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Abstract: In this paper, a robust nonlinear approach for control of liquid levels in a quadruple
tank system (QTS) is developed based on the design of an integrator backstepping super-twisting
controller, which implements a multivariable sliding surface, where the error trajectories converge to
the origin at any operating point of the system. Since the backstepping algorithm is dependent on the
derivatives of the state variables, and it is sensitive to measurement noise, integral transformations of
the backstepping virtual controls are performed via the modulating functions technique, rendering
the algorithm derivative-free and immune to noise. The simulations based on the dynamics of the
QTS located at the Advanced Control Systems Laboratory of the Pontificia Universidad Católica del
Perú (PUCP) showed a good performance of the designed controller and therefore the robustness of
the proposed approach.

Keywords: variable structure systems; modulating functions; MIMO systems; backstepping control;
nonlinear control; quadruple tank system

1. Introduction

Currently, there are a considerable number of industrial multivariable processes with
complex nonlinear dynamic behavior [1–3]. Therefore, multivariable control strategies are
highly important and have received significant attention from the international scientific
community; see, for example, [4–9].

The quadruple tank system (QTS) has been widely used in academia to design multi-
input, multi-output (MIMO) control schemes for liquid level regulation in the presence of
complex nonlinear dynamics [10]. Classical control approaches to this problem involve
linearizing the model about an operating point (OP) and using decouplers to eliminate or
reduce the interaction sensitivity between inputs and outputs, in order to apply decentral-
ized proportional-integral (PI) control [11]. In [12], an actuator fault-tolerant decentralized
PI-controller based on the design of simplified decouplers was proposed, allowing feed-
forward control, as if it were two independent single input single output (SISO) systems [13].
The fault-tolerant part of the controller had the ability to additively compensate for the
magnitude of the fault. Yet, one of the downsides of this approach was that the designed
decouplers were not always physically feasible and were prone to modeling errors [12].

In [14], the performance of a decentralized PI controller was compared to robust
control strategies such as a multivariable internal model control (IMC) and an H-infinity
control (H∞), concluding that these control strategies yielded better performance than
the decentralized PI controller. In [15], a reconfigurable model predictive control (MPC)
approach was followed, where the feasibility to compensate for the control signal was
shown when an actuator (pump) failure was detected by switching its control signal to

Sensors 2023, 23, 5222. https://doi.org/10.3390/s23115222 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23115222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0561-0559
https://orcid.org/0000-0001-5946-1395
https://orcid.org/0000-0002-4639-4274
https://orcid.org/0000-0003-0782-0530
https://doi.org/10.3390/s23115222
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23115222?type=check_update&version=2


Sensors 2023, 23, 5222 2 of 24

another actuator and switching to the output of an observer when a sensor fault was
detected. In general, all these methods limited their overall performance to an operating
point, since they worked with a linearized model of the system.

However, other authors proposed working directly with the variable structure control
(VSC) of nonlinear multivariable systems. Variable structure control systems (VSCS) theory,
based on the phase-plane method of the oscillatory theory, was proposed by Alexander
Andronov in the 1940s [16]. This control theory was formally presented by Stanislav
Emelyanov in the 1960s and developed by Vadim Utkin [17] and other authors afterwards.
A VSCS is composed of continuous subsystems and a commutation law between these
subsystems, originating discontinuous or bang–bang control efforts to stabilize or regulate
the response of the processes.

Sliding mode control (SMC) is a special type of VSCS, since it introduces an error
variable named a “sliding variable” to steer the trajectory of the system to a sliding manifold
and maintain motion on the manifold by means of discontinuous control, regardless
of disturbances or uncertainties to the process [18]. Nonetheless, due to its inherent
robustness, the SMC introduces chattering or high-frequency oscillations to the control,
which is undesirable for actuators. Various chattering-suppression methods have been
proposed [19], with the equivalent control method [17] and higher-order sliding modes
(HOSM) [20] as the most representative. Moreover, in [21] it was proved that the first-degree
SMC and HOSM were sensitive to non-Gaussian measurement noise, making it necessary
to test and implement special HOSM differentiator algorithms and filters to mitigate the
influence of the nonlinear noise distributions in the sliding variable for real applications.

Concerning the use the use of the SMC and HOSM algorithms for liquid level regula-
tion of the QTS, in [22], an SMC technique through feedback linearization was proposed,
yielding better performance than the conventional PI controller. In [23], a second-order
sliding mode (SOSM) controller based on the twisting algorithm (TA) was designed to
regulate the liquid levels while considerably reducing the chattering level of the control
effort. Even though the SOSM and HOSM methods proved to be effective in reducing the
chattering level, they did not completely suppress it in some cases.

In [24], the active disturbance rejection control (ADRC) was introduced as an alternate
approach to PID control, based on the design of a tracking differentiator, which provided the
error signal, the derivative of the error signal, and a sliding mode controller (SMC). Recently,
improvements were made in [25] with regard to the ADRC based on the work provided
in [24] with promising results, although the performance of the tracking differentiator was
not addressed in the presence of measurement noise.

The main contribution of this paper consists in the proposal of a robust nonlinear
approach for control of liquid levels in a quadruple tank system (QTS) based on the
combination of a backstepping controller and a super-twisting controller (BSSTC), imple-
menting a multivariable sliding surface, where the error trajectories converge to the origin
at any operating point of the system. Because the backstepping algorithm is dependent
on the derivatives of the state variables and is sensitive to measurement noise, integral
transformations of the backstepping virtual controls are carried out using modulating
functions technique, making the algorithm derivative-free and immune to noise. All the
modeling and control methodologies shown in this paper have been developed for a real
laboratory QTS.

This paper proceeds as follows. In Section 2, a mathematical model of the process
studied is obtained using modeling techniques. The theoretical background is explained in
Section 3. The design of the MF-BSSTC controller is developed in Section 4. The discussions
of the attained results are presented in Section 5. Lastly, a few conclusions are given in
Section 6.

