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Abstract: Automatic Modulation Recognition (AMR) can obtain the modulation mode of the received
signal for subsequent processing without the assistance of the transmitter. Although the existing
AMR methods have been mature for the orthogonal signals, these methods face challenges when
deployed in non-orthogonal transmission systems due to the superimposed signals. In this paper, we
aim to develop efficient AMR methods for both downlink and uplink non-orthogonal transmission
signals using deep learning-based data-driven classification methodology. Specifically, for downlink
non-orthogonal signals, we propose a Bi-directional Long Short-Term Memory (BiLSTM)-based AMR
method that exploits long-term data dependence to automatically learn irregular signal constellation
shapes. Transfer learning is further incorporated to improve recognition accuracy and robustness
under varying transmission conditions. For uplink non-orthogonal signals, the combinatorial number
of classification types explodes exponentially with the number of signal layers, which becomes the
major obstacle to AMR. We develop a spatio-temporal fusion network based on the attention mecha-
nism to efficiently extract spatio-temporal features, and network details are optimized according to
the superposition characteristics of non-orthogonal signals. Experiments show that the proposed
deep learning-based methods outperform their conventional counterparts in both downlink and
uplink non-orthogonal systems. In a typical uplink scenario with three non-orthogonal signal layers,
the recognition accuracy can approach 96.6% in the Gaussian channel, which is 19% higher than the
vanilla Convolution Neural Network.

Keywords: automatic modulation recognition; non-orthogonal signal; deep learning; BiLSTM;
transfer learning; attention mechanism; spatio-temporal fusion

1. Introduction

Automatic Modulation Recognition (AMR) analyzes non-cooperative received sig-
nals to obtain their modulation types through a series of processes, including signal pre-
processing, feature extraction, and classification recognition [1]. AMR has been widely used
in various fields, such as cognitive defined radio, military intelligence, communication jam-
mers, surveillance, spectrum management, and communication reconnaissance [2], which
can improve spectrum utilization and solve the problem of spectrum shortage. At present,
the main goal of the AMR is to quickly and accurately identify the modulation type of the
signal for demodulation and analysis, which is an important process for accurately learning
and reliably sharing the spectrum to improve the efficiency of spectrum utilization [3].

Conventional modulation recognition is mainly accomplished via sophisticatedly de-
signed signal processing methods [4]. The design of a modulation classifier involves two ma-
jor aspects: signal pre-processing and modulation classification. Signal pre-processing
can combat the unintended channel variations, e.g., noise suppression, matched filtering,
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and equalization, as well as providing rough parameter estimations, e.g., the Signal-to-
Noise Ratio (SNR) and carrier frequency. After pre-processing, classification algorithms can
be deployed, which are divided into two categories [5]: likelihood ratio-based algorithms
and feature-extraction-based algorithms. The algorithm based on likelihood ratio regards
AMR as a multivariate hypothesis testing problem, and uses the likelihood function of
the signal as the feature vector, which is then fed into the classifier to form the decision
criterion [6]. The algorithm based on feature extraction is similar to the multivariate pattern
recognition problem, mapping from the observed signal space to the feature space and
then to the decision space [7]. In [8], Jajoo et al. proposed a recognition method based on
constellation graph feature clustering for PSK/QAM modulation recognition in slow flat
fading channels. In [9], based on the cumulative distribution function curve of the received
signal’s normalized instantaneous amplitude, a signal modulation recognition algorithm
for a coherent optical receiver is proposed. However, the above classification methods rely
on hand-designed criteria or features, which cause poor regularity and adaptability when
facing complicated and varying signal models [10].

The recent boom in deep learning (DL) has shed new light on AMR due to its data-
driven nature and automatic feature extraction ability [11]. Starting from the raw data
end-to-end, features can be automatically extracted using deep neural networks (DNN)
with a large number of free parameters, which can avoid the problems of constellation
mapping recognition algorithms [12]. A DNN framework is designed in [13] for signature
classification based on automatic features, which can complete the signature classification
for Internet-of-Things devices. Convolutional Neural Network (CNN) is one of the most
popular and successful deep learning architectures. Two layers of CNN are combined in [14]
for training on different datasets to achieve high precision discrimination between 16QAM
and 64QAM. Tekbıyık et al. propose a novel convolutional neural network (CNN) classifier
mode to classify modulation classes in terms of types [15]. The proposed classifier is
robust against realistic wireless channel impairments with training datasets for appropriate
modeling of real-world conditions. In [16], a improved narrow 2D CNN is applied in
large and densely encoded time series for blind temporal learning. Compared with CNN,
Recurrent Neural Network (RNN) can process a series of vectors over time and extract PRI
better. Considering the sequence characteristics of PRI, RNN combined with an attention
mechanism is proposed to identify the modulation type of radar signals [17]. With the
representation learning, Zhang et al. proposed an IQ-FOC data representation of the
preprocessed signal, where the raw IQ data are combined with the fourth-order cumulant
(FOC) of the signal [18]. The IQ-FOC representation enables LSTM models to achieve high
classification accuracy. To solve the long-term dependence problem, a Bi-directional Long
Short-Term Memory (BiLSTM) layer is cascaded in [19], which is constructed to extract
the context information of the signal. In this aspect of combinational neural networks,
CNN and LSTM are combined in [20] to extract signal IQ time series features, and the
cross-layer link method is used to avoid the loss of effective information. In other works,
shallow convolutional networks, Gate Recurrent Unit (GRU), and DNN are combined into
CGDNet [21]. Shallow convolutional networks and GRU can extract the features of IQ
sequence signals and DNN can complete the classification task after inputting the features.

