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Abstract: Ambiguity resolution based on smartphone GNSS measurements can enable various
potential applications that currently remain difficult due to ambiguity biases, especially under
kinematic conditions. This study proposes an improved ambiguity resolution algorithm, which uses
the search-and-shrink procedure coupled with the methods of the multi-epoch double-differenced
residual test and the ambiguity majority tests for candidate vectors and ambiguities. By performing
a static experiment with Xiaomi Mi 8, the AR efficiency of the proposed method is evaluated.
Furthermore, a kinematic test with Google Pixel 5 verifies the effectiveness of the proposed method
with improved positioning performance. In conclusion, centimeter-level smartphone positioning
accuracy is achieved in both experiments, which is greatly improved compared with the float and
traditional AR solutions.

Keywords: smartphone positioning; real-time kinematic (RTK); ambiguity resolution (AR); global
navigation satellite system (GNSS)

1. Introduction

High-precision smartphone positioning is increasingly demanded to enable potential
applications such as lane-level vehicle navigation, augmented reality walking/driving,
and precise agriculture via phones [1–3]. Although real-time kinematic (RTK) techniques
with ambiguity resolution (AR) have been widely used for high-end Global Navigation
Satellite System (GNSS) receivers, advanced positioning algorithms are required to deal
with a much-poorer-quality pseudorange and carrier phase measurements from smart-
phones [4–6]. First, the high and unstable stochastic properties of the measurements, as well
as their possible outliers, pose challenges since they often affect the precision of float RTK
solutions and reduce the ambiguity-fix success rate [7]. Second, smartphone initial phase
bias (IPB) will corrupt the integer property of the carrier ambiguities [8–10]. Third, the
biases caused by smartphone antennas and carrier phase multipath effects would also affect
the position determination [11,12]. As a result, some smartphone carrier phase ambiguities
are contaminated with ambiguity biases, making fixed solutions significantly biased [13].

Many studies have been conducted to explore AR with smartphone GNSS measure-
ments. After assessing the observation quality of smartphone pseudorange and carrier
phase measurements, Paziewski et al. [14] found that a stochastic model could be developed
based on signal-to-noise ratio measurements and obtained results better than the traditional
elevation-dependent model. Gao et al. [15] proposed using the raw measurement’s standard
deviation and the multipath indicator provided by the Android application programming
interface to improve the performance of smartphone AR. In addition, many studies have
been undertaken to deal with these issues in realistic smartphone applications, such as
multipath [16,17] and antenna offset problems [18,19], and their impacts on carrier phase
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ambiguities are widely noticed. To resolve the IPBs, Geng et al. [9] proposed a method
for post-processing calibration. Yong et al. [20] concluded that the antenna offsets could
be minimized by keeping the smartphone in an upright position. Additionally, the imple-
mentation of partial AR (PAR) can reduce the impact of the ambiguity biases on the fixed
solutions [21–23], as confirmed by [24,25]. Although many studies have been undertaken
to assess the performance of smartphone AR, few implementations focus on kinematic
experiments in real-time smartphone applications. However, with the user motion, the
time-varying multipath effects and antenna offsets increase the difficulty of handling the
carrier phase ambiguity biases, which in turn pose challenges for smartphone kinematic
AR. The precision of float solutions is also lower in kinematic applications due to the un-
stable stochastic properties of measurements, which generally decrease the ambiguity–fix
success rate.

This study focuses on improving the AR algorithm for smartphones to achieve high-
precision smartphone GNSS positioning. Specifically, the integer ambiguities are resolved
by coupling the search-and-shrink procedure with testing methods, including the multi-
epoch double-differenced (DD) model residual test and the ambiguity majority tests for
candidate ambiguities and vectors. To verify the proposed method, two smartphone
experiments are conducted, where Xiaomi Mi 8 is used for a static test, and Google Pixel 5
is used for a kinematic test.

Section 2 presents the methodology used in this study. Section 3 introduces the static
dataset and its evaluation outcomes of AR efficiency. Section 4 discusses the kinematic
positioning performance. The conclusions are summarized in Section 5.