2. Quadruple Tank System Modeling

The study presented in this paper is based on the QTS located at PUCP’s Advanced
Control Systems Laboratory. This QTS consists of four coupled tanks, a reservoir tank, four
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ball valves, two proportional valves, and two pumps. Figure 1 shows a view of this QTS,
and its schematic representation is exhibited in Figure 2.

Figure 1. Quadruple tank system of the PUCP’s Advanced Control Systems Laboratory.

Figure 2. Quadruple tank system diagram.

QTS Modeling under Disturbances

The control objective is to regulate the liquid levels of tanks n°3 and n°4. The inputs to
the system are the flow rates u1 and u2 from pumps n°1 and n°2, respectively, measured by
the flow transmitters FT1 and FT2. The measured outputs are the liquid levels h1, h2, h3,
and h4 of tanks n°1, n°2, n°3, and n°4, respectively, which are proportional to the voltages
generated by the level transmitters LT1, LT2, LT3, and LT4. The system has two proportional
valves Vp1 and Vp2 with aperture percentages k1 and k2 ∈ [0, 1], respectively, two ball valves
Vb2 and Vb4, which generate flow towards tanks n°2 and n°4 with a split constant γ1 ∈ [0, 1],



Sensors 2023, 23, 5222 4 of 24

and two ball valves Vb1 and Vb3 which generate flow towards tanks n°1 and n°3 with a split
constant γ2 ∈ [0, 1]. Since the output flow rates of pump n°1 split between tank n°2 and
tank n°4 and the output flow of pump n°2 between tank n°1 and tank n°3, the position
of valves γ1 and γ2 controls the split ratio. For instance, if 0 < γ1 + γ2 < 1 holds, one
transmission zero out of the two transmission zeros of the system locates at the right half
plane (RHP) of the root locus, generating nonminimum phase dynamics. On the other
hand, if 1 < γ1 + γ2 < 2 holds, both transmission zeros locate at the left half plane (LHP)
of the locus, rendering the QTS with minimum phase dynamics.

In [14], mass balances and Bernoulli’s law yield the following multivariable QTS
model with disturbances:

ḣ1 = −
a1
√

2gh1

A1
+

(1− γ2)k2u2

A1
+ ξ1,

ḣ2 = −
a2
√

2gh2

A2
+

(1− γ1)k1u1

A2
+ ξ2,

ḣ3 = −
a3
√

2gh3

A3
+

a2
√

2gh2

A3
+

γ2k2u2

A3
+ ξ3,

ḣ4 = −
a4
√

2gh4

A4
+

a1
√

2gh1

A4
+

γ1k1u1

A4
+ ξ4,

y =
[
h1 h2 h3 h4

]′
+ v,

(1)

where x =
[
h1 h2 h3 h4

]′ represents the state variables vector, hi ∀ i = 1, 2, 3, 4 is the
tank i liquid level in cm, y is the measurement vector with v as additive noise, u =

[
u1 u2

]′
is the control vector, Ai is the cross section of tank i in cm2, ai is the cross section of the
outlet hole of the tank i in cm2, di is the diameter of the tank i in cm, himax is the maximum

liquid level of tank i, and g is the acceleration of gravity in cm/s2. Moreover, ξ1 =
(1−γ2) fp2

A1
,

ξ2 =
(1−γ1) fp1

A2
, ξ3 =

γ2 fp2
A3

, and ξ4 =
γ1 fp1

A4
are disturbances to the system generated by the

flow losses fp1 and fp2 of pump n°1 and pump n°2, respectively, which are modeled as
step functions, such that ξ̇i = 0. In Table 1, the parameter values of the four-tank coupled
system are presented.

Table 1. QTS parameters.

Parameter Units Value

A1, A2, A3, A4 cm2 706.85

a1, a2, a3, a4 cm2 1.89, 1.89, 5.39, 5.39

g cm/s2 981

γ1, γ2 unitless 0.80, 0.90

k1, k2 unitless 1.00

u1max, u1max cm3/s 2863

d1, d2, d3, d4 cm 30

h1max, h2max, h3max, h4max cm 45

3. Theoretical Background

Sliding mode control (SMC) has the ability to reject bounded matched uncertainties
at the cost of introducing chattering to the control input. This could be detrimental to the
performance if the mechanical systems are controlled, as is the case with QTS. In fact, one
of the many methodologies available to suppress chattering is the design of super-twisting
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algorithm (STA) based controllers [20], which has been extensively used in recent years for
closed-loop control of the QTS.

A super-twisting controller (STC) is a type of SOSM applicable to a system, where the
control appears in the first derivative of the sliding variable [26], which has the ability to
compensate for disturbances or uncertainties with only the knowledge of the measured
output or sliding variable σ, while suppressing or attenuating chattering. For instance,
the STC could be applied to the QTS if a multivariable STC scheme was designed, consider-
ing that there should exist as many sliding surfaces as independent controls [27], and some
“hierarchy of controls” [17] should be established.

Definition 1 (Multivariable Sliding Surface [27]). Let the general state-space representation of
a system with multiple controls be

ẋ = f (x) + g(x)u,

y = h(x),
(2)

where x ∈ Rn is the state variable vector of dimension n, u ∈ Rm is the control vector of dimension
m, and y ∈ Rn is the output vector of dimension n, where n and m represent the number of
controlled systems and the number of sliding surface coordinate functions defined as system outputs,
respectively. Then, the multivariable sliding surface is represented by the simultaneous satisfaction
of m smooth algebraic state restrictions, summarized in the equation σ(x) = 0, which represents
the intersection manifold,

S = {x ∈ Rn| σi(x) = 0, i = 1, 2, .., m} =
m⋂

i=1

Si. (3)

For instance, the following vector of sliding surfaces was chosen for the QTS,

σ(x) =
[
σ1(x) σ2(x)

]T
=
[
c1e4 c2e3

]T , (4)

where ei = hi − hi
∗ are the errors between the actual liquid level hi and the desired level hi

∗, ci > 0
are constants, and ∀ i = 1, 2, 3, 4. hi

∗ must be a continuously differentiable reference trajectory.
If the reference trajectory is a step, then hi

∗ = ḣ∗i = . . . = 0.

