHEARu-EAT

With the iHEARu-EAT corpus, we had a seven-class classification task. Figure 6 shows
all the results obtained with different aggregations using the development set. The best
baseline result was obtained using fbank features with augmentation and it was 58.7%
(indicated by the grey horizontal line in the figure).

Here, we can state that all of our embeddings always outperform the baseline. Similar
to URTIC, the second and fourth layers perform best and in most cases outperform the
local average performance (represented by a black column). The robustness behaviour is
similar, but the zero ratio and mean are slightly better. The rest of the aggregations behave
just like before. The mean and the standard deviation of the second and fourth layers give
the overall best results.
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Figure 6. iHEARu-EAT development set results. Embeddings from each of the 5 layers. The black
columns denote the average performance of all five layers. Baseline represented by a grey line.

6. Combined Results

A summary of our results from the first series is represented in Table 2. We can see that
the HMM/DNN embeddings always outperform the x-vectors. The kurtosis and skewness
aggregations perform the worst. The mean, standard deviation and zero ratio techniques
behave slightly the same. We also wanted to know the expressive power of the embeddings,
so we combined all of the five techniques as well. With this, we improved performance
on the development set, but the scores of the test sets dropped. This raises the question
of whether there is a specific combination of statistic conversation techniques that gives
improvements on the development set while maintaining the ability of generalisation. We
tried to determine the best-generalised model that would give better performance scores
against future data.

In the second series of experiments, we used sequential forward selection (SFS) to
combine multiple aggregated feature vectors. The basic idea behind SFS is to initialise the
subset with just the best method, and then iteratively add one more aggregation to the
subset based on which combination provides the greatest improvement in performance.
To combine a subset of aggregations, we concatenated their utterance-level feature sets.
The size of each utterance-level feature vector was as follows: 1024 as one technique,
2048 as a concatenation of two different aggregated vectors, 3072 as a concatenation of three
different aggregated vectors, 4096 as a concatenation of four different aggregated vectors
and 5120 when we concatenated all the different aggregated vectors.

Table 2. Results of different aggregation techniques with the three different corpora.

AIBO URTIC iHEARu-EAT

Layer DEV TEST Layer DEV TEST Layer DEV TEST

mean 4 45.2% 44.0% 4 67.3% 69.3% 2 71.4% 79.0%

std 4 44.8% 44.4% 2 66.4% 68.1% 2 73.3% 74.4%

kurtosis 4 42.5% 40.3% 1 64.2% 60.8% 4 69.7% 69.0%

skewness 4 43.0% 41.2% 1 63.5% 68.3% 4 70.3% 67.3%

zero ratio 4 44.3% 42.1% 2 67.4% 68.8% 3 70.0% 75.5%

all 5 45.5% 44.2% 4 66.0% 65.3% 4 76.6% 74.6%

x-vector – 41.8% 35.6% – 66.9% 57.1% – 58.7% 53.8%

6.1. AIBO

Figure 7 shows the performance scores obtained when we combined the mean statistic
conversion technique with all the others. The first chart shows the mean aggregation
with layer 4. All of the combinations perform better than their x-vector baseline; however,
the mean technique had the best performance scores of 45.2% on the dev set and 44.0% on
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the test set. The second chart shows the mean statistic conversion technique with layer 5.
All of the combinations performed better here as well. The combination of mean, skewness,
standard deviation and kurtosis gave the best performance score of 45.3% on the dev set and
44.2% on the test set, but we can obtain almost the same without the kurtosis of 45.1% on
the dev set and 43.7% on the test set. We can state that the fifth layer can generalise better
if we use the combination of mean+ skewness+ standard deviation+kurtosis techniques,
and the fourth layer performs best with only mean statistic conversion. The mean and
standard deviation techniques always gave improvements. Instead of the fact that layer
5 had better performance scores than layer 4, we should note that calculating just one
aggregation requires less time and memory.

Figure 7. AIBO database classification results with development and test sets. We combine the mean
aggregation by SFS. We extract embeddings from layer 4 (first figure) and from layer 5 (second figure).

6.2. URTIC

Figure 8 shows the performance scores obtained when we combined the zero ratio
statistic conversion technique with all the others. We can see on the first chart the zero ratio
aggregation with layer 2. The best combination (zero ratio+ mean+ standard deviation)
had the same performance score (67.4%) on the dev set as the zero-ratio-only option. Note
that they have the same performance with the development set, but the combination gives
a better performance score (69.6%) on the test set. We can see on the second chart the zero
ratio aggregation with layer 4. The first three combinations can outperform the x-vector
baseline. If we combine two techniques, the best combination (zero ratio + mean) gives
67.7% with the dev set and 69.5 with the test set. We can state that the fourth layer has the
best generalisation if we use the combination of mean and zero ratio techniques. Kurtosis
and skewness aggregations always underperform the others. The standard deviation metric
can improve the performance with layer 2.

Figure 8. URTIC database classification results with development and test sets. We combine the zero
ratio aggregation by SFS. We extract embeddings from layer 2 (first figure) and layer 4 (second figure).
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6.3. iHEARu-EAT

Figure 9 shows the performance scores when we combine the standard deviation
(i.e., std) statistic conversion technique with all the others. The first chart shows the std
aggregation with layer 2. All of the combinations perform better than their x-vector baseline
on the development and test sets. In the case of combining four techniques, the zero ratio
slightly improves our model and increases its ability to generalise. The best combination
is std+kurtosis+zero ratio+mean and it produced a 74.9% performance score on the dev
set and 78.3% on the test. The second chart shows the std aggregation with layer 4. All
of the combinations perform better here as well. When we combined three techniques
(std+skewness+zero ratio), it slightly improved our model and gave a 76.0% performance
score on the dev set and 75.0% on the test set. We can state that model trained on features
from the second layer can generalise better if we use the combination of mean, zero ratio
and skewness techniques. The zero ratio always produces a good improvement.