2. Methodology

To realize AR for kinematic applications with single- or dual-frequency GNSS, includ-
ing smartphones, the GNSS community uses the popular method of LAMBDA [20,26].
A unimodal transformation and a search-and-shrink scheme based on the integer least-
squares (ILS) principle find the optimal ambiguity integers with a real-time computational
load [27]. Until recently, the method of best integer equivariance (BIE) has proven to be a
better replacement [28], where the AR performance is optimized in the sense of minimizing
the mean square error [29–31]. However, these methods, including BIE, naturally consider
the input float ambiguity estimations to be unbiased integers. This does not fit in the
application of smartphone AR since the existence of IPB, carrier phase multipath effects,
and antenna offsets lead to non-negligible ambiguity biases. As a result, the unimodal
transformation and the search-and-shrink scheme are inaccurate and likely to produce a
set of incorrect ambiguity integers [31]. Although PAR coupled with improved ambiguity
validation strategies, such as protection-level, are proposed [32,33], they are generally not
sufficiently efficient to identify the correct ambiguity integer set for smartphones due to the
volume of such ambiguity biases and the significant measurement noises.

Primarily, in this study, the AR scheme using the search-and-shrink procedure is
applied without the unimodal transformation, where only one integer ambiguity is resolved
at a time. To select the optimal ambiguity candidate, the methods of ambiguity majority
tests, as well as the ambiguity validation with the multi-epoch DD residual test are applied
based on the candidate ambiguity vectors by LAMBDA with the ILS principle [34]. In the
following subsections, the commonly used GNSS mixed-integer model, the AR scheme
of search-and-shrink, the ambiguity majority tests, and ambiguity validation with the
multi-epoch DD residual test is explained in detail.

2.1. GNSS Mixed-Integer Model

For smartphone RTK based on the DD model with an acceptable baseline length,
most GNSS error sources, such as the ionosphere, troposphere, and others, are eliminated.
Therefore, the linearized single-epoch observation equation is a mixed-integer model,
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including parameters of integer-valued carrier phase ambiguities and the real-valued
baseline vector [35]:

y = Aa + Bb + e, (1)

where y ∈ Rm refers to the measurement vector contaminated by a zero-mean normal-
distributed noise e ∼ N

(
0, Qyy

)
; a ∈ Zn and b ∈ Rp denote the integer-valued ambiguities

and the real-valued baseline vector, respectively, and A ∈ Rm×n and B ∈ Rm×p represent
their respective design matrices. With least-squares or Kalman filtering, the float solution
discards the integer nature of ambiguities [35]:[

â
b̂

]
∼ N

([
a
b

]
,
[

Qââ Qâb̂
Qb̂â Qb̂b̂

])
, (2)

where â and b̂ denote the float solutions with respect to ambiguities and coordinates, and
Qââ, Qâb̂, Qb̂â, and Qb̂b̂ represent the variance and covariance components of the estimated
parameters. To solve for the integer ambiguities ă = I(â), many integer equivariance
estimators can be used, such as ILS and BIE [28]. In this case, ILS is discussed, which
provides ăILS:

ăILS = argmin‖â− z‖2
Qââ

, ∀z ∈ Zn; (3)

If the integer ambiguities are accepted by ambiguity validation methods, such as a
ratio test, a fixed solution can be achieved by readjusting b̂, which gives b̆:

b̆ = b̂−Qb̂âQ−1
ââ (â− ă); (4)

Although for smartphones, ambiguities suffer from biases, principles such as ILS are
valid for describing the integer components; therefore, they are mostly unbiased. In this
way, those biases are absorbed by the carrier phase measurement noises, and the magnitude
of the residuals contributes to larger position errors, e.g., 3 cm to 10 cm. Overall, the fixed
solutions should remain bias-free and with high precision. However, to solve the ILS
principle of (3), the popular search-and-shrink procedure is widely used to reduce the
computational complexity of the traditional methods [36,37], which can cause ambiguous
candidate vectors to be biased on smartphones. The detailed algorithm and the reasons are
explained in the following subsection.

2.2. Search-and-Shrink Procedure for Ambiguity Resolution

For a two-dimensional (2D) example where the ambiguities are a1 and a2, the search-
and-shrink procedure calculates the conditional ambiguity of a1 once if â2 is rounded to an
integer ẑ2 by bootstrapping using [25]:

â1|2 = â1 − σâ1 â2 σ−1
â2 â2

(ẑ2 − â2), (5)

where â1|2 denotes the conditional ambiguity of a1, σâ1 â2 represents the covariance of a1
and a2, and σâ2 â2 signifies the variance of a2. Then, with the conditional ambiguities, the
boundary value of ‖â− z‖2

Qââ
is reduced so that a smaller search space can be reached.