Therefore, the simultaneous satisfaction of algebraic constraints σ1(x) and σ2(x), which
geometrically represents the existence of a smooth intersection manifold S, ideally produces
a desired closed-loop behavior of the system, where x ∈ S holds in finite time [26].

In order to satisfy the algebraic constraints shown above, a first-degree SMC and a
BSSTC are designed.

Synthesis of a First-Degree Sliding Mode Controller (SMC)

In this subsection a first-degree SMC is designed using the equivalent control method
proposed in [17,27].

Definition 2 (Equivalent Control and Ideal Sliding Dynamics [27]). Let the lie derivative
Lgσ(x) be locally invertible, where σ(x) is a vector of the sliding surfaces that satisfies σ(x) = 0.
Then,

σ̇(x) =
∂σ(x)
∂xT ( f (x) + g(x)ueq(x)) = 0, (5)

or

σ̇(x) = L f σ(x) + [Lgσ(x)]ueq(x)
∣∣∣∣
σ=0

= 0. (6)
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Therefore, the equivalent control is expressed as

ueq(x) = −[Lgσ(x)]−1L f σ(x)
∣∣∣∣
σ=0

, (7)

with ideal sliding dynamics given by:

ẋ = f (x)− G(x)[LGσ(x)]−1L f σ(x). (8)

The equivalent control is the smooth feedback control law, denoted by ueq(x), which
ideally locally holds the state evolution in the smooth manifold S for any initial state of
the system located locally in S [26]. However, the closed-loop controller obtained with the
equivalent control method generates a phenomena called “chattering”, as mentioned above,
which can potentially wear out actuators when applied. Thus, in this paper, two second-
order super-twisting controllers (2-STC) are designed through the recursive nonlinear
backstepping technique to generate smooth control actions to regulate the liquid level of
the selected subsystems, in order to reach the smooth intersection manifold S at any point
of operation without the need to linearize the system.

Taking the model (1) into the state-space representation introduced in (2), the matrices
f (x) and g(x) are shown:

f (x) =


− a1
√

2gx1
A1

− a2
√

2gx2
A2

− a3
√

2gx3
A3

+
a2
√

2gx2
A3

− a4
√

2gx4
A4

+
a1
√

2gx1
A4

, (9)

g(x) =


0 (1−γ2)k2

A1
(1−γ1)k1

A2
0

0 γ2k2
A3

γ1k1
A4

0

, (10)

where xi = hi ∀ i = 1, 2, 3, 4.
Let the sliding surfaces of the multivariable closed-loop control be σ1 = x4 − x4

∗ and
σ2 = x3 − x3

∗. So, the lie derivatives of σ1 and σ2 along the direction of vector fields f (x)
and g(x) are computed as follows:

L f σ(x) =
[

L f σ1(x)
L f σ2(x)

]
=

[
∂σ1(x)

∂xT f (x)
∂σ2(x)

∂xT f (x)

]
=

[
0 0 0 1
0 0 1 0

]


− a1
√

2gx1
A1

− a2
√

2gx2
A2

− a3
√

2gx3
A3

+
a2
√

2gx2
A3

− a4
√

2gx4
A4

+
a1
√

2gx1
A4

,

L f σ(x) =

− a4
√

2gx4
A4

+
a1
√

2gx1
A4

− a3
√

2gx3
A3

+
a2
√

2gx2
A3

,

(11)
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Lgσ(x) =
[

Lgσ1(x)
Lgσ2(x)

]
=

[
∂σ1(xT)

∂x g(x)
∂σ2(xT)

∂x g(x)

]
=

[
0 0 0 1
0 0 1 0

]
0 (1−γ2)k2

A1
(1−γ1)k1

A2
0

0 γ2k2
A3

γ1k1
A4

0

,

Lgσ(x) =

[
γ1k1
A4

0

0 γ2k2
A3

]
.

(12)

Then, replacing (11) and (12) in Equation (7), the equivalent control ueq to ensure σ(x)→ 0
in finite time is found as follows:

ueq(x) =

 a4
√

2gx4−a1
√

2gx1
γ1k1

a3
√

2gx3−a2
√

2gx2
γ2k2

, (13)

with the following control law:

u(x) = |η|1
2
(

[
1
1

]
− sign(σ(x)T Lgσ(x))T , (14)

where |η| = 1718 cm3/s is the upper saturation threshold value for the flow rate, which
equates to 60% of the maximum capacity of the pump. Furthermore, this control law
u(x) = 0 takes the lower saturation threshold value of 10% of the pump capacity when it is
equal to 0.

Proof. Robust closed-loop stability: Replacing Equation (13) in model (1), the following
closed-loop dynamics are obtained:

ẋ1 =
−γ2a1

√
2gx1 + (a3 − γ2a3)

√
2gx3 − (a2 − γ2a2)

√
2gx2

A1γ2
,

ẋ2 =
−γ1a2

√
2gx2 + (a4 − γ1a4)

√
2gx4 − (a1 − γ1a1)

√
2gx1

A2γ1
,

ẋ3 = 0,

ẋ4 = 0.

(15)

The closed-loop system (15) shows that x3 and x4 will reach the intersection manifold S in
finite time.

4. Design of the Modulating-Function-Based Backstepping Super-Twisting Controller

Multivariable control of the QTS based on the synthesis of a controller by the equivalent
control method is feasible. Nonetheless, the implementation of the first-order sliding
modes in the QTS could be detrimental to the plant actuators due to the chattering and
the sensitivity to the measurement noise. On the other hand, using the backstepping
and modulating functions technique can in fact render the controller chattering-free and
robust to nonlinear noise. In this section, a modulating-function-based backstepping
super-twisting controller is designed for the first time.

