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Abstract: In practical wireless sensor networks (WSNs), cascading failures are closely related to
network load distribution, which in turn strongly relies on the locations of multiple sink nodes.
For such a network, understanding how the multisink placement affects its cascading robustness is
essential but still largely missing in the field of complex networks. To this end, this paper puts forward
an actual cascading model for WSNs based on the multisink-oriented load distribution characteristics,
in which two load redistribution mechanisms (i.e., global routing and local routing) are designed to
imitate the most commonly used routing schemes. On this basis, a number of topological parameters
are considered to quantify the sinks’ locations, and then, the relationship between these quantities
with network robustness is investigated on two typical WSN topologies. Moreover, by employing the
simulated annealing approach, we find the optimal multisink placement for maximizing network
robustness and compare the topological quantities before and after the optimization to validate our
findings. The results indicate that for the sake of enhancing the cascading robustness of a WSN, it
is better to place its sinks as hubs and decentralize these sinks, which is independent of network
structure and routing scheme.

Keywords: wireless sensor networks; cascading failures; multisink placement; routing scheme;
robustness

1. Introduction

As an essential part of the Internet of Things (IoT) system, wireless sensor networks
(WSNs) are increasingly widely used in various fields, such as military, industry, transporta-
tion and environmental protection. In general, WSNs are composed of numerous low-cost
sensors with data processing and wireless communication capabilities, which automatically
collect environmental data in a self-organized manner and forward them to sinks through
one-hop or multi-hop routing [1–3]. However, in real-life applications, these nodes often fail
due to unpredictable events, such as energy depletion, hardware malfunction, or deliberate
attacks. When a sensor fails, the data originally passing through the faulty node have to be
rerouted. This rerouting process of redistribution of load may lead to overload failures on
more nodes and further cause a new round of cascading failures [4,5]. Consequently, the
whole network is largely affected or even globally collapsed. To avoid or at least reduce
such catastrophic failures, enhancing the robustness of WSNs has been a research hotspot
in recent years.

Complex network theory is now a powerful tool used in the research on the robustness
of realistic network systems [6,7]. By abstracting WSNs into graphs, researchers have
proposed various models to describe the cascading failure process [8–13]. Based on these
models, it has been widely proved that the cascading performance of WSNs largely depends
on the underlying network topology and the routing scheme implemented. So, current
methods to enhance network robustness can be mainly categorized into two groups. One
is modifying network topological structure [14–16] and the other is designing a better
routing scheme [17–19].
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In most of these existing studies, the cascading models for WSNs are developed based
on general topological load metrics (i.e., degree or betweenness). The premise of those
models is that the data transmission is conducted in a peer-to-peer mode, that is, data can
be transferred between any pair of network nodes. However, in reality, all data in WSNs
will be transmitted from general sensors to sinks, and the data transmission mode oriented
to multiple sinks has obvious advantages in energy efficiency and reliability compared
with only one sink [20–22]. This makes real-life WSNs exhibit different load distribution
characteristics from the traditional peer-to-peer networks. In this kind of multisink network,
the placement of sinks falls under the topological planning. It would be expected that
given a sensor-to-sink routing scheme, if the sinks’ locations in the network topology are
changed, the data will arrive at the destinations along the different paths, and the traffic
load will change accordingly. Therefore, the multisink placement is an important factor
affecting the network load distribution, which may further affect the network cascading
process. Unfortunately, although there are some recent studies on multisink placement in a
WSN, hardly any attention is paid to quantifying network robustness to cascading failures
in terms of the topological location properties of its sinks.

Specifically, current studies on the multisink placement mainly focus on various
optimization approaches that only aim to find the optimal locations of sinks to maxi-
mize network performance in terms of transmission latency, network lifetime, or other
aspects [23–26], while much less effort has been made in terms of network cascading robust-
ness. The particle swarm algorithm [27], genetic algorithm [28], and memetic algorithm [29]
are some of efficient tools adopted to solve such optimization problems. It needs to be
noticed that these tools can present the optimal results for specific problems studied, but
they can hardly give any insight into how the multisink placement may affect the network
performance. Therefore, so far, there is a lack of understanding of the relationship between
topological location properties of sinks and cascading failures for a given WSN.