Iteratively, the search space shrinks to reach the k integer ambiguity candidate vector, where
k is user specified. In the sequel, Ă is used to denote the combination of candidate vectors:

Ă =
[
ă1 ă2 · · · ăk ], Ă ∈ Zn×k, (6)

Commonly, many ILS-based algorithms have applied this procedure [35,38], where
the final decision is made as ă1 after the ambiguity validation. For the traditional implemen-
tation of the LAMBDA method, vector â is sorted by the increasing order of the variances
of its elements, meaning σa1a1 ≤ σa2a2 , where the initial search space is defined as follows:

F(z) = ‖â− z‖2
Qââ
≤ χ2, (7)
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where z, with the minimum value of function F(z), is the optimal ILS solution ă, and χ2 can
be predetermined and can also shrink during the search [39,40]. LAMBDA is coupled with
a unimodular transformation based on the LT DL factorization of Qââ so that the search
process can be more efficient [39].

However, in the case of smartphone carrier phase measurements, many ambiguities
are biased and have lost their integer nature. Therefore, the above-mentioned search-
and-shrink procedure is less valid because it assumes an integer grid. Specifically, if a2 is
naturally not an integer, the conditional ambiguity of â1|2 can be affected by the ambiguity
bias of a2. For higher-dimension problems, those ambiguity biases can accumulate while
the search space shrinks, causing the further search space to be incorrect. Furthermore,
coupling with the unimodular transformation can expose such bias to even more original
ambiguities after the back transformation. In this case, current AR methods with the
search-and-shrink procedure, such as LAMBDA, frequently produce an incorrect set of
integer ambiguities. Unfortunately, an improved procedure considering such ambiguity
biases is currently unavailable. This study primarily focuses on selecting the ambiguities to
be conditionally rounded, without unimodular transformation, to mitigate the impact of
ambiguity biases.

2.3. Ambiguity Majority Tests for Candidate Ambiguities and Vectors

Although LAMBDA with unimodular transformation can spread the impact of ambi-
guity biases, it is expected that some ambiguities would not vary much among different
candidate vectors. This is because their ambiguity variances are relatively small due to
better observation conditions; therefore, they are sorted in front of the ambiguity vector,
which also makes them less biased by the search-and-shrink procedure. Therefore, these
ambiguities are more trustworthy to be integers. Then, we innovatively calculate the
modulus of each ambiguity ai, namely Mai , from the combined candidate vector Ă by the
LAMBDA method, these were formulated as follows:

Mai = mod
(

Ăi,j
)

j∈{1,...,k}, (8)

where mod(·) denotes the modulo operation. Therefore, the number of candidates of
ambiguity ai that equals Mai , namely Nai , can be calculated as follows:

Nai = ∑
j∈{1,...,k}

(
Ăi,j = Mai

)
; (9)

The value of Nai reflects the confidence in the selected Mai . Straightforwardly, with
a higher value of Nai , the corresponding ambiguity can be more trusted since it is less
variant among different ambiguity vectors. As a drawback, with a k value larger than 2,
some candidate vectors by the LAMBDA method can be too abnormal to introduce them
to the majority test, which can reduce its accuracy. Here, the value of ‖â− z‖2

Qââ
is not

used to weigh the candidates for the majority test since it is potentially affected by the
ambiguity biases and cannot be accurate. To exclude the abnormal candidate ambiguities,
we apply the novel majority test to each candidate ambiguity vector, which was formulated
as follows:

Năj = Σn
i=1Σk

l=1;l 6=j
(

Ăi,l = Ăi,j
)
, (10)

where Năj denotes the majority test for a candidate ambiguity vector ăj. With the larger
value of Năj , ăj can be expected to be closer to the center of the candidates; therefore,
it is a reasonable metric to roughly measure its correctness. It is also noted that this
algorithm shown in (8)–(10) performs a partial integer bootstrapping method [20,41]. To
further increase its accuracy, the method of multi-epoch residual test is used for ambiguity
validation, which excludes those abnormal candidate vectors with large loss values before
applying this ambiguity majority test, as shown in the next subsection; After that, (9) can be
applied to finally determine one ambiguity to be fixed. After updating the float ambiguities
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using (5), a new round of majority test can trigger. Iteratively, the full ambiguity set is
resolved into integers, and the fixed solutions are obtained.