In the upcoming era of the integration of space, air, and ground networks, the non-
orthogonal superposition among radio signals will become a major trend [22,23]. On the
one hand, with the intentional introduction of non-orthogonal transmissions, such as non-
orthogonal multiple access (NOMA), system throughput and large connectivity can be
achieved [22]. On the other hand, with the ever-increasing number of wireless devices and
the complicated wireless electromagnetic environment, the superposition among radio
signals also becomes inevitable [24]. Non-orthogonal wireless systems are further divided
into downlink and uplink scenarios, respectively. The main characteristics of the downlink
non-orthogonal systems are single-point transmission and multi-point reception, with a
total power limitation. In non-orthogonal uplink transmissions, multiple users simulta-
neously transmit signals to a receiver using superposition coding. The combinatorial
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number of signals explodes exponentially under such circumstances. To effectively exploit
the spectrum resources in such complicated electromagnetic environments, efficient AMR
methods for non-orthogonal systems are required.

Nevertheless, few studies have focused on the aforementioned issue. Dong et al. use
a Fully Connected Deep neural Network (FC-DNN) and LSTM to process the multiple
received signal packets of NOMA using feedforward and recurrent structures [25]. In [26],
a novel machine learning based algorithm is proposed to achieve an automatic modu-
lation classifier and improve the performance of beyond fifth generation (B5G) wireless
communication system, which is assisted by Orthogonal Frequency Division Multiplexing
(OFDM) and Non-Orthogonal Multiple Access (NOMA) techniques. In order to mine the
effective features with a limited number of labels, Pan et al. propose a multi-instance,
multi-label, weakly supervised learning method based on GAN [27], taking aliased signals
as an example. Nevertheless, there is still a need for efficient AMR methods for uplink
and downlink non-orthogonal wireless systems. The major design challenges are laid out
as follows:

• For the downlink non-orthogonal scenario, the superposition of signals can cause
irregular signal shapes. The conventional hand-crafted features become inefficient.
This poses a challenge to both the feature design and signal classification stages since
the learning ability of the conventional classifier is limited.

• For uplink non-orthogonal scenarios, the challenge is more significant. With the
increase in the transmit signal layers, the combinatorial number of classification
types explodes exponentially. Traditional classification methods thus suffer from high
computational complexity and low recognition rate.

To tackle the above challenges, this paper aims to exploit the advances in automatic
feature extraction and efficient classification ability of DL models to improve the accuracy
of AMR for non-orthogonal wireless systems. The contributions of this paper are detailed
as follows:

• In the downlink scenario, we propose a modulation recognition method based on
BiLSTM to extract the sequential information of the superimposed signals. For the
scenario where the number of training samples is insufficient, transfer learning is used
to improve the network modulation recognition ability in small sample scenarios.

• In the uplink scenario, we consider Spatio-Temporal Fusion Network based on Atten-
tion Mechanism (STFAN), which can deal with the explosive increase of the combina-
torial number of classification types. The spatial feature extraction module uses an
Inception block to efficiently reduce the computational complexity, and the temporal
feature extraction module uses BiLSTM to mine the effective signal features in the
time domain.

• Experiments show that the proposed AMR methods for non-orthogonal signals out-
perform the conventional methods as well as vanilla DL methods, such as CNN and
LSTM, under various channel conditions. Significant advantages of the proposed
methods with respect to both recognition accuracy and wireless channel robustness
are observed, especially in a high SNR region.

The rest of this paper is organized as follows. Section 2 illustrates the model for
downlink and uplink non-orthogonal systems. Sections 3 and 4 analyze the proposed
AMR methods for downlink and uplink non-orthogonal signals, respectively. In Section 5,
experiments are provided to validate the efficiency of the proposed methods. Finally,
Section 6 concludes the paper.

2. Signals Model for Non-Orthogonal Transmission Systems

This section elaborates on the downlink and uplink non-orthogonal transmission
systems, respectively.
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2.1. Downlink Non-Orthogonal System Model

In the downlink non-orthogonal system, the base station uses NOMA mapping to
superimpose the signals of multiple users on the same time-frequency resource and transmit
them. The key design elements of NOMA can be roughly classified into three categories,
namely bit-level, symbol-level, and wave-level designs [28]. Based on NOMA adopted
by the base station, the user side can select the corresponding receiving algorithm to
demodulate and decode the received signal. In the downlink scenario, different user
signals can experience the same channel.

The overall architecture of the non-orthogonal signal modulation identification sys-
tem for downlink scenarios is illustrated in Figure 1. The original information bits are
transmitted as NOMA symbols after bit-to-symbol mapping on the base station side.
The bit-to-symbol mapping includes two parts: constellation mapping and NOMA modula-
tion. This work is mainly for the identification of non-orthogonal schemes; the constellation
mapping method is QPSK. On the user side, the baseband symbol sequence is obtained by
analog-to-digital conversion and match-filtering. For one of the users, the signal is received
through the antenna, and the baseband signal is obtained after downconversion. Then mod-
ulation recognition methods based on DL are used to identify the non-orthogonal scheme
adopted by the base station. Finally, the corresponding receiver is used to demodulate and
decode the output information bits.
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Figure 1. Downlink non-orthogonal system structure.

Denote h(n) as the channel parameters, then the channel h(n) between the transmitter
and receiver can be simulated using additive white Gaussian noise (AWGN). Linearly
increase wideband noise, with constant spectral density and Gaussian amplitude. Denote
v(n) as the channel noise, then the baseband symbol sequence obtained after pre-processing
can be expressed as

y(n) = h(n)

(
J

∑
j=1

√
Pjxj(n)

)
+ v(n), (1)

where xj(n) is the sequence of symbols sent by the j-th stream, and Pj is the transmit power

of the j-th stream, satisfies
J

∑
j=1

Pj = 1.