Figure 9. iHEARu-EAT database classification results with development and test sets. We combine
the standard deviation aggregation by SFS. We extract embeddings from layer 2 (first figure) and
layer 4 (second figure).

A summary of our results from the second series is given in Table 3. We can say that
extracting embeddings from the fourth layer always gives the best performance scores.
Concatenating aggregations is always a good idea and it helps our model to generalise
better, but we should carefully select the techniques used because the best combination may
be task-dependent. We should always consider including the mean, standard deviation
and/or zero ratio in the combination.

Table 3. The best results obtained by SFS. The base aggregation and layers came from the best
corpus-specific aggregations.

AIBO URTIC iHEARu-EAT

Layer Combination DEV TEST Layer Combination DEV TEST Layer Combination DEV TEST

4 mean 45.2% 44.0% 2 zero 67.4% 68.8% 2 std 73.3% 74.4%

4 me-ze 44.4% 42.0% 2 ze-me 67.1% 70.0% 2 st-ku 74.8% 75.9%

4 me-ze-st 44.4% 44.3% 2 ze-me-st 67.4% 69.6% 2 st-ku-ze 74.8% 78.9%

4 me-ze-st-ku 44.4% 44.5% 2 ze-me-st-sk 66.6% 69.4% 2 st-ku-ze-me 74.9% 78.3%

5 mean 44.5% 42.3% 4 zero 66.9% 67.1% 4 std 70.5% 73.8%

5 me-sk 44.3% 40.2% 4 ze-me 67.7% 69.5% 4 st-sk 74.9% 74.8%

5 me-sk-st 45.1% 43.7% 4 ze-me-st 67.6% 68.5% 4 st-sk-ze 76.0% 75.0%

5 me-sk-st-ku 45.3% 44.2% 4 ze-me-st-sk 66.8% 67.9% 4 st-sk-ze-me 76.0% 74.3%
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7. Discussion

We trained a state-of-the-art hybrid acoustic HMM/DNN model on a large ASR corpus
and then used the DNN part to extract frame-level embeddings from smaller paralinguistics
corpora. Afterwards, to aggregate these features into utterance levels, we used statistics
computational techniques. We chose traditional aggregations, such as standard-deviation
and mean, and less traditional ones, such as skewness, kurtosis and zero ratio; these
aggregated vectors served as features in our computational paralinguistic classification
experiments. In our first experiments, we tested all aggregation techniques individually.
Our results indicate that the hybrid acoustic model performed better than the x-vector
did. The mean, standard deviation and zero ratio techniques achieve practically the same
performance scores.

After obtaining these results, we wanted to improve the expressive power of the
embeddings. We chose to investigate the performance of combined aggregation techniques.
We tested all the possible combinations of the five techniques. Our results indicate that
we were successfully able to extract features from different paralinguistic tasks with our
HMM/DNN hybrid acoustic-model-based feature extraction method. Using the second
or the fourth layer of the model is always a good choice. As for aggregations, the mean,
standard deviation and zero ratio always help improve the performance, but we have to
combine these techniques carefully. In the case of kurtosis and skewness aggregations,
we can observe varied behaviour in all databases. In the first stage of our research, when
we tested each aggregation separately, we could see the trends amongst them. They had
the worst performance in terms of each database and each layer. In the second stage of
our research, when we tested the combination of aggregations, we could see a similar
tendency. When we were deciding which aggregation should be combined next, skewness
or kurtosis gave the lowest scores in 13 of 18 cases. Based on these results, it can be stated
that skewness and kurtosis aggregation techniques are not able to significantly improve
the success rate of paralinguistic task processing.

In the case of aggregation combination, we can see that combining three techniques will
always improve our results in any paralinguistic task. On the other hand, the combination
of four techniques will behave inconsistently. Although it improves the results on the
development set, the results on the test set are often decreasing. This suggests that the
generalisation ability of our model is also decreasing. For this reason, when choosing
the number of aggregations to combine, it is worth taking into account Occam’s razor
principle, which states that unnecessarily complex models should not be preferred against
simpler ones.

The possible limitations of our approach include the potential language dependency
of the extracted embeddings. For further research directions, we see several opportunities.
Although our results were competitive even with a Hungarian HMM/DNN hybrid acoustic
model for German tasks, and although the x-vector method (used as feature extractor)
showed language-independency tendencies before [17], the effect of using an acoustic
model trained on the same language should be studied in the future. On the other hand,
each of the databases studied here is German-speaking, it could potentially be investigated
whether aggregations computed from x-vector embeddings behave similarly on databases
of different languages. Additionally, it is unclear how the amount of training material
affects the quality of the extracted features. Furthermore, training a DNN is inherently
a stochastic procedure due to random weight initialization; therefore, the variance in
the classification performance might also prove to be an issue. We plan to investigate
these factors in the near future. Another possible direction is whether these aggregations
computed from different neural network embeddings follow a similar trend.

Author Contributions: Conceptualization, methodology, supervision, HMM/DNN model training,
embedding calculation and writing—review and editing G.G. Aggregation, classification, formal
analysis, visualization, writing—original draft preparation, M.V. All authors have read and agreed to
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