2.4. Multi-Epoch Residual Test for Ambiguity Validation

For multiple adjacent GNSS epochs of (1), the integer part of a will be identical as
long as no cycle slips occur. For kinematic applications of the smartphone, the non-integer
part of b is time-dependent. Therefore, we write a multi-epoch combined DD observation
model as follows:

yt1,w = Aa + Bt1,wbt1,w + et1,w , Qyt1,w
, (11)

yt1,w =


yt1

yt2
...

ytw

, Bt1,w =


Bt1

Bt2
. . .

Btw

, bt1,w =


bt1

bt2
...

btw

, et1,w =


et1

et2
...

etw

, (12)

where the epoch times t1, t2, · · · , tw are adjacent and w defines the window size of the
model. Here, with the total number of measurements m× w, the number of estimation
parameters are n ambiguities and p × w user coordinates. Hence, with a larger value
of w, the estimation redundancy grows, and the model complexity also increases. For
ambiguity validation, the integer part of a is provided from a candidate vector ăi, where
the non-integer part can be estimated using least squares, denoted as b̂i

t1,w
, as well as the

measurement residuals, denoted as r̂i
t1,w

:

b̂i
t1,w

=
(

BT
t1,wQ−1

yt1,w
Bt1,w

)−1
BT

t1,wQ−1
yyt1,w

(
yt1,w − Aăi

)
, (13)

r̂i
t1,w

= yt1,w − Aăi − Bt1,w b̂i
t1,w

, (14)

Therefore, the problem of ambiguity validation can be interpreted as an overall resid-
ual test based on r̂i

t1,w
, which can be calculated as follows [42–44]:

Tq =

∥∥∥r̂i
t1,w

∥∥∥2

Qyt1,w

q
; (15)

where Tq denotes the overall test statistics, and q represents the degree of freedom, in this
case, q = (m− p)× w. In the sequel, the calculated Tq is used as the residual test statistics
of the DD model, called DD residual test statistics. It should be noted that considering
the existence of cycle slips, a practical implementation of this method should adaptively
reduce the window size for satellites subjected to the cycle slip detection. In addition, to
determine a proper window size w, the time correlation of the carrier phase measurements
should be considered depending on the GNSS device [45,46]. In the case of the experiment
smartphones, Google Pixel 5 and Xiaomi Mi 8, this study used w = 10 s, to balance the
algorithm efficiency and real-time computational load.

Detailed algorithm implementation parameters are summarized in Table 1. For each
iteration, 10 candidate ambiguity vectors are generated using the LAMBDA method, which
is reduced to 4 candidates by both the majority test using (10) and residual test using (15).
Then, the single fixable ambiguity can be determined using (9).
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Table 1. Detailed algorithm implementation parameters for the proposed AR algorithm.

Parameter Descriptions Values

Number of candidate vectors by LAMBDA 10 candidates
Majority test selection for candidate ambiguity vectors First 4 candidates
Residual test selection for candidate ambiguity vectors First 4 candidates

Residual test window size 10 epochs

In the following subsections, a static experiment is presented to show the efficiency of
the proposed method in smartphone AR, followed by a kinematic experiment to demon-
strate its positioning accuracy.

3. Static Experiment—Smartphone Ambiguity Resolution Efficiency

To evaluate the performance of the proposed method in terms of AR, this subsection
focuses on an experiment based on the Xiaomi Mi 8 smartphone. Although previous studies
widely use external GNSS antennas and signal repeaters to enhance smartphone observa-
tion quality, this study is based on the smartphone as it is, where no external antennas and
signal repeaters are applied. To extract the evaluation details such as ambiguity biases,
this experiment is static, with the smartphone in the upright position and with known
reference coordinates. First, the data show the number of satellites and a skyplot. Second,
the positioning solutions are discussed, where the proposed AR method is compared with
the LAMBDA method with a full ambiguity resolution (FAR) strategy [47], r-ratio ambi-
guity validation with a 2.0 ratio threshold [48] due to the generally lower success rate on
smartphones, and the float solutions. Later, the efficiencies of the ambiguity majority test
and the DD residual test are demonstrated. Last, with the fixed smartphone position and
the resolved ambiguity integers, the estimated ambiguity biases are captured and analyzed.
In the sequel, the error statistics of root-mean-square (RMS), standard deviation (STD), and
mean values are commonly used.

