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Abstract: For object detection, capturing the scale of uncertainty is as important as accurate local-
ization. Without understanding uncertainties, self-driving vehicles cannot plan a safe path. Many
studies have focused on improving object detection, but relatively little attention has been paid
to uncertainty estimation. We present an uncertainty model to predict the standard deviation of
bounding box parameters for a monocular 3D object detection model. The uncertainty model is a
small, multi-layer perceptron (MLP) that is trained to predict uncertainty for each detected object.
In addition, we observe that occlusion information helps predict uncertainty accurately. A new
monocular detection model is designed to classify occlusion levels as well as to detect objects. An
input vector to the uncertainty model contains bounding box parameters, class probabilities, and
occlusion probabilities. To validate predicted uncertainties, actual uncertainties are estimated at
the specific predicted uncertainties. The accuracy of the predicted values is evaluated using these
estimated actual values. We find that the mean uncertainty error is reduced by 7.1% using the
occlusion information. The uncertainty model directly estimates total uncertainty at the absolute
scale, which is critical to self-driving systems. Our approach is validated through the KITTI object
detection benchmark.

Keywords: uncertainty estimation; uncertainty evaluation; object detection; deep learning;
self-driving

1. Introduction

In this paper, we present a novel method to address the problem of uncertainty in 3D
object detection using monocular cameras in a road environment. Object detection plays a
critical role in the perception system of self-driving vehicles, providing essential information
for path planning and ensuring safe and efficient vehicle operation. Significant progress
has been made in 2D object detection [1–6], but the challenges of detecting objects in 3D
space [7–15] are significantly greater, especially because of the complexity of accurately
representing 3D bounding boxes.

Our research focuses on predicting the uncertainty associated with 3D object detec-
tion results. Most previous studies have focused on improving detection metrics using
benchmarks such as KITTI [16] and NuScenes [17], while the discussion of the uncertainty
in predicted bounding boxes has remained limited. It is important to understand that even
if the intersection over union (IoU) between the predicted and ground truth (GT) bounding
boxes exceeds a certain threshold, there is always some degree of error or uncertainty in
the predicted box parameters. For autonomous vehicles to plan safe routes, it is important
to understand the uncertainty of the bounding boxes, which can help set appropriate safety
margins. Unlike previous works, our method does not require repetitive inferences or
complex mathematical derivations [18–22], but just a small additional model is adopted to
predict uncertainty.

To address this challenge, we propose a novel uncertainty prediction model based
on neural networks. The key feature of our model is its ability to predict uncertainty on
an absolute scale. We describe in detail how we generate the training data and make the
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necessary adjustments to improve the accuracy of the predictions. In addition, we use
occlusion information to improve the accuracy of uncertainty estimation. Since occluded
objects are difficult to infer accurately, incorporating occlusion levels into uncertainty
prediction becomes crucial.

We propose a method to evaluate the accuracy of uncertainty prediction by statistically
analyzing the error values of the bounding box predictions. Uncertainty accuracy is a
concept that measures how closely the predicted uncertainty value matches the actual level
of uncertainty. Uncertainties are evaluated using standard deviations, assuming that the
error values follow a normal distribution.

To evaluate our method, we utilized the KITTI dataset [16], a widely used benchmark
in the field of autonomous driving. Our tests found an average discrepancy of 4.92% in the
predicted standard deviation values.

The key contributions of this paper can be summarized as follows. First, we propose
a neural network–based uncertainty prediction model that operates on an absolute scale.
We demonstrate how to prepare training data and adjust predictions. Second, occlusion
information is used to improve the accuracy of uncertainty estimation. Finally, we intro-
duce a statistical analysis method to evaluate the accuracy of uncertainty prediction. By
addressing the uncertainty in 3D object detection, our proposed methodology enables
self-driving vehicles to operate more safely and efficiently.

2. Preliminaries

Our work is mainly based on two themes: 3D object detection and uncertainty estima-
tion. The following subsections introduce the recent studies in these fields.

2.1. 3D Object Detection

Deep learning approaches to 3D object detection have been studied extensively and
typically rely on lidar, cameras, or some combination of the two. The performances of the
methods based on lidar or stereo cameras have been greatly improved, but monocular
approaches still face challenges. We categorize the previous works by sensor type and
review them one by one.