In the downlink non-orthogonal system, this work will classify the five non-orthogonal
schemes, Sparse Code Division Multiple Access (SCMA), Multi-User Shared Access (MUSA),
Polarization Division Multiple Access (PDMA), Power Domain Non-orthogonal Multiple
Access (PD-NOMA), and Welch-bound Spreading Multiple Access (WSMA), for modula-
tion identification. The above five multi-user access modes define multi-user bit-to-symbol
mapping which can be regarded as modulation. Moreover, each user has its corresponding
codeword, and the codeword is in one-to-one correspondence with the subcarrier. There-
fore, a strong relationship is contained between each codeword of different modulation
recognition methods in the downlink system. The modulation recognition method needs
to mine the sequence information. After determining the modulation mode, the weak user
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demodulates its own symbol by using a Maximum Likelihood detector to treat other user
signals as interference.

2.2. Uplink Non-Orthogonal System Model

In uplink non-orthogonal scenarios, multiple users transmit signals to the base station
separately, which will receive and process the superimposed signals. At the receiver,
the baseband signals are received and obtained after downconversion. Then the users are
sorted by SINR and demodulated through the serial interference cancellation algorithm.

The structure of an uplink non-orthogonal system is illustrated in Figure 2. The modu-
lation recognition module can obtain the signal category and corresponding power level of
each user by identifying the baseband symbol sequence obtained through pre-processing.
After that, the bit stream of different users can be recovered through the multiuser non-
orthogonal signal receiver using the serial interference removal module, which can demod-
ulate the user signal with the largest power according to the power size. The demodulated
data will be deleted from the original data, and the above steps will continue until the data
of the user with the minimum power are also demodulated successfully.
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Figure 2. Uplink non-orthogonal system structure.

Assume that users with different distances from the base station send data to the base
station at the same time, the received signal at the base station can be denoted by

y(n) =
I

∑
i=1

h(n)
√

Pixi(n) + v(n), (2)

where h(n) is the channel parameters of the signals sent by the i-th user, xi(n) is the symbol
sequences sent by i-th user, y(n) is the signal received at the base station, and

√
Pi is the

transmit power of i-th user. v(n) is the channel white Gaussian noise, which satisfies the

expression n =
I

∑
i=1

vi(n).

In the traditional uplink transmission methods, the signaling is used to identify the
modulation mode of each user. After that, SIC will be performed at the receiver, and the
users are sorted by SINR and demodulated through the serial interference cancellation
algorithm. Due to the explosive growth of the number of modulation modes and limited
spectrum resources, modulation recognition methods need to consider reducing signal-
ing overhead.

3. Proposed Deep Transfer Learning Incorporated BiLSTM for Downlink AMR

In the downlink non-orthogonal system scenario, the user side needs to know the
non-orthogonal scheme used by the base station to determine the receiver. Therefore,
this section will focus on the identification of non-orthogonal multiple access schemes
in non-orthogonal modulation, and a non-orthogonal signal recognition model based on
BiLSTM is proposed. In Section 3.1, we consider the network design process and design the
network parameters. The modulation recognition method will be introduced in Section 3.2,
based on deep transfer learning for the insufficient number of samples.
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3.1. Neural Network Architecture with BiLSTM

In the downlink system, the NOMA signal is complex and variable. To mine the infor-
mation on the sequence of the NOMA signal, a time series model is needed. RNN has the
problem of gradient disappearance, which results in the loss of information from previous
signal frames when dealing with long sequence data.LSTM can solve the vanishing gradient
problem of RNN but cannot encode signal frames that have no direction from backward
to forward. BiLSTM is a combination of forward LSTM and backward LSTM, which can
extract the information before and after the complex NOMA signal sequences effectively.

As a fully connected neural network, BiLSTM uses the same back propagation,
the same loss function, and the same optimizer. Different from other fully connected
networks, BiLSTM introduces LSTM cells into the structural design, which can better
capture the long-term dependencies in the sequence of NOMA. Figure 3 shows the overall
structure of the BiLSTM and the LSTM cell unit structure in BiLSTM. The flow process of
information flow in LSTM cells can be summarized from three door control equipments:

• Forget Gate
ft = σ(WFxt + W f ht−1 + b f ) (3)

• Input Gate {
it = σ(Wixt + Wiht−1 + bi),

at = tanh(Waxt + Waht−1 + ba)
(4)

• Output Gate {
ot = σ(Woxt + Woht−1 + bo),

ht = ot · tanh(St)
(5)

• Cell status update
St = ftSt−1 + itat (6)

In the above equations, ht−1 and ot−1 are, respectively, the channel state and output of
the previous cell. ht and ot are, respectively, the channel state and output of the current cell,
and σ(·) is the Sigmoid activation function. Moreover, Wi, Wi, Wa, Wo are, respectively, the
weights of each gate in the network, and b f , bi, ba, bo are, respectively, the bias terms of each
gate. The process of finding partial derivatives with respect to cell state information can be
expressed as

δt−1 =
∂St

∂st−1 =
∂St

∂st
∂st

∂st−1 = δt ∂st

∂st−1 = δt( ft + ...). (7)

1(h , )t tx−


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Figure 3. BiLSTM network structure.

When ft = 1, the remaining terms are small and will not affect the gradient conduction
to the previous time instant. Therefore, the gradient will not disappear even if the network
layer is deep. When ft = 0, the state at the current time will not be affected by that of the
previous time, and the gradient will not be transmitted back, which can effectively solve
the problem of gradient disappearance.
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In addition to the network structure design, the BiLSTM network structure parameters
for AMR of non-orthogonal signals will be taken into consideration, specifically including
the following items:

(1) Bidirectional LSTM Layers: The number of Bidirectional LSTM Layers refers to the
number of convolutional layers where the input symbol sequences pass through. In this
work, the modulation recognition performance is observed through subsequent simulation
experiments under different LSTM layer number designs, and the maximum number of
layers is set to three layers according to experience.