This experiment was conducted in Calgary, Canada, at the local time of 1 PM,
5 March 2021, where the software Geo++ RINEX Logger, version 2.4.3, is used to col-
lect the 1-Hz GNSS data from Xiaomi Mi 8. The base station receiver is a Trimble NetR9,
with a baseline length of 9.23 km, which logs at the rate of 1 Hz. Overall, the dataset
includes 5261 GNSS epochs, with a total duration of 87.7 min. For data processing, two
GNSS constellations, GPS and Galileo, are used, with the signals of GPS L1 C/A and L5
(Q) and that of Galileo E1 (C) and E5a (Q), with an elevation cut-off angle of 4◦ and a
signal-to-noise-ratio threshold of 10 dB-Hz. For the float ambiguity solutions, a Kalman
filtering scheme with kinematic parameter settings is used, shown in Table 2, which can
be found in Takasu and Yasuda [49]. Additionally, the ionosphere and troposphere model
corrections, referring to the Klobuchar model and the Saastamoinen model with the Neill
mapping function, respectively, are applied to the measurements of (1) in advance [50–52].
After the double-differencing and these model corrections, ionosphere and troposphere
errors can be considered to be eliminated in our processing [53].

Table 2. Filtering parameters for static and kinematic experiments.

Filtering Parameters Values

Stochastic modelling method

Elevation-dependent model [54],
σ2

P = 0.5 + 1.5
sin2(E)

m2,

σ2
Φ = 10−6 + 4 × 10−6

sin2(E)
m2

Initial state variance
Coordinates σ2

0,crd = 1000.0 m2, ambiguities
σ2

0,amb = 1000.0 m2

Process noise Coordinates Qcrd = 20.0 m2, ambiguities
Qamb = 0.00001 m2



Sensors 2023, 23, 5292 7 of 19

For AR, the proposed method is used and compared with the LAMBDA method. Here,
to avoid the antenna offset problem among signal frequencies, only the signals on the first
frequency, that is, GPS L1 C/A and Galileo E1 (C), are used for AR.

Figure 1 reveals that, on average, Xiaomi Mi 8 has 10.1, 1.6, 5.5, and 5.2 satellites on
the signals of GPS L1 C/A and L5 (Q) and that of Galileo E1 (C) and E5a (Q), respectively.
Overall, the observed satellites are 13 to 18 in total, while GPS and Galileo have 8 to 11 and
5 to 7, respectively, which are sufficient for the AR experiment. As shown in Figure 2, G14,
G28, G30, and E21 are mostly under high-elevation conditions.
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Figure 3 provides the positioning error time-series of Xiaomi Mi 8 using the proposed
method, compared with the LAMBDA method and float solutions. Although it is a static
experiment, the data are processed based on kinematic filtering settings; therefore, the
results are representative for kinematic applications as well. The static coordinates of the
smartphone are calculated by static post-processing with AR, which gives the millimeter-
level STD so it can be adopted as a reference. Generally, the proposed method reaches
centimeter-level RMS values, which means 100% correct fixation. For comparison purposes,
the LAMBDA method is significantly biased because it lacks consideration of the ambiguity
biases and often provides incorrect ambiguity vectors. After a period of convergence, it
reaches the correct ambiguity set, which took 3000 epochs. As a result, the LAMBDA
method reaches an accuracy of 0.6 m, 0.7 m, and 1.3 m, which are worse than that of the
float solutions, reaching 0.2 m, 0.2 m, and 0.1 m, respectively. As a primary conclusion, the
proposed method provides the correct ambiguity set in most cases.
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zoomed-in plots.

In Figure 4, the DD residual test is evaluated in terms of its efficiency. Here, the
resolved ambiguity vector for each epoch is obtained by the proposed AR method, which
is compared with the other candidate ambiguity vectors from the LAMBDA method in
the majority test in terms of the DD residual test statistics. As shown, the test statistics
of the candidates are mostly from 0.2 cm to 3.5 cm, while the resolved ambiguity vectors
have DD residual test statistics that are mostly from 0.1 cm to 0.5 cm. For 74% of all epochs,
the resolved ambiguity vectors have the lowest residual test statistics, which have the
second lowest residual test statistics for 2% of epochs. In summary, the DD residual test is
a promising way to select trustworthy candidate ambiguity vectors.