(1) 3D Object Detection via Lidar: Lidar provides 3D geometric information in the form
of point clouds. Most detector models are based on a CNN, but irregular point clouds
are not fit for CNNs. To regularize the data format, point clouds are encoded in
regular 2D-grid or 3D-voxel space. Various methods based on 3D convolution [7,8,23],
bird’s eye view (BEV) images [9,24], and point pillars [25] have been proposed. Cen-
terPoint [26] employs a two-stage detector architecture on BEV images. The backbone
and region proposal network (RPN) output dense predictions of class confidence and
bounding box parameters without anchors, and then the MLP head takes the features
from the five points of the predicted bounding box as input to refine the results.
PointPainting [27] fuses image information into the existing lidar-based detectors. The
semantic segmentation result from an image can be used to enrich the information
of a point cloud. A semantically labeled point cloud can be input to existing models,
such as PointPillars [25], VoxelNet [7], and PointRCNN [23], with improved results.

(2) 3D Object Detection via Stereo Cameras: Depth information can be extracted from
stereo images, given that disparities are accurately estimated. However, as the quality
of the depth data is not as good as with lidar, point clouds are not generally extracted
from stereo images for 3D object detectors. Instead, stereo information is merged at
the feature level [10,11,28].

A stereo R-CNN [10] concatenates the features from stereo images to produce left and
right regions of interest (RoIs) simultaneously. Four key points are predicted for each object
from a 2D image, and a 3D box is estimated from the key points. The final depth of an object
is adjusted by minimizing the photometric reprojection error between the left and right
RoIs. A deep stereo geometry network (DSGN) [11] utilizes 3D volumetric representations.
Left and right features are merged to make a plane-sweep volume (PSV) in camera frustum
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space, which is warped to a 3D geometry volume (3DGV). The 3DGV is squeezed out to a
2D feature map, and it is input to the BEV-based detector.

(3) 3D Object Detection via Monocular Cameras: Since a monocular camera provides no
depth information, monocular 3D detection is a challenging task. To overcome this dif-
ficulty, some monocular approaches have exploited depth map prediction [12–14,29].
M3D-RPN [13] is an anchor-based detector that uses 2D and 3D anchors. The key
feature is the depth-ware convolution, which trains different kernels for row-wise sepa-
rated blocks to exploit the fixed-view assumption of self-driving vehicles. SMOKE [29]
is a single-stage 3D detector that classifies the keypoint heatmap of projected 3D object
centers and predicts bounding box parameters at the keypoints. MonoFlex [12] model
specializes in detecting edge-truncated objects. It decouples the learning process of
inside objects and truncated objects. Depths are directly predicted by the model for
each object and estimated from the keypoint predictions simultaneously. The two
depth predictions are merged based on the uncertainties.

2.2. Uncertainty Estimation

Bayesian neural networks (BNNs) [18] are devised to model the uncertainty of neural
networks. It is assumed that each weight has a probabilistic distribution instead of a
deterministic value. It begins with the a priori distribution and updates the posterior
distribution through training. It is known to restrain an overfitting problem, but inferring
the output posterior in a deep network is computationally expensive. To tackle this
problem, Bayesian approximation using dropout techniques [19] is proposed. Model
output uncertainty is captured using Monte Carlo (MC) sampling, inferring from the same
input multiple times with dropout. It can be applied to existing networks and is relatively
efficient. Based on the MC sampling approach, F. Di et al. [20] proposed a method to
capture uncertainty for a lidar-based 3D object detector. The output uncertainty is divided
into epistemic uncertainty and aleatoric uncertainty, presenting model uncertainty and
observation noises from sensors. It quantifies classification uncertainty through Shannon
entropy and mutual information and regression uncertainty based on total variance. F.
Kraus and K. Dietmayer [21] applied this approach to the 2D one-stage detector YOLOv3 [5].
A. Loquercio et al. [22] presented a method to analyze uncertainty from already-trained
models without changing the optimization process. Model uncertainty is estimated from
MC sampling, whereas data uncertainty is estimated using assumed density filtering (ADF),
which analytically propagates initial sensor noise to the output.

Another approach is to explicitly output distribution parameters from networks.
Gaussian YOLOv3 [6] predicts the mean and variance of bounding box parameters. It is op-
timized by minimizing the log-likelihood of GT parameters from the predicted distribution.

Although the existing methods have demonstrated their effectiveness in various ways,
they have some weaknesses. MC sampling requires multiple inferences, thus slowing the
effective model speed, and predicts uncertainty only in relative scales, not in the absolute
scale. To calculate safe margins for driving vehicles, uncertainty information should be
scale-aware. Predicting distribution parameters can possibly learn absolute scale, but it
needs to change the head structure and loss function and thus is not applicable to the
existing models. In contrast, we train an independent network to estimate bounding box
uncertainty after the detector model is completely trained. Our approach is applicable to
already-trained models at little additional cost.