(2) Forgetting Bias: Forgetting Bias is designed to reduce the scale of forgetting during
training. The activation function Sigmoid of the forgetting gate has the characteristic that
the larger the input is, the closer the output is to 1. Therefore, if there is a fixed internal
bias, the overall input will not be too small. Under such conditions, the network can
not only remember more previous information from NOMA signals but also reduce the
occurrence of the vanishing gradient problem to some extent. In the subsequent simulation,
the modulation recognition performance with a Forgetting Bias of 1, 0.8, and 0.6 will be
tested, respectively.

(3) Time Step: Time Step is determined by the dimension of the input data. Then the
IQ data of a NOMA symbol will be input at each Time Step. The modulation recognition
performance in the presence of 4, 8, and 12 symbols in the input NOMA signal block
will be simulated, respectively, so as to determine the optimal number of group packets.
In the subsequent simulation, the modulation recognition performance when there are 4, 8,
and 12 NOMA symbols in the input packet will be tested, respectively, so as to determine
the optimal value of the Time Step.

The above network structure design will be simulated in Section 5.1, referring to the
current commonly used settings of neural networks, and proposing the optimal network
architecture. The specific network structure selection is shown in the Table 1.

Table 1. Network Structure Selection of BiLSTM.

Name Parameters Activation Function Output Data Stream Np
1

Input Layer / / (128,2) /
BiLSTM_1 NFL = 128, NBL = 128 2 Tanh/Sigmoid (12,256) 140,288
BiLSTM_2 NFL = 64, NBL = 64 Tanh/Sigmoid (1,128) 164,352
FC layer 64 ReLU (1,64) 8256

Output Layer 5 Softmax 5 325

1 Np denotes the number of parameters. 2 NFL is the number of forward LSTM neurons, and NBL is the number of
backward LSTM neurons.

3.2. Deep Transfer Learning Enhanced BiLSTM

In many practical communication scenarios, it is difficult to obtain enough labeled
data for training, which will cause difficulties in feature extraction, such as overfitting [29].
However, transfer learning can effectively reduce the requirements of data volume in a
NOMA system and training time in the target domain [30]. This subsection will carry out
modulation recognition research on non-orthogonal signals in small sample scenarios to
expand the application scope of the modulation recognition method based on BiLSTM.
We extend the study to the case where only a small number of labeled signal samples can
be obtained in the target scenario, while a large number of labeled signal samples can be
obtained in other scenarios.

Domain and task are two important concepts in the transfer learning model. The
domain consists of a source domain and a target domain. Given the domain D, the task T
consists of a category space Y and a prediction function f (x), that is T = {Y, f (x)}. Considering
only one source domain DS and one target domain DT in this work, the source domain data
and the learning task can be expressed as DS =

{
(xS1 , yS1), ..., (xSnS

, ySnS
)
}

and Ts, respectively.
xSi ∈ XS denotes the data instance, and ySi ∈ YS denotes the modulation category correspond-
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ing to the data. Referring to the representation of the source domain, the target domain data and
the learning task can be expressed as DT =

{
(xT1 , yT1), ..., (xTnT

, yTnT
)
}

and TT, respectively.
Transfer learning relaxes the assumption that the training data must be independent

and identically distributed with the test data and does not need to train the model in
the target domain from scratch. Therefore, the layer transfer model will be used in the
pre-trained BiLSTM model so as to transfer a part of the network structure and parameters
in the source domain to a part of the target domain neural network. Then the knowledge of
DT and TS can be exploited to achieve the goal of improving the statistical performance
under the learning task TT , which satisfies DS 6= DT or TS 6= TT .

The model based on layer transfer is shown in Figure 4. The structure and parameters
trained in the source domain are copied, and the layer without copy is trained with the
NOMA sequence information of the target domain. The implementation process of the
model can be divided into the following steps:

(1) Step 1: Set the NOMA sequence information of the source domain and target
domain as S and T, respectively. Use the data of S to train the BiLSTM network and obtain
the training model HS.

(2) Step 2: Use the part layers parameters of the model HS in HT and solidify
the parameters.

(3) Step 3: Use the data of T to retrain the parameters of unsolidified network layers in
model HT .

 Layer_1 Layer_2 FC layer

Layer_1 Layer_2
FC layer Second 

training

Pre-trained network

Transfer neural network

output

output

Changes of channel environment 

Parameter curing

Bidirectional LSTM

Bidirectional LSTM

Figure 4. Structure of transfer learning model with layer transfer.

When the curing layer and the secondary training layer are selected, different choices
affect the recognition accuracy of small sample non-orthogonal signals in the downlink
system. The mode of curing can be generally divided into three cases: ¬ Directly train
the original model twice without curing layer. ­ Solidify all bidirectional LSTM layers and train
the fully connected layer twice. ® Solidify the shallow bidirectional LSTM layer and the deep
bidirectional LSTM layer, then train the fully connected layer twice. In order to determine
the best model architecture, this work will simulate the performance of the above three
different layer migration models in Section 5.1.

4. Proposed Attention-Based Spatio-Temporal Fusion Network for Uplink AMR

In the uplink non-orthogonal transmission scenario, the number of modulation
schemes increases exponentially with the number of users. Constellation mapping recog-
nition methods struggle to classify the modulation by extracting features. We consider
utilizing the strong ability of DL to fit features of NOMA signals, and extracting features
from the spatial and temporal dimensions. In Section 4.1, we present the design of STFAN.
The corresponding DL optimization method is illustrated in Section 4.2.
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4.1. Proposed Neural Network Architecture

In this subsection, the components of STFAN are introduced, including spatial feature
extraction, temporal feature extraction, and feature fusion. The specific structure of the
network is shown in Figure 5.

FC Softmax
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Figure 5. Spatio-temporal fusion network architecture based on attention mechanism. (a) Structure of
Inception. (b) Structure of SENet. (c) Self-attention feature implementation of BiLSTM. (d) Structure
of STFAN.