Sensors 2023, 23, 5292 10 of 19Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. DD residual test statistics of the resolved ambiguity vector compared with candidate am-
biguity vectors from the LAMBDA method in the majority test. 

For the ambiguity majority tests, Figure 5 illustrates the AR efficiency by comparing 
the test values from the resolved ambiguity vector and the candidate ambiguity vectors 
from the LAMBDA method by the majority test, reflected by (9). At a glance, the resolved 
ambiguity vector gives higher test values than the other candidates in most cases, that is, 
for 3714 of all epochs (71%). For all epochs, the resolved ambiguity vector mostly ranks 
first to second among all candidate vectors, which is 1.3 on average. Therefore, it is rea-
sonable to exclude all candidates whose majority test values are lower than the third. 

Figure 4. DD residual test statistics of the resolved ambiguity vector compared with candidate
ambiguity vectors from the LAMBDA method in the majority test.

For the ambiguity majority tests, Figure 5 illustrates the AR efficiency by comparing
the test values from the resolved ambiguity vector and the candidate ambiguity vectors
from the LAMBDA method by the majority test, reflected by (9). At a glance, the resolved
ambiguity vector gives higher test values than the other candidates in most cases, that is,
for 3714 of all epochs (71%). For all epochs, the resolved ambiguity vector mostly ranks first
to second among all candidate vectors, which is 1.3 on average. Therefore, it is reasonable
to exclude all candidates whose majority test values are lower than the third.
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After achieving AR, the ambiguity biases can be captured using the static reference
coordinate of the smartphone and resolved ambiguities, as input by (1). Figure 6 provides
the time-series of the captured ambiguity biases. Although satellite ambiguities with
healthy conditions are witnessed, such as E15 and E19, it is evident that ambiguity biases
exist, which can evolve over time, especially for G13, G17, G21, and E01. Moreover, it
is observed that GPS satellites suffer half-cycle slips, where sudden jumps of 0.5 cycles
can frequently occur; see G07 and G14 as examples. Similar performances can be seen
in [9], which agrees with our converged LAMBDA solutions shown in Figure 3 from
epoch 4500. However, these contribute to the ambiguity biases, making it less possible
to correctly achieve AR in real-time applications. Consequently, it is reasonable that
conventional AR methods that have excellent performances on common GNSS receivers,
such as LAMBDA, have limited efficiency on smartphone applications because there are
frequent ambiguity biases.
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For a detailed explanation, Figure 7 presents the statistics of ambiguity biases for each
satellite. Their RMS values reach 0.07 to 0.31 cycles, which are normally 0.03 to 0.05 cycles
for GNSS receivers such as u-blox modules. For the mean values, they vary from 0.02
to 0.20 cycles, which means almost 0 cycles compared with u-blox. In other words, the
existence of smartphone ambiguity biases cannot be ignored before achieving AR using
current methods.

In summary, this static experiment with Xiaomi Mi 8 proves that the proposed method
demonstrates a significant improvement in terms of AR efficiency. The results show that
the search-and-shrink procedure coupled with the majority test and the DD residual test
is efficient in obtaining the correct ambiguity vectors from candidates. It also proves the
existence of ambiguity biases in smartphone GNSS data, which further demonstrates the
necessity of the proposed method.
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4. Kinematic Experiment—Smartphone Positioning Performance