In this paper, we develop a systematic study to fill this gap. We first construct an
actual cascading model for multisink WSNs. Based on this model, a number of topological
parameters are introduced to establish the connectivity between cascading failures and mul-
tisink placement. The new findings obtained here reveal the impact of varying topological
location properties of sinks and its association with the network configuration considering
network structure and routing scheme, providing insight into optimizing or designing
WSNs to make them more robust against cascading failures. The main contributions of this
paper are summarized as follows:

(1) We put forward a multisink-oriented cascading model for WSNs to characterize
the actual cascading process of WSNs, which considers the multisink-oriented load
distribution characteristics and the two most commonly used routing schemes.

(2) We introduce five topological parameters to give quantitative measures of the sinks’
locations for WSNs.

(3) We carry out an experimental analysis on the relationship between the topological
location parameters of sinks and network robustness on the two typical network
topologies imitating real-life WSN conditions.

(4) We design a simulated annealing algorithm to maximize network robustness through
optimizing the multisink placement and compare the topological quantities before
and after optimization to validate the experimental results.

The rest of the article is arranged as follows. Section 2 details the constructed multisink-
oriented cascading model for WSNs. Section 3 discusses the impacts of topological param-
eters for multisink placement on robustness. Section 4 introduces a simulated annealing
algorithm to find the optimal multisink placement and compares the topological quantities
before and after optimization to validate our findings. Section 5 concludes this article.

2. Multisink-Oriented Cascading Model for WSNs

In this section, we elaborate the constructed cascading model for WSNs in detail.
First, we present the network description and introduce a load metric called multisink-
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oriented betweenness to capture the load distribution of WSNs. On this basis, we give
the definition of the initial load and capacity of sensors. Then, to describe the process
of multisink-oriented load redistribution in common routing schemes, we propose two
load redistribution schemes. Finally, we discuss the cascading mechanism and robustness
measure.

2.1. Network Description

In this study, a WSN can be abstracted by an undirected graph G = (V, E), where
V = VG ∪VS is the node set consisting of general sensors and sinks. VG = {1, 2, · · ·, NG}
and VS = {1, 2, · · ·, NS} are the sets of general sensors and sinks, respectively. N= NG + NS
is the total number of nodes in the network. The N × N adjacency matrix

[
aij
]

has aij = 1 if
node i is connected with node j; otherwise, aij = 0. For actual WSNs, a realistic situation is
that no direct links exist between sinks, so the link set E does not contain the link created
within the set of sinks.

2.2. Initial Load and Capacity

In an actual WSN, general sensors collect data or act as routers for transmitting data
to sinks. Usually, the data flow from the sensors to their nearest sinks through the shortest
path and maintain a balanced state owing to a long time evolving; thus, the initial load of a
sensor relates to the number of shortest paths from all sensors to their nearest sinks that
pass it in the network [16]. To properly reflect such multisink-oriented load distribution
characteristics, different from the widely used general betweenness-load metrics based on
the shortest path of any node pair, we define a metric called multisink-oriented betweenness
(MB) to describe the initial load on sensors, i.e.,

MBi = ∑
j∈VG

∑
m∈S(j)

ωj,m,i / ωj,m

NG NS(j)
, (1)

where S(j) represents the set of sinks that are closest to sensor j and ωj,m,i is the number of
the shortest paths going from sensor j to its nearest sink m that run through sensor i. ωj,m
denotes the total number of available shortest paths going from sensor j to its nearest sink
m. NS(j) is the size of the sink set S(j). Then, the initial load of a sensor i, denoted by Li(0),
can be estimated by its multisink-oriented betweenness MBi, i.e., Li(0) = MBi.

In actual WSNs, the capacity of a sensor, which characterizes the maximum load this
node can manipulate, is limited by its buffer size. The existing cascading models usually
assume that the capacity is directly related to the initial load of the node [10,13]. However,
in most real-life cases, WSNs cannot customize the capacity of sensors according to their
initial load since the hardware configuration of sensors in the same network is identical
under the unified large-scale deployment [30]. In this way, the capacity of each sensor can
be defined as

W = (1 + β)

∑
i∈VG

Li(0)

NG
, (2)

where β is the tolerance parameter for overload. According to Equation (2), each sensor has
the same capacity, which is β times the average load of the initial network. Obviously, β
relates to the cost of network construction. The larger β is, the more extra capacity resources
each sensor owns to protect the network against cascading overloaded failures, but the
higher the cost of constructing the network. So, a trade-off should be made regarding
the robustness of the network and its construction cost. Undoubtedly, by introducing
appropriate β, we can guarantee that there are no overloaded sensors in the initial network.
However, if the load of a sensor at time t exceeds its capacity, it will malfunction at time
t + 1.
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2.3. Load Redistribution Schemes

If a sensor malfunctions, the load traffic should be rerouted to bypass it toward the
destinations. This redistribution of load is a transient action and may be global or local,
depending on the routing policies. In fact, global and local routing policies both exist [19].
For this consideration, the following two redistribution schemes of load are proposed to
imitate the multisink-oriented redistribution process of load in commonly used routing
schemes.