4.1.1. Spatial Feature Extraction

The spatial feature extraction of STFAN is composed of three layers of Inception blocks
and Attention layers. The Inception block extracts signal space information, and the Atten-
tion layer implements recalibration for different features of signals. The shortcut structure
is used to fuse the shallow information with the deep information to prevent information
loss. The specific structure is shown in Figure 5d, on the left side of the framework.

Google has taken the lead in proposing Inception [31], which can not only maintain
the sparsity of the network structure, but also take advantage of the high computational
performance of the dense matrix. The core contribution of Inception in this work is to
reduce the computational complexity and perform convolutional reaggregation at multiple
signal dimensions simultaneously. Convolution at multiple scales simultaneously can
effectively extract the multi-dimensional features of the signal, which leads to higher
accuracy in classification judgments. Figure 5a shows the detailed structure of Inception
adopted in this paper, which contains a total of three layers. The first layer uses a larger
1× 8 convolution kernel, and the second layer uses a smaller 1× 3 convolution kernel.
The third layer outputs directly, then the fusion module of Inception parallelizes the output
of the three layers in the depth direction of the network.

The output of each Inception layer is connected to the Attention layer separately.
In this work, SENet [32] is used as the Attention layer, which has the advantages of easy
implementation, good effect, and low complexity. The complexity of NOMA signals is
higher than that of traditional OFDM signals, which results in difficulty in selecting out
the key feature channels. SENet can learn the correlation between channels, screen out the
channel-specific attention, and assign different weights. The structure of SENet is shown in
Figure 5b. The implementation process of SENet can be divided into three operations:
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(1) Squeeze Operation: The global average pooling is used to obtain the global recep-
tive field in the channel dimension.

(2) Excitation Operation: A fully connected layer and a Softmax layer are used to
model the correlation between channels. The weight of the Excitation output represents the
importance of each feature channel.

(3) Reweight Operation: By using multiplication, each channel is weighted to the
original feature to realize the re-calibration of the original features in NOMA signals.

4.1.2. Temporal Feature Extraction

The temporal feature extraction module of STFAN consists of the BiLSTM layer and
Attention layer, as shown on the right of Figure 5d. The received I/Q data are expanded into
a sequence of symbols based on the time dimension. By mining the temporal relationship of
symbols in the sequence, it is beneficial to extract new signal features and further strengthen
the recognition ability of multiclass classification in the uplink system.

BiLSTM is used in the temporal feature extraction module to extract features in the
time dimension of I/Q signals waiting for recognition, which is the same as the one
described in [33]. Each feature point on the feature map output by the BiLSTM layer
has different contribution values to the modulation recognition performance. Therefore,
the self-attention mechanism is introduced at the end of BiLSTM as the Attention layer.

The self-attention mechanism is a variant of the attention mechanism, which can
effectively reduce the dependence on external sequence information and is better at mining
the internal correlation of signal features. As the self-attention feature implementation
process of BiLSTM shown on the left of Figure 5c, the similarity of the query and each
key will be calculated using the fully connected layer to obtain the weight. Then the self-
attention feature map of BiLSTM will be obtained by multiplying the weights normalized
by the Softmax function to the original feature map.

4.1.3. Feature Fusion

After the network extracts the features in the temporal and spatial domains, the above
features are fused together using the data fusion layer. In the data fusion layer, the shallow
and deep spatial features are globally pooled to obtain a one-dimensional vector. Then the
final feature is obtained by fusing the obtained temporal features, and then it is passed
through the fully connected layer and the Softmax layer to output the final recognition
result. The fusion of spatial and temporal features can amplify the difference between
signals, which can improve recognition accuracy.

4.2. DNN Parameter Optimization

The performance of deep learning is closely related to optimization algorithms and
data processing. Different methods will lead to different training effects [34]. Several
parameter optimizations used in STFAN will be described as follow:

(1) Data Normalization: Data normalization can accelerate the convergence speed of
the network and improve the accuracy of the model to a certain extent. Common data
normalization methods include max-min normalization and Z-score normalization, etc.
Z-score normalization will be used in STFAN to set the mean of the signal to 0 and the
standard deviation to 1, which is calculated as

x∗ =
x− x

σ
, (8)

where x denotes the mean, σ denotes the standard deviation, and x is the vector of
each eigenvalue.

(2) Batch Normalization: Covariate Shift (ICS) can lead to a lower learning rate and
convergence speed of the network. Batch Normalization (BN) is an optimization method
proposed by Google in 2015 to solve ICS [35]. BN is the normalization and decentralization
of Batch data, which can reduce the dependence on parameter initialization, accelerate
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the training process, and increase the generalization ability of the model. The specific
implementation process can be expressed as

yi = γx̂i + β, (9)

where
x̂i =

xi − µB√
σB2 + ε

. (10)

In Equation (10), xi denotes the i-th data sequence in a single Batch, µB denotes
the mean of the data in a single Batch, and σB

2 denotes the variance of a single Batch.
The parameters γ and β in Eqiation (9) are introduced to restore the expressive power of
the data itself. When γ2 = σ2 and β = µ, the equivalent transformation can be achieved
with the preservation of the distribution in original features. Moreover, the convergence
speed of STFAN will be accelerated after the introduction of the BN layer.

(3) Activation Function: Since the input I/Q symbol data signal have negative values,
the PReLU activation function will be introduced in this subsection as an alternative [36].
The slope of PReLU is small in the negative value domain, which can effectively avoid
the ‘Dead ReLU’ phenomenon. Compared with ELU, PReLU is a linear operation in the
negative range with a small but never zero outcome. The specific expression of PRELU can
be expressed as

f (yi) =

{
yi, if yi ≥ 0,

aiyi, if yi ≤ 0.
(11)

where ai is generally between 0 and 1. If ai = 0, then f will become a ReLU. If ai is a fixed
decimal close to 0, then f will become a Leaky ReLU. The optimal value, ai = 0.27, is
determined by experience and multiple experiments.