3. Uncertainty Prediction Model

Our goal is to predict uncertainties of bounding box parameters using a trainable
model. The proposed system is depicted schematically in Figure 1. The 3D object detection
model predicts occlusion probabilities as well as bounding boxes and class probabilities.
Bounding box errors are obtained by comparing the detection results with the annotated
ground truth (GT).
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Figure 1. Overview of the system.

The detection results are input to the uncertainty model, and it predicts the standard
deviations of the bounding box parameters. The outputs are trained by the bounding box
errors. The key feature of our system is to utilize occlusion-level information, integrating
this critical aspect into the uncertainty prediction. The details of the models are described
in the following sections. Table 1 describes the nomenclature used in the rest of the paper.

Table 1. Nomenclature of the uncertainty estimation system.

Symbols Description

Xi ith output vector of the detector
Yi ith input vector of the uncertainty model
Zi ith output vector of the uncertainty model
σx,i predicted standard deviation of parameter x in Zi
ex,i box prediction error of parameter x in Xi

σ
q%
x q% quantile over predicted standard deviations

ρx,n nth sample point of parameter x from predicted standard deviations
ρ̂x,n actual standard deviation corresponding to ρx,n

ωx,i,n weight of σx,i to compute ρ̂x,n
σω standard deviation for the normal distribution of weights
ρ′x,n predicted standard deviation adjusted from ρx,n

3.1. Monocular 3D Object Detector

Since our aim is to train the uncertainty model using occlusion information, a custom
detection model has to be trained rather than using the existing models. We verify that
occlusion is relevant to the bounding box uncertainty in the experiment section. Our
detection model architecture is based on YOLOv3 [5]. A monocular image is input to the
model, and the output composition is modified to predict 3D bounding boxes and occlusion
levels. The ith output instance Xi contains the following parameters:

Xi = [y′i x′i h′i w′i yi xi zi li wi hi θi oi ci1 . . . ciK ui1 . . . uiM] (1)

which is comprised of coordinates
(
y′i, x′i

)
and dimensions

(
h′i, w′i

)
of a 2D bounding

box, coordinates (yi, xi, zi), dimensions (li, wi, hi) and a yaw angle (θi) of a 3D bounding
box, an objectness (oi), class probabilities (ci1, . . . , ciK), and occlusion-level probabilities
(ui1, . . . , uiM) where there are K object classes and M occlusion levels.
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During training, the parameters up to θi are trained using the L1 smooth loss, and
the rest of the parameters are trained using the cross-entropy loss. During inferencing,
the non-maximal suppression (NMS) algorithm is applied to the 2D bounding boxes in
advance, and then the 3D box NMS is applied to the detected 2D objects. The activation
functions for bounding box parameters are similar to those of M3D-RPN. However, as our
detector does not use anchors, the raw depth prediction tz,i is activated by Equation (2).

zi = 10 exp(tz,i) (2)

3.2. Uncertainty Model

The uncertainty model predicts the standard deviation of error in 3D bounding box
parameters from xi to θi. To achieve this, the model takes the related parameters from the
detected instances, which are 3D bounding box parameters and occlusion-level probabilities,
as defined in Equation (3).

Yi = [yi xi zi li wi hi θi ci1 . . . ciM ui1 . . . uiM] (3)

The model architecture is an MLP model with three hidden layers, each comprising
64 channels, suitable for the low-dimensional input data. The model outputs the standard
deviations for bounding box parameters per the following equation.

Zi =
[
σy,i σx,i σz,i σl,i σw,i σh,i σθ,i

]
(4)

To create label data for the uncertainty model, the optimal standard deviation should
be deduced for a detected instance. For training data, bounding box error can be calculated
from the GT bounding box data. Although statistical data cannot be derived from a
single datum, we need the standard deviation from a single error value. If the probabilistic
density function is parameterized by the standard deviation with a given error, as defined in
Equation (5), the optimal standard deviation is derived by finding the value that maximizes
the probability in Equation (6).

p(σx) =
1√

2πσx
exp

(
− ex2

σx2

)
(5)

∂p(σx)
∂σx

= − 1√
2πσx2

exp
(
− ex2

σx2

)
+ 1√

2πσx
exp

(
− ex2

σx2

)
2ex2
σx3

= 1√
2πσx2

exp
(
− ex2

σx2

)(
−1 +

ex2
σx2

)
= 0

(6)

The solution is simply σx = ex, where x can be replaced by any parameters in a 3D
bounding box. Therefore, the uncertainty model is trained to predict the absolute error of
3D bounding box parameters. It is not possible to predict error values, but as a result, the
model learns the mean of error in the given situation.