2.3.1. Global Routing (GR)

For the GR scheme, each sensor can acquire the real-time topological information
of the entire network to make the shortest path routing decision. In this case, if a sensor
malfunctions, its load will be reassigned globally within the network. Thus, it is natural to
assume that once a sensor i fails at time t, it is removed from the network and the whole
network topology is updated. A sensor’s load in the network is then renewed according to
Equation (1).

Figure 1 gives an example of redistribution of load under the GR scheme. In this
example, nodes 2 and 9 are sinks, and the rest are sensors. Suppose that sensor 8 is attacked
and removed from the network. In comparison with the network load distribution before
the attack (Figure 1a), the load of more than half of the sensors in the network changes after
the attack (Figure 1b). Among them, the load of sensors 1, 3, 4, 7 and 10 increases. Before
sensor 8 is attacked, the data at sensors 5 and 6 reach sink 9 through sensor 8. When sensor
8 is attacked and fails, the data at sensor 5 have to go through sensor 4 to sensor 1 or 3 and
finally to sink 2. Meanwhile, the data at sensor 6 need to reach sink 9 through sensors 7
and 10, causing an immediate increase of the load of these five sensors.

Figure 1. An example of redistribution of load under the GR scheme. (a) Initial load distribution.
(b) Redistribution of load after sensor 8 is attacked.

2.3.2. Local Routing (LR)

For the LR scheme, each sensor can only acquire the real-time depth information of its
neighbor nodes. In this case, if a sensor malfunctions, its original load will be redistributed
to the neighbor nodes closest to a sink. Based on this, the following settings can be made
for the LR scheme. Suppose that a sensor i fails and is removed from the network at time t;
then, the load of its neighbor sensors at time t + 1 is renewed according to

Lj(t + 1) =

{
Lj(t) +

Li(t)
| Γi(t+1)| , j ∈ Γi(t + 1)

Lj(t), otherwise,
(3)

where Γi(t + 1) is the node collection consisting of the sensors closest to a sink among the
neighbor sensors of sensor i at time t + 1. | Γi(t + 1)| is the size of the collection Γi(t + 1).

Figure 2 illustrates an example of redistribution of load under the LR scheme in
the same topology as Figure 1. Suppose that sensor 8 fails due to an attack. Among its
neighbors, sensors 4 and 7 only take two hops to arrive at their respective nearest sink.
Therefore, the load of sensor 8 is assigned equally to sensors 4 and 7, thus increasing the
load of these two sensors.
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Figure 2. An example of redistribution of load under the LR scheme. (a) Initial load distribution.
(b) Redistribution of load after sensor 8 is attacked.

2.4. Cascading Mechanism

Suppose that the potential cascading failure in the considered WSN is triggered by
an initial attack on a single sensor. After removing this faulty node, the topology or
connectivity of the network is altered, which causes the global or local redistribution of
load according to the selected routing rule. When a sensor receives extra load, its updated
load may exceed the capacity, and overloaded failure occurs consequently. In addition, the
removal of the faulty node may make the network disintegrate into some subnetworks. For
a subnetwork, if there are no sinks, then all sensors cannot communicate with any sink.
All these sensors in the subnetwork are treated as failed nodes due to isolation, although
they are not overloaded. Any failure causes a new redistribution of load and, as a result,
subsequent failures may take place. This cascading process repeats until there are no more
overloaded and isolated nodes.

2.5. Robustness Measure

The size of the giant connected component after cascade-based attacks is a widely
used measure of network robustness [31–33]. This measure is reasonable for peer-to-peer
networks that do not distinguish the nodes’ functions in the process of traffic transmission.
However, in actual WSNs, when an attack occurs, the user is more concerned about the
number of sensors that can still keep communication with at least one sink. We call this
quantity the effective component size and consider it to examine the consequences of
cascades on the network. Supposed the effective component size to be Ri after the cascades
triggered by a sensor i. To measure the robustness of the entire network against cascading
failures, since 0 ≤ Ri ≤ NG − 1, we adopt the normalized effective component size, i.e.,

R(G) =
∑i∈VG

Ri

NG(NG − 1)
, (4)

where the summation over all the effective component sizes is obtained by removing each
sensor initially. A larger R(G) indicates that the network is more robust against cascading
failures.