5. Simulation Results and Analysis

In this section, we implement the proposed BiLSTM-based deep transfer learning network
in the downlink non-orthogonal system and STFAN in the uplink non-orthogonal system.

5.1. Downlink Non-Orthogonal System

In downlink non-orthogonal system, the modulation recognition performance of
BiLSTM in Section 3.1 is simulated. The structural parameters of the model are determined,
respectively, and the performance of modulation recognition in the Gaussian channel and
non-ideal channel with random bias is studied. Furthermore, the deep transfer model
proposed in Section 3.2 is simulated, and the performance is analyzed in three different
layer transfer models under a Gaussian channel.

5.1.1. Dataset and Parameters

This dataset contains a total of five different non-orthogonal modulation methods,
namely SCMA, MUSA, PDMA, WSMA, and PD-NOMA. Each scheme generates
960,000 NOMA symbols by Monte Carlo simulation, and the noise added by each NOMA
symbol obeys Gaussian distribution under a Gaussian channel. In order to make full use of
the characteristics of the Gaussian noise partially superimposed region, 12 NOMA symbols
are formed into a NOMA signal block. Therefore, there are a total of 80,000 NOMA signal
blocks for each method in the training set, where 80% of the samples are used as the training
set, and 20% of the samples are used as the cross-validation set. Each NOMA signal block
length L satisfies L = 96.

Under Gaussian channel, the n-th baseband symbol sequence model can be expressed as

y(n) =
J

∑
j=1

sjxj(n) + v(n), (12)
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where n satisfies n ∈ [1, L], v(n) denotes Gaussian white noise, which satisfies mean
zero and variance θ2. The SNR of symbol sequences of each modulation in the training
set satisfies the uniform distribution of [−10 dB, 20 dB]. Concurrently, the Monte Carlo
Simulation is also used to generate 2000 symbol sequences corresponding to the SNR of
each modulation signal in the test set. The SNR range of the test set is [−10 dB, 20 dB] with
an interval of 2 dB.

Under the channel with random bias, the first baseband symbol sequence model can
be expressed as

y(n) = ej(θ+2π f n)
J

∑
j=1

sjxj(n) + v(n), (13)

which satisfies n ∈ [1, L], θ ∈ [0, 20] and f = 1× 10−3. The subsequent training set and
test set settings are consistent with the Gaussian channel case. Additionally, the remaining
parameters of the downlink non-orthogonal signal system are listed in Table 2.

Table 2. Parameters for Downlink Non-orthogonal Signal System.

Parameters Name Parameters Value

Multiplexing Type SCMA, MUSA, PDMA, PD-NOMA,
WSMA

Carrier Frequency 1.2 GHz
Symbol Rate 15.36 MHz

Sampling Rate 122.88 MHz
NI/Q

1 128
NU

2 6
NR

2 4
Oversampling Rate 1.5

SNR Range −10 dB∼20 dB
1 NI/Q denotes the complex baseband I/Q data points per path. 2 NU is number of users, and NR is number
of resources.

For the simulation based on transfer learning, the number of training samples corre-
sponding to each modulation is NS = 80,000 in the source domain, compared to NT = 400
in the target domain. In the pre-training stage, the dataset with small bias is used for the
source domain signals under Gaussian channel, where the maximum phase bias and the
frequency bias are 20◦ and 1 × 10−4, respectively. In the transfer learning stage, the dataset
with large bias is used for the target domain signals, where the maximum phase bias and
frequency bias are 40◦ and 1 × 10−3, respectively. In the testing phase, the signal type
of the dataset used is the same as the target domain, and the SNR range of the test set is
[−10 dB, 20 dB]. For each signal category, 1000 NOMA symbols are generated by Monte
Carlo simulation.

To select appropriate structural parameters of BiLSTM, the recognition accuracy will
be compared with different values. Simulation results about the number of layers of
bidirectional LSTM are shown in Figure 6. When the number of layers is two or three,
the recognition accuracy of BiLSTM is higher. Considering the network complexity and
recognition performance, the number of bidirectional LSTM layers of the BiLSTM model
is set to two layers. Figure 7 shows the simulation results related to the Forgetting Bias.
Considering that a large bias can effectively prevent the occurrence of gradient disappear-
ance, the Forgetting Bias is designed to be 1 for its recognition performance. Figure 8 shows
the simulation results for different numbers of Time Step cases. When the SNR is 0 dB,
the recognition accuracy is 10% higher than that of 8 and 20% higher than that of 4 when
the number of Time Steps is 12. Considering that increasing the number of Time Steps will
increase the complexity of the network and increase the burden of hardware computing,
the Time Step of this model is set to 12. As the computation complexity shown in Table 3,
the overall parameters except for FLOPS of BiLSTM are lower than those of baseline mod-
els for the simple structure of FC-DNN. Regarding learning speed, the BiLSTM model is
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considered the fastest as it takes 489 s per epoch. The prediction time of BiLSTM is 173 µ
which is lower than that of FC-DNN and LSTM, which proves BiLSTM can achieve low
complexity with fewer parameters and shorter training time.

Figure 6. Network performance comparison with different LSTM layer.

Figure 7. Network performance comparison with different forgetting bias.

Figure 8. Network performance comparison with different Time Step.

Table 3. Computation Complexity Comparison between STFAN and baseline models for down-
link systems.

Models FC-DNN LSTM BiLSTM

Total parameters 822,533 797,957 313,221
Epochs 50 30 30

Training time (s)/epoch 602 524 489
Prediction time (µs)/sample 192 175 173

FLOPS 19,784,965 191,868,832 59,445,664

Moreover, multi-class cross-entropy is the loss function of BiLSTM. The optimizer,
learning rate, and decay value of the learning rate are set to Adam, 0.0001, and 0, respec-
tively. The Batch size in the training process is 128, and the data inside the Batch will be
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shuffled and re-selected after each epoch. Additionally, the training stop condition is when
the training number reaches 40 epochs or when the loss value of the validation set does not
decrease for 10 consecutive epochs.