The backstepping technique [28] is a recursive back-deduced Lyapunov-based ap-
proach for systems transformable in their parametric-strict-feedback form or their pure
parametric feedback form. This technique uses some of the system state variables as “vir-
tual controls” at each step of the algorithm, implementing intermediate control laws to
stabilize the system energy [28]. The advantage of applying backstepping control (BSC)
is that it avoids the cancellation of the nonlinearities that are useful for controlling the
system, easing the control effort. Moreover, the BS technique provides a framework to
develop adaptive laws to unknown process parameters [29,30] and calibrate the gains of
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the online sliding mode controller, to efficiently compensate for parametric uncertainties
and disturbances. However, its dependence on the derivatives of the state variables limits
its application in plants or processes where these derivatives are not measurable. In general,
recent nonlinear SMC and BSC approaches for liquid level control of the QTS [22–25,31,32]
have been proved to be efficient only in conditions where the derivatives of the state
variables are available and in the absence of measurement noise.

Design of the backstepping super-twisting controller (BSSTC) for tank n°4. The dy-
namics of the QTS are reduced only by considering the dynamics of the tank n°4. In order
to find a suitable STC through the backstepping technique, it is necessary to extend the
dynamics of tank n°4 by adding an auxiliary input w1 as follows:

ḣ4 = A
√

h4 +B
√

h1 +Cu1 + ξ4,

u̇1 = w1,
(16)

where A = − a4
√

2g
A4

, B =
a1
√

2g
A4

, and C = γ1k1
A4

. For the extended subsystem above,
the following coordinate change is introduced:

ẋ1 =
A
2
+

B
2x1

x2 +
C

2x1
u1 +

1
2x1

ξ4,

u̇1 = w1,
(17)

where x1 =
√

h4, x2 =
√

h1, and u̇1 = w1 is an auxiliary input. By adding u̇1 = w1,
system (19) is already in pure parametric feedback form [28]. The control objective is to
design a continuous controller that regulates the liquid level of tank n°4 at any operating
point of the plant, achieving a SOSM (σi = σ̇i = 0 ∀ i = 1, 2) in finite time over the sliding
surface σi(x).

Step 1. Starting with the dynamics of x1 in system (17), let us define the new error
coordinate,

z1 = x1 − x1
∗, (18)

where x1
∗ is a twice-continuously differentiable reference trajectory. However, if the

reference trajectory x1
∗ is a step function, ẋ∗1 = ẍ∗1 =

...
x 1
∗ = 0 holds. So, the derived

dynamics of the new coordinate are:

ż1 =
A
2
+

B
2x1

x2 +
C

2x1
u1 +

1
2x1

ξ4 − ẋ∗1 . (19)

Let x2 be an internal control variable, α1 a virtual control law, and z2 = x2 − α1 the error
between the actual control variable and the virtual control. Then, the control objective is
to design the virtual control law α1, such that z1 → 0 in finite time. In order to stabilize
σ1 → 0, the following candidate Lyapunov function is introduced:

V1 =
1
2

z1
2, (20)

and its time derivative:
V̇1 = z1ż1. (21)

Replacing Equation (21) in (23) yields:

V̇1 = z1(
A
2
+

B
2x1

α1 +
C

2x1
u1 +

1
2x1

ξ4 − ẋ∗1) +
B

2x1
z2z1. (22)

If ż1 = −c1z1, where c1 > 0 must hold, then

V̇1 = −c1z1
2 +

B
2x1

z2z1 < 0, (23)
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if and only if z2 = 0, and z1 is locally asymptotically stable. To this end, virtual control law
α1 is found:

α1 = −A
B x1 −

C
Bu1 −

1
Bξ4 +

2
BΦ1 −

2c1

B Φ2, (24)

with dynamics:

α̇1 = −A
B ẋ1 −

C
B u̇1 −

1
B ξ̇4 +

2
B Φ̇1 −

2c1

B Φ̇2, (25)

where
Φ1 = x1 ẋ∗1 ,

Φ2 = x1z1,

Φ̇1 = ẋ1 ẋ∗1 + x1 ẍ∗1 ,

Φ̇2 = ẋ1z1 + x1ż1.

(26)

Step 2. The dynamics of z2 are derived such as:

ż2 = ẋ2 − α̇1,

ż2 = ẋ2 +
A
B ẋ1 +

C
Bw1 +

1
B ξ̇4 −

2
B Φ̇1 +

2c1

B Φ̇2,
(27)

where w1 = u̇1. Then, to make z2 → 0 to hold in finite time, the following candidate
Lyapunov function is designed:

V2 = V1 +
1
2

z2
2, (28)

and its derivative:
V̇2 = V̇1 + z2ż2,

V̇2 = −c1z1
2 +

B
2x1

z2z1 + z2ż2,

V̇2 = −c1z1
2 + z2(

B
2x1

z1 + ż2).

(29)

To stabilize the energy in the system, B
2x1

z1 + ż2 = σ1 − c2z2 must be fulfilled, where
σ1 = c2z2 + ż2 is the sliding surface, since z1 → 0 holds in finite time. So,

V̇2 = −c1z1
2 + z2σ1 − c2z2

2 < 0. (30)

Step 3. The sliding surface,

σ1 = c2z2 + ż2 +
B
2

Φ3, (31)

with dynamics

σ̇1 = c2ż2 + z̈2 +
B
2

Φ̇3, (32)

where
z̈2 = ẍ2 +

A
B ẍ1 +

C
B ẇ1 +

1
B ξ̈4 −

2
B Φ̈1 +

2c1

B Φ̈2,

Φ3 =
z1

x1
,

Φ̇3 =
ż1x1 − z1 ẋ1

x1
2 ,

Φ̈1 = ẍ1 ẋ∗1 + ẋ1 ẍ∗1 + ẋ1 ẍ∗1 + x1
...
x 1
∗,

Φ̈2 = ẍ1z1 + ẋ1ż1 + ẋ1ż1 + x1z̈1,

(33)
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must be designed, such that V̇2 decreases its energy in a finite time. Then, the following
candidate Lyapunov function is introduced:

V3 = V2 +
1
2

σ1
2, (34)

with time derivative:
V̇3 = V̇2 + σ1σ̇1,

V̇3 = −c1z1
2 + z2σ1 − c2z2

2 + σ1σ̇1,

V̇3 = −c1z1
2 − c2z2

2 + σ1(z2 + σ̇1).