3. Impacts of Topological Parameters for Multisink Placement on Robustness

In order to investigate how multisink placement affects the robustness of WSNs
against cascading failures, we consider five topological parameters for quantifying the
sinks’ locations, namely the average degree of sinks, the average betweenness of sinks, the
average efficiency of sinks, the average closeness of sinks, and the average shortest path
length of sinks. For a connected network, the specific definitions of these five parameters
are as follows.

(1) The average degree of sinks (ADS)

ADS =
1

NS
∑

i∈VS

ki, (5)
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where ki represents the degree of node i.
(2) The average betweenness of sinks (ABS)

ABS =
1

NS
∑

i∈VS

Bi, (6)

where Bi denotes the betweenness [34] of node i.
(3) The average efficiency of sinks (AES)

AES =
2

NS(NS − 1) ∑
i∈VS

∑
j∈V

dij, (7)

where dij represents the shortest path between nodes i and j.
(4) The average closeness of sinks (ACS)

ACS =
2

NS(NS − 1) ∑
i∈VS

1
∑

j∈VS ,j>i
dij

. (8)

(5) The average shortest path length of sinks (ASPLS)

ASPLS =
2

NS(NS − 1) ∑
i∈VS ,j∈VS ,j>i

dij. (9)

Among them, the first two parameters, i.e., ADS and ABS, measure the centrality of
positions of sinks in a network, while the last three parameters, i.e., AES, ACS and ASPLS,
characterize the distribution of sinks, which can quantitatively evaluate the average ability
of sensors to arrive at a sink within a smaller distance. Therefore, these quantities can
represent the topological location properties of sinks from the physical and functional
perspectives. Their modifications can initiate varying the multisink placement of the
network that accordingly affects the network robustness against cascading failures.

Since random property and scale-free property are widely observed in real-life WSNs,
it is natural and important to adopt a random network (RN) and scale-free network (SFN)
to present an overall evaluation of how the above topological parameters for multisink
placement affect network robustness. We apply the proposed cascading model considering
different routing schemes (i.e., GR and LR) on these two typical networks. Network science
tells us that the degree distribution of RN topology is homogeneous, while the degree
distribution of SFN topology is heterogeneous. Note that “network topology” here defines
how all nodes within a network are connected to each other no matter whether it is a sensor
or a sink. Clearly, there exist four network scenarios for WSNs, which can be illustrated by
the combinations of network structure and routing scheme, including RN-GR, SFN-GR,
RN-LR and SFN-LR.

Our simulations are based on Matlab. To imitate real-life network conditions, the RN
and SFN we adopted are generated referencing the topology construction algorithms [10].
IEEE 802.11b is used as the MAC layer, and the node’s transmission radius is set to 40 m.
Regarding the wireless propagation, the Log Normal Shadowing Model (LNSM) [35]
has been used to obtain the distance between the nodes based on the measurements of
the Received Signal Strength Indication (RSSI) [36]. To make a fair comparison, for each
network topology, the total number of nodes is fixed as N = 150, and the average degree is
set to 4. Based on the network topology, a fixed number of NS = 6 sinks will be deployed,
and other nodes are sensors. Moreover, due to the limitation of network construction
cost, the capacity of every sensor is generally not very high, and we set the tolerance
parameter to β = 1. In this work, our main concern is the cascading process under varying
conditions of topological locations of sinks for WSNs, and it does not involve the impact
of the MAC layer on the network. In addition, we do not take into account the impact of
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energy factors (e.g., residual energy) because the cascading process is much faster than the
energy-depletion failure process caused by load transmission.

For each network scenario, to discuss the impact of multisink placement on the
cascading robustness of WSNs, the sinks’ locations are randomly assigned 1000 times. For
each distribution in each network, we can obtain a set of values of topological parameters
(i.e., ADS, ABS, AES, ACS and ASPLS) and the resulting robustness R(G) of the network
under this case. Thus, a total of 1000 pairs of values for each topological parameter and
R(G) can be obtained. Next, we sort these 1000 pairs of data according to the corresponding
topological parameter values and then divide them into 5 groups: specifically, the first 200
pairs of data form group 1, the following 200 pairs of data form group 2, and so on. For
each group, we compute the average of 200 topological parameter values and the average
of 200 R(G) values, respectively. In this way, for each network scenario, we can obtain five
pairs of values, which give a five-point curve in Figure 3.