5.1.2. Gaussian Channel

In this part, the performance of modulation recognition of the BiLSTM network under
Gaussian channel is studied. The unidirectional LSTM network and FC-DNN are used as
performance comparison and the obtained results are shown in Figure 9.

Figure 9. Comparison of recognition accuracy of BiLSTM under Gaussian channel.

RNN has a stronger ability to extract features for long sequences than FC-DNN.
The modulation recognition accuracy obtained by BiLSTM and LSTM have better perfor-
mance than that of the FC-DNN with SNR in the range of [−10 dB, 10 dB]. Compared with
LSTM, BiLSTM can accurately describe the essential characteristics of the signal by fitting
features in both forward and backward directions, which can obtain better performance for
all SNR. The recognition accuracy of LSTM is 85% at 0 dB, but the recognition accuracy of
BiLSTM network is close to 90% at 0 dB, even close to 100% at 6 dB.

As the confusion matrix shown in Figure 10, the modulation recognition performance
of BiLSTM is far better than that of FC-DNN. When EbN0 is 0 dB, the BiLSTM can identify
a non-orthogonal modulation method with an accuracy of at least 75%, even at 0099.6% for
PDMA. However, the accuracy of FC-DNN for various methods is only about 50%, and the
network can be greatly disturbed by noise. When EbN0 is 18 dB, the recognition accuracy
of BiLSTM for each method is above 99.8%. Additionally, the recognition rate of FC-DNN
is only 92%, which is due to the poor recognition of SCMA.

The performance of the BiLSTM with transfer learning under a Gaussian channel is
shown in Figure 11. Directly retraining the model requires a large amount of training data,
which leads to the incomplete convergence of the network and the poor generalization
of the network. Therefore, the worst transfer learning model has 20% better recognition
accuracy at 20 dB than the directly trained model. Concurrently, the features extracted
in the old training environment are also applicable to the new training environment to
some extent. The overall fine-tuning performance of the trained model is better than
the other two transfer learning models, and its recognition accuracy can reach 86% at
20 dB. Among different solidified layers, the second bidirectional LSTM layer extracts deep
features based on the shallow features extracted from the first layer. The mismatch between
the features extracted by the old channel shallow network and the new channel data results
in the poor recognition performance of curing the first layer.
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(a) BiLSTM with EbN0=0dB (b) FC-DNN with EbN0=0dB

(c) BiLSTM with EbN0=18dB (d) FC-DNN with EbN0=18dB

Figure 10. Confusion matrix for MR of BiLSTM and FC-DNN under Gaussian channel.

Figure 11. Comparison of recognition performance of solid transfer models at different layers.

5.1.3. Channel with Random Phase Bias

The modulation recognition performance of BiLSTM is studied under the channel with
phase bias and frequency bias. From the comparison results shown in Figure 12, the recog-
nition rate of BiLSTM and LSTM can still reach more than 95% at high SNR. Concurrently,
BiLSTM has a stronger ability to extract network features, and the performance of BiLSTM
is about 3% higher than that of LSTM. However, the recognition rate of FC-DNN is only
75%, which indicates that BiLSTM has better robustness.

Figure 12. Comparison of recognition accuracy of BiLSTM under channel with random bias.
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As the confusion matrix results shown in Figure 13, BiLSTM for baseband symbol
sequences has strong recognition ability and robustness. When EbN0 is 0 dB, BiLSTM can
identify the above five non-orthogonal modulation methods with high accuracy. When
EbN0 is 18 dB, all the methods can be recognized with nearly 100% recognition accuracy.
As a comparison, the recognition performance of FC-DNN is extremely poor at low SNR,
and has no significant improvement for SCMA, WSMA, and MUSA at high SNR.

(a) BiLSTM with EbN0=0dB (b) FC-DNN with EbN0=0dB

(c) BiLSTM with EbN0=18dB (d) FC-DNN with EbN0=18dB

Figure 13. Confusion matrices for MR of BiLSTM and FC-DNN under channel with random bias.

5.2. Uplink Non-Orthogonal System

In an uplink non-orthogonal system, the modulation recognition performance of
STFAN is simulated for 2ASK, QPSK, and 16QAM superimposed signals, and the perfor-
mance is compared with that of the traditional deep networks.

5.2.1. Dataset and Parameters

The dataset used in this simulation is the baseband symbol sequence obtained after
pre-processing the IF signal received by the base station, and the base station has only one
receiving antenna. A total of three users with different distances randomly choose from
{2ASK, QPSK, and 16QAM} and send signals to the base station at the same time, and the
signals of each user are completely synchronized. Since the three users can choose the
modulation mode randomly, there will be 27 modulation modes under different powers
combined with the transmit power. Each modulation mode contains a total of 40,000 symbol
sequences, which contain 2× 128 numbers. The total number of symbol sequences in this
dataset is 1,080,000, of which 85% of the symbol sequences will be used as the training set
and 15% of the symbol sequences will be used as the validation set.

Under Gaussian channel, the i-th baseband symbol sequence can be given by

r(i, n) = PAxA(i, n) + PBxB(i, n) + PCxC(i, n) + v(i, n), (14)

where n satisfies n = 1, K, 100, v(i, n) : CN(0, 1). The Gaussian noise added to the training set
and the test set is exactly the same as the configuration of downlink non-orthogonal system.
Concurrently, each symbol sequence has the same power and different noise internally.
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Under the channel with random bias, the phase bias in the transmission sequence of
the three users is randomly distributed within the range of [0,θmax]. The i-th baseband
symbol sequence can be given by

r(i, n) = ejθA PAxA(i, n) + ejθB PBxB(i, n) + ejθC PCxC(i, n) + v(i, n), (15)

where n satisfies n = 1, K, 100, v(i, n) : CN(0, 1), and θA, θB, θC represent the phase bias
of each user, respectively. The Gaussian noise added to the training set and the test set is
exactly the same as the configuration of the Gaussian channel. The remaining parameters
of the uplink non-orthogonal signal model are listed in Table 4.