(35)

Thus, to obtain
V̇3 = −c1z1

2 − c2z2
2 − c3σ1

2 < 0, (36)

or

V̇3 = −
2

∑
i=1

cizi
2 − c3σ1

2 < 0, (37)

the following relationship must hold:

z2 + σ̇1 = −c3σ1, (38)

where c3 > 0. Replacing Equations (31)–(33) in (38) yields:

z2 + c2ż2 + ẍ2 +
A
B ẍ1 +

C
B ẇ1 +

1
B ξ̈4 −

2
B Φ̈1 +

2c1

B Φ̈2 +
B
2

Φ̇3 = −c3(c2z2 + ż2)− c3
B
2

Φ3. (39)

Later, term ẇ1 is isolated:

ẇ1 =
B
C (−z2 − c2ż2 − ẍ2 −

A
B ẍ1 +

2
B Φ̈1 −

2c1

B Φ̈2 −
B
2

Φ̇3 − c3c2z2 − c3ż2 − c3
B
2

Φ3)−
1
C ξ̈4. (40)

Then, by performing the double integration of term ẇ1, the actual control u1 is obtained:

u1 =
∫ t

0

∫ t

0
ẇ1dτdτ − 1

Cξ4 − λ1|σ1|1/2sign(σ1)−
∫ t

0
λ2sign(σ1)dτ. (41)

The super-twisting terms λ1|σ1|1/2sign(σ1) and
∫ t

0 λ2sign(σ1)dτ, where λ1 = 1.5|∆|1/2,
λ2 = 1.1|∆| > 0, and |∆| is an upper-bound of the expected disturbance to the system,
are added to provide robust compensation for the disturbances to and uncertainties in the
system. Replacing (40) in (41), the variable dependencies of the BSSMC control law are
taken into account:

u1 =
∫ t

0

∫ t

0
(
B
C (−z2 − c2ż2 − ẍ2 −

A
B ẍ1 +

2
B Φ̈1 −

2c1

B Φ̈2 −
B
2

Φ̇3 − c3c2z2 − c3ż2

− c3
B
2

Φ3))dτdτ − λ1|σ1|1/2sign(σ1)−
∫ t

0
λ2sign(σ1)dτ.

(42)

It should be noted that the same procedure is carried out to obtain the control law u2.
It is important to state, after obtaining the control law u1, that for the classical backstepping
technique only two steps would be needed to obtain an adequate control law. However,
by taking an additional step in the algorithm, the control law is integrated twice, giving
additional integral action for the removal of the rate of change of the error variables at the
steady state, as well as giving increased robustness against the disturbances and parameter
uncertainties. Since the control law u1 depends on unmeasurable derivatives ẋ1, ẋ2, ẍ1,
and ẍ2, the state-of-the-art approach would force the implementation of differentiators,
such as in [21,23], that would amplify the noise coming from the measured liquid levels y1
and y4. For this, the technique of modulating functions is proposed to obtain the sliding
surfaces σi(x) that do not depend on the derivatives of the state variables and are noise-free.
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The modulating functions (MF) technique performs integral transformations to com-
pute the derivative-free algebraic relations between the inputs and outputs of a system,
which allows the estimation of the internal states, unknown parameters, and fault detection
with the advantage of not relying on the derivatives of the state variables and filtering noise
while the modulation operation is carried out. To understand the mathematical background
of the MF technique, the following definitions are presented.

Definition 3 (Total Modulating Function [33]). Consider a sufficiently smooth function R×
R→ R, with partial derivatives as

ϕ(i)(t, t1) :=
∂i ϕ

∂τi (τ, t1)

∣∣∣∣
τ=t

. (43)

Then, function ϕ is called a modulating function of order k, if there exists t0 < t1, such that

ϕ(i)(t0, t1) · ϕ(i)(t1, t1) = 0, ∀i = 0, 1, . . . , n− 1. (44)

A modulating function whose boundaries satisfy ϕ(i)(t0, t1) = ϕ(i)(t1, t1) = 0 is called a total
modulating function.

Definition 4 (Modulation Functional [34]). The modulation functional is defined as:

M[h] = 〈h, ϕ〉Ω,I =
∫

Ω

∫ t

0
h(x, τ + t− T)ϕ(x, τ)dτdx, (45)

where h : Ω × R+
0 → R and ϕ : Ω × I → R represent the signal to be modulated and the

modulating function, respectively, spatially defined on the n-dimensional rectangular region Ω :=
x ∈ Rn : 0 < xi < Li, i = 1, 2, . . . , n and temporally on the moving time horizon I = [t− T, t] of
length T > 0. Moreover, if the integration concerns only the spatial or temporal variable, the inner
product notations 〈h, ϕ〉Ω or 〈h, ϕ〉I are used, respectively.

When implementing the MFs for filtering, an FIR filter with a modulating receding
horizon can be realized, integrating only in the time dimension as follows:

Mi[h] = (−1)i
∫ t

t−T
φi(t− τ + T)h(τ) dτ,

Mi[h] ∼= (−1)iTs

N

∑
k=0

Wkφi(kTs)h((l − N + k)Ts),
(46)

and we define it in its matrix form

Mi[h] = Ki
MF



h(l − N)
.
.
.

h(l − 1)
h(l)

, (47)

where

Ki
MF = (−1)iTs



W0 ϕ(i)(0)
.
.
.

WN−1 ϕ(i)((N − 1)Ts)

WN ϕ(i)(NTs)



T

(48)
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is an i-dimension vector of modulating gains sampled with t = lTs, l ∈ N.