From each subgraph in Figure 3, we can see four different curves, indicating that the
robustness is different under different network structures and routing schemes. Compared
with the network structure, the robustness difference of varying routing schemes is more
pronounced. We can easily observe that for networks of any structure (RN or SFN), the
curve of the GR is obviously above that of the LR, which means that the GR is more
conducive to network robustness. This is because compared with the LR, during the load
redistribution process of the GR, more network nodes can share the load of the failed nodes,
reducing the load increment of these load-sharing nodes, thus inhibiting their overload
failures and the possible failure propagation.

More importantly, it is clear that the topological parameters describing the sinks’
locations exert important impacts on the robustness. For all curves of each subgraph in
Figure 3, with the increase of ADS, ABS or ASPLS, the performance of robustness increases.
Conversely, increasing AES or ACS reduces the robustness.

Figure 3. Impact of different topological parameters on network robustness. (a) The average degree
of sinks (ADS). (b) The average betweenness of sinks (ABS). (c) The average efficiency of sinks (AES).
(d) The average closeness of sinks (ACS). (e) The average shortest path length of sinks (ASPLS).

In order to understand these results, we can categorize the five topological parameters
into three groups. First, ADS and ABS are quantities that measure the centrality of positions
of sinks in a network. Sinks can be considered to be deployed as hubs, which are at central
positions with larger ADS and ABS. If the sinks are located with higher centrality, it is
advantageous for sensors to obtain better access to the sinks. In this case, the lower the
network load, the harder it is for sensors to overload and be removed from the network. The
more difficult it is also for the sensors to be disconnected from the sinks and cause isolated
failures. These inhibit cascading propagation, which makes the network more robust. AES
is a quantity that directly evaluates the mean distance between sinks and sensors. A smaller
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AES means that a sensor is more easily accessible to a nearby sink, making the network
load lower and more balanced and resulting in higher network robustness. The final ACS
and ASPLS give the relative location among sinks. With a smaller ACS or a larger ASPLS,
sinks are distributed in a more decentralized way, which is favored for the robustness of
WSNs.

It should be noted that in Figure 3, the considered WSNs have quite different network
structures or/and quite different routing schemes. As expected, the network structure and
routing scheme both affect the evolution of the curves for the WSNs. We can observe that
given any network structure (or routing scheme), varying the sinks’ locations, the change in
the robustness of WSNs with GR (or SFN topology) appears to be more obvious than that
with LR (or RN topology). However, the evolution trend of the curves for these WSNs is
the same, as shown in each subgraph of Figure 3. It suggests the universality of our finding
that a WSN in which its sinks are distributed in a decentralized manner and connect as
many sensors as possible has better robustness against cascading failures.

4. Optimal Multisink Placement

A better robust WSN against cascading failures has a greater capacity to sustain its
normal and efficient functioning. To obtain the optimal multisink placement making the
network as robust as possible and identify topological properties behind this optimal place-
ment, in this part, we formulate an optimization problem for maximizing the robustness
R(G) when the sinks’ locations can be modified.

In a complex WSN, this optimization is an NP-hard problem. Here, we employ a
nature-inspired algorithm called simulated annealing (SA) [37] to find the optimal solution
of this problem, which can be described as follows.

(1) Randomly select NS nodes as sinks in the initial network G0, and then compute the
robustness R(G0). Set the time step t = 1.

(2) Randomly select a sink and modify its location randomly to obtain the new network
Gt. Then, compute R(Gt).

(3) Gt is accepted with the probability

p =

{
1, R(Gt) ≥ R(Gt−1)

e(R(Gt)−R(Gt−1))/T , otherwise
, (10)

where T denotes the temperature parameter and is a function of the time step t.
(4) If the value of R(Gt) remains unchanged in a large number of the latest consecutive

time steps (set as 2000), the algorithm is stopped. Otherwise, set t = t + 1 and then go
to step 2.

During the implementation of the algorithm, the temperature parameter T should
be progressively decreased from an initial value that is large enough. This enables the
search of solutions to escape from the local optimum and ensures that the system can finally
reach an equilibrium. In our study, the cooling schedule of the temperature T follows
the exponential rule T(t) = T0θt, where T0 is the initial temperature and θ is a cooling
coefficient. Here, we set these two parameters following the rules in Chapter 15 of [38].