Table 4. Parameters for Uplink Non-orthogonal Signal System.

Parameters Name Parameters Value

Modulation Type 2ASK, QPSK, 16QAM
Carrier Frequency 1.2 GHz

Symbol Rate 15.36 MHz
Sampling Rate 122.88 MHz

NI/Q 128
PA/PB/PC 0.2/0.3/0.5

NU 3
NR 1

Oversampling Rate 3
SNR Range −10 dB∼20 dB

As the computation complexity shown in Table 5, the FLOPS of STFAN is higher than
that of ResNet and CNN. With more parameters and layers than CNN and ResNet, STFAN
requires a training period longer than other models. STFAN has a more complex network
structure. In order to extract the temporal and spatial features of superimposed signals,
STFAN sacrifices computational complexity to achieve far better accuracy.

Table 5. Computation Complexity Comparison between STFAN and baseline models for uplink systems.

Models CNN ResNet STFAN

Total parameters 8,593,563 4,214,922 23,370,448
Epochs 50 40 40

Training time (s)/epoch 631 598 721
Prediction time (µs)/sample 193 188 189

FLOPS 81,259,328 158,353,019 273,799,168

5.2.2. Gaussian Channel

This part focuses on the modulation recognition performance of STFAN in Gaussian
channels. When the SNR is 20 dB, the visualization of features extracted by STFAN is
shown in Figure 14. Different colored dots in the figure represent signals with different
modulation modes. Figure 14a,b shows that a deeper Inception layer can lead to more
obvious differences between different signals. Figure 14c shows that the BiLSTM layer is
not as strong in distinguishing signals as the Inception layer, but the BiLSTM layer can
supplement the signal features that cannot be extracted by the Inception layer. In Figure 14d,
the signal features basically have no overlap after feature fusion.

Compared with CNN and ResNet18, the results are shown in Figure 15a. The recogni-
tion accuracy of STFAN, 18-layer ResNet, and CNN are basically the same under low SNR.
However, the gap between the recognition accuracy of STFAN and the other two schemes
gradually increases with the increase of SNR. When the SNR is 20 dB, the recognition rate
of STFAN can reach 96.6%, compared to 89.35% in ResNet18, and 79.25% in CNN. The main
reasons for the above performance difference are the Inception structure and the BiLSTM
layer used in STFAN, which can extract the spatial and temporal features of the network
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completely and efficiently. Moreover, the attention mechanism of STFAN can enhance the
ability to extract effective features and further improve recognition accuracy.

(c) Feature extraction of BiLSTM layer

(a) Feature extraction from the first Inception layer  (b) Feature extraction from the final Inception layer

(d) Feature extraction at the output of the network

Figure 14. Visualization of features extraction.

(a) Under Gaussian channel (b) Under channel with random phase bias

Figure 15. Performance of STFAN.

In order to further study the recognition performance difference of STFAN on different
modulation signal modes, the confusion matrix shown in Figure 16 is plotted for an
SNR of 20 dB. Among the 27 classes of modulation modes, the recognition accuracy of
25 classes is above 90%, and the recognition accuracy of 22 classes is above 95%. Whereupon,
the recognition effect can meet the basic requirements of data transmission in the Internet-
of-Things scenario. Moreover, the reason that limits the overall recognition performance is
mainly due to the poor recognition of the 16QAM-16QAM-16QAM mode. For the lower
power of 16QAM, the distance between 16QAM and QASK constellation points is very
small, which can result in misjudgment of STFAN.
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Figure 16. Classification confusion matrix at SNR of 20 dB.

5.2.3. Channel with Random Phase Bias

As the result shown in Figure 15b, the performance of STFAN is still better when the
three users have random bias. Especially in the small phase bias scenario, the recognition
accuracy is almost the same as the performance without random phase bias in the interval
range of SNR less than 2 dB. At a SNR of 20 dB, the recognition performance is only
5% different from the former, and the accuracy can still reach 90%. When the random
phase bias distribution is in [0, 40], the recognition accuracy based on STFAN can reach
80%, compared to that of 53% in CNN. The above results reflect that the network has a
strong feature extraction ability, which can extract the phase change characteristics of the
received data. Additionally, STFAN has strong robustness, which can adapt to complex
channel scenarios.

6. Conclusions

In this work, AMR is first introduced into non-orthogonal signal recognition. In the
downlink scenario, a non-orthogonal recognition model based on BiLSTM is proposed
to mine the sequence information in the superimposed signal. Additionally, in the case
of insufficient samples in real scenes, deep transfer learning is introduced. In the uplink
scenario, we innovatively propose a spatio-temporal feature extraction method. The Incep-
tion module is used to extract the spatial features of the signal, the BiLSTM layer is used
to extract the temporal features of the signal, and the attention mechanism is embedded
to further improve the effectiveness of the features. Simulation results show that the al-
gorithms in different scenarios maintain high accuracy and high robustness. Specifically,
compared to existing modulation recognition methods in the downlink scenario, BiLSTM
can achieve more than 25% accuracy gain over FC-DNN under high SNR conditions of
Gaussian channels. In the uplink scenario, STFAN is superior to ResNet and CNN under
different channel conditions, especially the accuracy of the algorithm can reach 96.6% at
20 db of Gaussian channel. For future work, further improvements can be made in the
separation and identification of superimposed signals.
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