Lemma 1 (Shift of derivatives property). Using integration by parts, a shift of derivatives can
be attained as follows:

M0[h(n)] =
∫ t

t−T
ϕ(t− τ + T)h(n)(τ) dτ,

M0[h(n)] = Mn[h] ∼= (−1)n
∫ t

t−T
ϕ(n)(t− τ + T)h(τ) dτ.

(49)

After presenting these definitions, the task is to modulate the error coordinates z1 and z2, the virtual
control law α1, and the sliding surface σ1, such that control u1 is resilient to noise and does not
depend on the derivatives of the system’s state variables. For this, the error coordinates z1,

M0[z1] = M0[x1 − x1
∗]

M0[z1] = M0[
√

h4]−M0[
√

h4
∗], (50)

and z2,

M0[z2] = M0[x2 − α1]

M0[z2] = M0[
√

y1] +
A
B M0[x1] +

C
B M0[u1]−

2
BM0[Φ1] +

2c1

B M0[Φ2],
(51)

are modulated over a prescribed modulation receding horizon. The nonlinearities
√

h1,
√

h4, Φ1,
and Φ2 in Equations (52) and (53) cannot be directly modulated. However, if h1 and h4 are replaced
by measurements y1 and y4, respectively, and h4

∗ and ḣ∗4 are known trajectories, then these nonlinear
terms can be computed numerically and modulated on each iteration. Moreover, after modulating
z2, the following modulated virtual control law α1 is obtained:

M0[α1] = −
A
B M0[

√
y4]−

C
B M0[u1] +

1
BM0[Φ1]−

2c1

B M0[Φ2], (52)

with modulated dynamics:

M0[α̇1] = M0[−A
B ẋ1 −

C
B u̇1 +

2
B Φ̇1 −

2c1

B Φ̇2],

M1[α1] = −
A
B M1[

√
y4]−

C
B M1[u1] +

2
BM1[Φ1]−

2c1

B M1[Φ2].
(53)

Finally, the sliding surface is modulated as follows:

M0[σ1] = M0[c2z2 + ż2 +
B
2

Φ3],

M0[σ1] = c2M0[z2] + M1[z2] +
B
2

M0[Φ3],
(54)

with dynamics:

M0[σ̇1] = M0[c2ż2 + z̈2 +
B
2

Φ̇3],

M1[σ1] = c2M1[z2] + M2[z2] +
B
2

M1[Φ3].
(55)

With the modulating functions technique, all the virtual controls of u1 have derivative-free input–
output algebraic relations. Even though u1 depends on the noise-measured state variables y1 and
y4, the MF technique filters noise when performing integration of these signals. Figure 3 shows
the block diagram of the modulating-function-based backstepping super-twisting control system for
a QTS.
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Figure 3. Block diagram of the modulating-function-based backstepping super-twisting control
system for a QTS.

5. Results and Discussion
5.1. Multivariable Sliding Mode Control of the Liquid Levels in Tanks n°3 and n°4

The control objective is to regulate the liquid levels of tank n°3 and n°4 at different
operating points with a nonlinear controller. To this end, the performance of a first-degree
sliding mode controller synthesized with the equivalent control method and a BSSTC were
compared in the absence of measurement noise and disturbances, for a total simulation
time Tsim = 1000 s and sample time Ts = 0.01 s. The model parameters and liquid level
operating points, the latter modeled as step inputs to the system, are shown in Table 1 and
Table 2, respectively. The lower and upper saturation thresholds for the pumps control
efforts were set at 10% and 60%, respectively. The design specifications of the BSSTC are
shown in Table 3.

Table 2. Liquid level operating points.

Operating Point Time Span Units Value

h3
∗, h4

∗ Tsim =
[
0 300

]
s cm 40, 7

h3
∗, h4

∗ Tsim =
[
300 600

]
s cm 10, 34

h3
∗, h4

∗ Tsim =
[
600 1000

]
s cm 24, 15

Table 3. The design specifications of the BSSTC for simulation in the absence of measurement noise.

Subcontroller Parameter Value (Dimensionless)

h3 c1, c2, c3, |∆|, λ1, λ2 1.50, 1.20, 1.00, 1.00, 1.50, 1.10

h4 c1, c2, c3, |∆|, λ1, λ2 2.50, 1.50, 1.00, 1.00, 1.50, 1.10

Figure 4 shows the control system time responses of all tanks at the operating points
described in Table 2, where the liquid levels of tanks n°3 and n°4 were satisfactorily
controlled by both the first-degree SMC and by the BSSTC. In addition, since the system
valves were calibrated for the minimum phase response, the liquid levels in tanks n°1 and
n°2 remained at safe operating points without overflow.
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Figure 4. Control system time responses of all tanks: (a) tank n°1; (b) tank n°2; (c) tank n°3; (d) tank
n°4; QTS with SMC (red line); QTS with BSSTC (green line); set point (blue line).

Figures 5 and 6 show the control system time responses of tanks n°3 and n°4 in
the different time intervals, where the SMC had a faster settling time than the BSSTC.
The drawback of using the SMC for this specific application is seen in Figure 7, where the
control efforts u1 and u2 of the SMC exhibited a considerable energy effort with undesirable
chattering that oscillated from 10% to 60% of the pumping effort. This condition would
be detrimental to the pumps actuators. On the other hand, the BSSTC did not present
chattering in the absence of noise, and the energy effort was much lower than the SMC.

Figure 5. Control system time responses of tank n°3: (a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300 600] s;
(d) t = [600 1000] s; QTS with SMC (red line); QTS with BSSTC (green line); set point (blue line).