The proposed SA algorithm is applied to the same network scenarios as the previous
section. The results of topological parameters and robustness before and after optimization
are shown in Table 1. For all four scenarios, compared to the initial network, the robustness
of the optimized network is significantly improved. Specifically, with the GR, the robustness
of the initial RN and SFN is 0.654 and 0.610, respectively, while the optimal robustness
is increased by 0.212 and 0.234, respectively. With the LR, the robustness of the original
RN and SFN is 0.435 and 0.462, respectively, while the optimal robustness is improved
by 0.162 and 0.192, respectively. The results show the effectiveness of our algorithm. By
comparing these improvement results, one can see that given any network structure (or
routing scheme), the increase in the robustness of the network with GR (or SFN topology)
appears to be more obvious than that with LR (or RN topology). This is consistent with the
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result in the previous section. In this sense, we can say that the robustness of a WSN with
the GR is more sensitive to its sinks’ locations than that with the LR, especially when the
heterogeneous SFN topology is selected as the network structure.

Table 1. Topological parameters and robustness in different scenarios before and after optimization
where the sinks’ locations can be modified. The results are the average of 50 independent runs.

Scenarios Optimization ADS ABS AES ACS ASPLS R(G)

RN-GR before 3.83 110.56 278.13 0.040 4.33 0.654
after 5.67 281.42 220.93 0.031 5.93 0.866

RN-LR before 3.83 110.56 278.13 0.040 4.33 0.435
after 5.50 253.45 221.27 0.032 5.87 0.597

SFN-GR before 3.67 88.42 274.67 0.042 4.20 0.610
after 7.33 348.48 236.53 0.032 5.80 0.844

SFN-LR before 3.67 88.42 274.67 0.042 4.20 0.462
after 6.83 328.72 240.53 0.033 5.67 0.654

Moreover, for different network scenarios, when comparing the topological param-
eters before and after optimization, ADS, ABS and ASPLS are all increased after the
optimizations, while AES and ACS are both decreased. These results are what we found
in the previous section. Hence, it can be concluded that the robustness of a WSN with
any structure and routing scheme against cascaded attacks can be effectively enhanced by
allocating sinks as hubs (making ADS and ABS larger) and decentralizing these sinks in
the network (making AES and ACS smaller and ASPLS larger). Considering this issue
while designing WSNs will make them more robust against cascading failures.

5. Conclusions

In this paper, based on an actual cascading model, a WSN is investigated in terms of
its multisink placement, and the association with the cascading robustness is established.
The proposed cascading model takes into account the multisink-oriented load distribution
characteristics and the two most commonly used routing schemes for WSNs. The statistical
parameters considered for quantifying the sinks’ locations include ADS, ABS, AES, ACS,
and ASPLS. Then, the impact of varying these quantities on network robustness are
discussed in detail using the random network and the scale-free network imitating real-life
network conditions. Our experimental results reveal that in order to enhance the robustness
of a WSN against cascading failures, the ADS, ABS and ASPLS should be larger, and the
AES and ACS should be smaller, which means that its sinks should be arranged as hubs,
and these sinks should be uniformly distributed in the network. These results are effective
in different network structures and routing schemes studied, and they are also verified
through our designed simulated annealing algorithm optimizing multisink placement.
Moreover, both the network structure and routing scheme can affect the sensitivity of the
robustness of the network to its sinks’ locations.

Our study clearly illustrates the importance of considering multisink placement when
optimizing the robustness of WSNs to resist cascading failures. In reality, how to engineer
a large-scale WSN that has more cascading robustness is crucial in many applications.
Our findings provide an efficient and easy way to do this: just manipulate the topological
locations of a small number of its sinks in a reasonable manner. The self-organizing
characteristic of WSNs which have a topology that can be flexibly tuned according to actual
needs [39,40] also provides favorable conditions for the implementation of this solution.

In the present work, aiming to explore the impact of varying the topological location
properties of sinks on network cascading robustness for WSNs, we mainly focus on the
modeling of a multisink-oriented load-transfer process where the two routing schemes
considered are topology-aware only. In the next step, we will extend the model by consider-
ing more practical routing factors (e.g., the congestion extent of sensor nodes and residual
energy). On this basis, we will figure out efficient ways to comprehensively analyze the
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influence of topological properties (e.g., clustering, average path length) of both the connec-
tivity of the network and the distribution of sinks on the cascading process and launch a
more robust network design for real-life multisink WSNs. The interesting challenge of this
work is to make sure that the topology structure designed is robust to cascading failures
and can also meet other network performance requirements, such as delivery latency and
energy efficiency.
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