The kinematic experiment uses the smartphone Google Pixel 5, whose ground trajec-
tory and data collection platform are shown in Figure 8. Similar to the static experiment,
we apply no external antennas or signal repeaters to perform data collection. As can be
seen, an open area is selected, where dynamic ground multipath, antenna offsets and
smartphone orientation variations are the primary causes of ambiguity biases. To provide
positioning reference, two survey-grade GNSS antennas with u-blox ZED-F9P receivers are
used to provide RTK fixed solutions with centimeter-level accuracy. In this way, the relative
location of Google Pixel 5 can be described through two directions, that is, the along-track
and the cross-track directions with respect to the antennas of GNSS receivers, which are
denoted as Receiver #1 and #2, respectively. With a long-term calibration of the along-track
and the cross-track offsets of Google Pixel 5, 36.51 cm and 9.90 cm can be obtained for
their ground truth values, respectively. This has made us capable of conducting kinematic
accuracy evaluations with high levels of confidence.
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This experiment was conducted in Calgary, Canada, at the local time of 8 PM,
4 April 2022, where smartphone GNSS data are collected by Geo++ RINEX Logger, version
2.4.3. The base station is equipped with a Trimble NetR9, with a 5 km distance from the
smartphone. The dataset includes a total of 1771 s. The GPS, Galileo, and GLONASS
constellations are used, where GLONASS satellites are unavailable for AR but are used
as an additional source for geometry-based cycle-slip detection [55]. In this experiment,
GLONASS is needed because, in the kinematic applications, cycle-slips are more frequent
than the previous static applications, which this study should consider and minimize by in-
creasing accessible satellites. During the kinematic experiment, the first and last 200 epochs
are static when verifying the performance of Google Pixel 5 compared with Xiaomi Mi 8.
The rest of the configurations are the same as the static experiment. In Figure 9, the numbers
of satellites involved and the frequency signals are plotted, which are, on average, 9.8, 2.7,
9.8, 8.4, and 7.7 for GPS L1, GPS L5, Galileo E1, Galileo E5a, and GLONASS L1, respectively.
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Figure 9. Numbers of GPS, Galileo (GAL), and GLONASS (GLO) satellites of Google Pixel 5 for dual
frequency. For GPS, Frequency 1 is L1 C/A, and Frequency 2 is L5 (Q). For Galileo, Frequency 1 is E1
(C), and Frequency 2 is E5a (Q). For GLONASS, Frequency 1 is L1.
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Figure 10 provides the 2D, along-track, and cross-track positioning errors during the
experiment. In general, the solutions using the LAMBDA method are scattered, where the
average error distance is 11.74 cm. For the proposed method, it is 4.6 cm, which indicates a
significant improvement. For 95% of the data, the proposed method has an error distance
within 10.2 cm versus 39.9 cm for the LAMBDA method. Therefore, it is concluded that
the proposed method improves positioning accuracy by considering ambiguity biases
in smartphones.
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Figure 10. Along-track and cross-track positioning errors of Google Pixel 5 with respect to the ground
truth (black dot) and antennas of two GNSS receivers (blue dots).

Figure 11 presents the time-series of the along-track and cross-track positioning errors,
comparing the proposed method with LAMBDA and the float solutions. The RMS values
of the float solutions are 9.8 cm and 8.1 cm for the along-track and the cross-track directions,
in contrast to 12.8 cm and 11.7 cm for LAMBDA, respectively. Generally, LAMBDA shows
lower performance than the float solutions due to the existence of ambiguity biases that
frequently affect its search-and-shrink procedure; therefore, the resolved ambiguities are
less trustworthy. For the proposed method, the optimized solution reaches accuracy values
of 3.8 cm and 3.9 cm. In addition, it can be seen that the first and last 200 epochs have
smoother solutions, and this is because, when static, the quality of smartphone GNSS
measurements, including the noise levels of the carrier phases and pseudoranges [56],
and satellite availability are relatively better [57]. Overall, it is evident that the proposed
method outperforms the LAMBDA method and the float solutions in terms of AR and
positioning accuracy.
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5. Conclusions

This study proposes an improved AR algorithm for smartphone positioning by con-
sidering ambiguity biases, where the search-and-shrink method is used with the testing
methods, including a multi-epoch DD model residual test and majority tests for candidate
ambiguities and vectors. The static dataset is first applied to evaluate smartphone AR
efficiency. Secondly, the kinematic data verify the improvement in smartphone positioning
performance. The key points are summarized as follows:

1. The existence of ambiguity biases is not negligible for AR based on smartphone
devices. In the static experiment performed with Xiaomi Mi 8, the average level of
ambiguity biases ranges from 0.07 to 0.31 cycles.

2. The proposed AR scheme using the search-and-shrink procedure coupled with the
majority test and the multi-epoch DD residual test can overcome the problem of AR.
The majority test can identify the actual ambiguity vector from the candidates with an
accuracy of 71% for the first rank and 6% for the second rank versus 74% and 2% for
the DD residual test.

3. The proposed method achieves AR to improve the positioning accuracy of smart-
phones. For the static test, the RMS values are 1.1 cm, 1.7 cm, and 2.1 cm for east,
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north, and upward directions, in contrast to 0.2 m, 0.2 m, and 0.1 m for the float
solutions, respectively. For the kinematic test, the RMS values are 3.8 cm and 3.9 cm
for the along-track and the cross-track directions versus 9.8 cm and 8.1 cm for the
float solutions.
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