Figure 8 shows the errors between the actual and the desired liquid level over time,
where it is noted that the error with the SMC converged faster than with the BSSTC. More-
over, Table 4 shows the results related to the following performance indices: the integral
time absolute error (ITAE), integral absolute error (IAE), and the integral square error (ISE),
where the SMC obtained better scores since it had a faster convergence, without overshoot,
compared to the BSSTC, which showed a slower response with overshoot in some intervals
of the trajectory. This result is especially important as it shows that although the SMC
obtains slightly better dynamic error scores, it does so at the expense of more energy used
in the control effort and the introduction of chattering.
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Figure 6. Control system time responses of tank n°4: (a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300 600] s;
(d) t = [600 1000] s; QTS with SMC (red line); QTS with BSSTC (green line); set point (blue line).

Figure 7. Control efforts u1 and u2: (a) control effort u1; (b) control effort u2; QTS with SMC (red
line); QTS with BSSTC (green line).

Table 4. Performance indices.

Controller Subcontroller ITAE (cm) IAE (cm) ISE (cm2)

SMC h3 1813.8 1267.9 2525.7
h4 2864.3 782.9 1028.9

BSSTC h3 1919.5 1346.0 2549.2
h4 3203.0 861.1 1050.3
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Figure 8. Control system errors: (a) QTS with BSSTC; (b) QTS with SMC; error h3-h3∗ (green dotted
line); error h4-h4∗ (blue line).

Although, the BSSTC would work in conditions where the derivatives of the system
state variables were accessible, and there was no measurement noise, this is not the case in
most industrial applications, where sensors are not available due to budget constraints or
they are not physically realizable. For example, for this plant, the velocity and acceleration
of the liquid level could not be directly measured.

5.2. Modulating-Function-Based Backstepping Super-Twisting Control of Liquid Levels in Tanks
n°3 and n°4

For this end, the goal was to test the robustness of the modulating-function-based
BSSTC against nonlinear measurement noise. Noise with a mixture of Gaussian distri-
butions was generated for the level transmitters LT1, LT2, LT3, and LT4, according to the
mixture probability p(x) = (1− ε)pg1 + εpg2, where ε is the probability for distribution
pg2 N(0, (σ2)

2), and σ1 and σ2 are the standard deviations. Table 5 shows the specifications
of the Gaussian mixture model (GMM). In Figures 9 and 10, the quantile–quantile plots
(QQ plots) and sample vs. amplitude plots are shown, respectively, where it is evident that
the GMM exhibited nonlinear characteristics.

Table 5. Gaussian mixture model.

Distr. Parameters Units Values

pg1

Mean µh1 , µh2 , µh3 , µh4 cm 0.01, 0.02, 0.03, 0.02
Standard deviation σh1 , σh2 , σh3 , σh4 cm 0.15
Probability (1−ε) unitless 0.95

pg2

Mean µh1 , µh2 , µh3 , µh4 cm 0.05, 0.04, 0.07, 0.04
Standard deviation σh1 , σh2 , σh3 , σh4 cm 0.25
Probability (ε) unitless 0.05



Sensors 2023, 23, 5222 17 of 24

Figure 9. Gaussian mixture quantile–quantile plot: (a) level transmitter LT1; (b) level transmitter LT2;
(c) level transmitter LT3; (d) level transmitter LT4.

Figure 10. Noise amplitude: (a) level transmitter LT1; (b) level transmitter LT2; (c) level transmitter
LT3; (d) level transmitter LT4.

In Figure 3, the modulating function filter was synthesized with a modulation function
kernel order of one and two kernel derivatives, with a polynomial waveform type, a time
horizon interval of 3.00 s, and a sample time of 0.01 s. The polynommial waveforms of the
kernel and its two derivatives are shown in Figure 11. It received the measurement vector
y and the control vector u as inputs, and sent the modulated vectors Mi[u] and Mi[y] to
the backstepping sliding surface block. The backstepping sliding surface block generated
the modulated sliding surfaces σ1 and σ2. Finally, the backstepping super-twisting control
yielded the modulated virtual control wi and output a modulated backstepping control
signal along the super-twisting terms for the plant.
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Figure 11. Modulating functions: modulating function kernel (green line); modulating function
kernel first derivative (blue line); modulating function kernel second derivative (red line).

For this result, the performance of the MF-BSSTC in the presence of measurement
noise was tested, setting up the gains according to Table 6.

Table 6. MF-BSSTC design specifications for the simulation under measurement noise.

Subcontroller Parameter Value (Dimensionless)

h3 c1, c2, c3, |∆|, λ1, λ2 1.20, 1.02, 1.00, 1.00, 1.50, 1.10

h4 c1, c2, c3, |∆|, λ1, λ2 1.20, 1.05, 1.00, 1.00, 1.50, 1.10

In Figures 12 and 13, the closed-loop time response of the QTS control system with the
MF-BSSTC (green line) is plotted against the closed-loop time response of the system with
measurement noise (red line). It is remarkable that the MF technique adequately filtered out
the noise by modulating all the virtual controls of the backstepping algorithm, rendering
it free from the derivatives of the system state variables. Nonetheless, the MF technique
generated a delay of 1.5 s. The method to compensate for this delay, either a Smith predictor
or any other delay-compensation technique, is outside the scope of this paper.

The controller gains were set to minimize the amplitude of the oscillations in the
closed-loop response of the system. Since the MF-BSSTC was tested with non-Gaussian
measurement noise, which is a mixture of two different Gaussian distributions, the MF-
BSSTC effectively filtered both distributions, but a minimal amplitude variation over time
was still visible when the Gaussian mixture changed from one distribution to another.
Figure 14 shows the control efforts u1 and u2, which exhibited minimum oscillations at
steady state that were caused by the varying amplitude of the filtered noise. If the gains
were increased to improve the settling time and robustness of the response, then the
oscillations would increase, and with this, the control effort itself would show greater
oscillations. Then, the MF-BSSTC must be synthesized based on the required closed-loop
behavior and in terms of a relationship between the noise filtering capability and the
desired robustness of the controller.
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Figure 12. Control system time responses of tank n°3: (a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300
600] s; (d) t = [600 1000] s; control system time responses with measurement noise (red line); control
system time responses with MF-BSSTC (green line); set point (blue line).

Figure 13. . Control system time responses of tank n°4: (a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300
600] s; (d) t = [600 1000] s; control system time responses with measurement noise (red line); control
system time responses with MF-BSSTC (green line); set point (blue line).
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Figure 14. Control efforts u1 and u2: (a) control effort u1; (b) control effort u2; MF-BSSTC (green line).

To test the robustness of the controller in the presence of measurement noise, a dis-
turbance ξ4 = −300 m3/s was applied to the system in the time interval t = [700 900] s,
corresponding to a loss of flow in pump n°2. Then, the MF-BSSTC gains were increased
to λ1 = 29.24 and λ2 = 418, for |∆| = 380, so that the controller offered more robustness.
Figure 15 shows that the controller was almost insensitive to the disturbance. Moreover,
this robustness came with the chattering of the control signal u2 at time interval t = [310
461] s, as shown in Figure 16. At the mentioned time interval, there was an overestimation
of the controller gains, set as fixed for the worst-case disturbance. Perhaps, this high-gain
condition of the controller could be solved by adapting the gains online.

Figure 15. Control system time responses of tank n°3 in the presence of a disturbance to the system:
(a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300 600] s; (d) t = [600 1000] s; control system time responses
with measurement noise (red line); control system time responses with MF-BSSTC (green line); set
point (blue line).
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Figure 16. Control efforts u1 and u2 in the presence of a disturbance to the system: (a) control effort
u1; (b) control effort u2; MF-BSSTC (green line).

5.3. Comparison with Other Controllers

The MF-BSSTC was compared to two of the most used controllers with the QTS,
the decoupled PI controller [12] and the model predictive controller (MPC) [15].

A disturbance ξ4 = −300 m3/s at time interval t = [600 1000] s was introduced
to the system, corresponding to the flow loss in pump n°2. The MF-BSSTC gains for
subcontrollers n°1 and n°2 were c1 = 1.65, c2 = 1.05, c3 = 1.0, λ1 = 29.24, and λ2 = 418
and c1 = 1.70, c2 = 1.05, c3 = 1.0, λ1 = 29.24, and λ2 = 418, respectively. The decoupled
PI controller was synthesized using the MATLAB PID tuner app, with gains Kp1 = 19.01
and ki1 = 0.74, and Kp1 = 26.91 and ki1 = 1.18, respectively, which maximized the robust
transient behavior. On the other hand, the MPC was set with a prediction horizon Hp = 200
and a control horizon Hc = 200. Moreover, both linear controllers were linearized with
respect to the operating point (ho3 = 12.4, ho4 = 12.7).

Figure 17 shows that the MF-BSSTC had more robustness to disturbances and a faster
response than the decoupled PI and MPC controllers. When disturbed, the PI controller
and MPC showed strong set-point deviations from the set point, whereas the MF-BSSTC
showed more insensitivity to the disturbance. As shown in Figure 18, the control efforts
of the PI and MPC were lower than 10% for all the time responses, indicating that their
robustness and speed of convergence were related to this low energy consumption.

Figure 17. Control system time responses of tank n°3 in the presence of a disturbance to the system:
(a) t = [0 1000] s; (b) t = [0 300] s; (c) t = [300 600] s; (d) t = [600 1000] s; control system time responses
with measurement noise (red line); control system time responses with MF-BSSTC (green line);
control system time responses with decoupled PI (cyan line); control system time responses with
MPC (magenta line); set point (blue line).
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Figure 18. Control efforts u1 and u2 in the presence of a disturbance to the system: (a) control effort
u1; (b) control effort u2; MF-BSSTC (green line); decoupled PI (cyan line); MPC (magenta line).

Table 7 shows that the best results related to the ITAE, IAE, and ISE criteria were
obtained with the MF-BSSTC. The PI and MPC controllers obtained high ITAE and ISE
values for subcontrollers u1 due to their underdamped responses to the disturbance. Even
though they converged to the desired liquid level, their transient responses were very slow.

Regarding the mean computational cost, it was calculated based on the time it took
to execute the loop controls. For instance, the mean computational efforts of the MF-
BSSTC, PI, and MPC, for a total of 100, 000 iterations, were 1.1685× 10−4 s, 3.9600× 10−4 s,
and 2.8959× 10−5 s, respectively. Even though the MF-BSSTC had memory requirements
related to storing measured samples during the modulating receding horizon, its computa-
tional cost was lower than that of the PI controller. In addition, the MPC achieved a lower
computational cost.

Table 7. Performance indices.

Controller Control Input ITAE IAE ISE

MF-BSSTC u1 4711.8 77.1 659.0
u2 4176.1 101.4 786.7

PI u1 33,243.0 911.9 4564.3
u2 5549.4 387.2 1935.1

MPC u1 9997.1 250.9 1414.0
u2 2804.9 243.6 1176.9

6. Conclusions

In this paper, it has been proved that it is feasible to adopt a nonlinear approach to the
QTS liquid level control problem, using a multivariable sliding mode controller. For this,
a first-degree SMC and a BSSTC were proposed based on the design of a multivariable
sliding surface through the equivalent control method and backstepping virtual controls,
respectively.

The results in the absence of noise showed that the liquid level control can be attained
at any operating point without the need to linearize the system over a specific operating
point. Although, the first-degree SMC exhibited a faster and more robust response, it
introduced chattering into the control signal that was detrimental to the actuators of
the plant.

On the other hand, the BSSTC showed almost no chattering at the expense of a slower
settling time. In addition, a method to make the BSSTC derivative-free and noise-immune
based on the modulation of the backstepping virtual controls was proposed, demonstrating
that it is possible to use the backstepping algorithm and sliding modes in the presence
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of non-Gaussian noise through the modulating functions technique at the expense of
introducing a time delay equal to half the receding horizon used.

Finally, with respect to future work, we will try to extend the current results consider-
ing the time delay in the dynamic behavior of the QTS and the conditions in which this
system operates in non-minimum phase mode, as well as leakages and actuator failures.
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