4. Uncertainty Evaluation

The goal of the uncertainty model is to predict statistical uncertainty, not error. Com-
paring the model outputs with the corresponding error is not the right way to evaluate
the model. Figure 2 is a scatter plot of errors against the predicted standard deviation. To
evaluate the accuracy of the predicted standard deviations, the actual standard deviation
should be computed using the errors at the specific predicted value. However, as there are
few errors at the specific standard deviation, we use errors around the specific standard
deviation with Gaussian weights, depicted by the curve in Figure 2. The actual standard
deviations are calculated only at the representative sample points rather than at all the
predicted standard deviations for computational efficiency.
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Figure 2. Scatter plot of x coordinate errors against predicted standard deviation. The dotted vertical
lines are the sampled standard deviations, and the curve represents Gaussian weights for the fourth
sample.

The sample points are the nine equally spaced standard deviation values between
the 10% and 90% quantiles of the predicted standard deviations from the training data, as
presented in Equation (7).

ρx,n = σ10%
x +

(
σ90%

x − σ10%
x
)

8
(n− 1), n = 1, . . . , 9 (7)

where ρx,n is the nth sample point and σ10%
x and σ90%

x are the 10% and 90% quantile values,
respectively. The sample points are marked by dotted lines in Figure 2. The Gaussian
weights are computed from Equation (8).

ωx,i,n =
1√

2πσω

exp

(
− (σx,i − ρx,n)

2

σω

)
, σω = (ρx,2 − ρx,1)/4 (8)

where ωx,i,n is the weight of σx,i to compute the actual standard deviation at the nth sample
point. At the sample points, the actual standard deviation is computed using all the errors
with the Gaussian weights by Equation (9).

ρ̂2
x,n =

(
L

∑
i=1

ωx,i,n

)−1 N

∑
n=1

ωx,i,ne2
x,i (9)

where ρ̂x,n is the actual standard deviation to be compared with the sampled standard
deviation, ρx,n. Ideally, the estimated actual standard deviation is close to the predicted
standard deviation at all the sample points, but they are different in reality. Instead, the
actual and predicted values are linearly related. To reduce the gap, the predicted standard
deviations at the sampling points are adjusted using linear regression, as in Equation (10).

ρ′x,n = αxρx,n + βx (10)

where coefficients αx and βx are optimized by the training data.
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Finally, we can assess the accuracy of the predicted uncertainty by comparing the
actual value, ρ̂x,n, with the adjusted prediction, ρ′x,n. The accuracy of uncertainties is
evaluated for all bounding box parameters.

5. Experiments
5.1. Dataset and Training

In order to train the detection and uncertainty models, we need a variety of labels,
including 2D and 3D bounding boxes, object classes, and occlusion levels. The KITTI object
detection dataset [16] is the only one meeting these requirements. It provides 7481 frames
of labeled data. The dataset is split into training and testing data, similar to the method
used in [30]. The input resolution is fixed to 1024 × 320.

The detection model is trained through 140 epochs with a single RTX 3090. Once the
detection model training is complete, model inference proceeds with both the training and
testing data. The detected objects are matched with the labeled objects using 2D bounding
boxes to compute errors for the 3D bounding box parameters. Matching is based on 2D
bounding boxes in order to extend the range of 3D bounding box errors without confusing
objects. The errors are used as labels to train the uncertainty model. The structure of the
uncertainty model is implemented according to Section 3.2, and the Huber loss and Adam
optimizer are adopted for training.

Before discussing uncertainty accuracy, we analyze the 3D bounding box errors to
verify whether occlusion information is relevant to bounding box uncertainty. The KITTI
dataset categorizes objects into three occlusion levels, 0 to 2. A higher occlusion level means
that the object is highly occluded. The analysis results are summarized in Table 2. The
errors in Level 1 are clearly larger than those in Level 0, and they increase slightly in Level
2. It is proven that occlusion is an important factor for bounding box estimation errors.

Table 2. The mean of bounding box element errors by occlusion difficulty levels in KITTI dataset.

Parameter Level 0 Level 1 Level 2

x 0.1706 0.1948 0.2056
y 0.0642 0.0680 0.0706
z 0.6829 0.8690 0.9345
h 0.0682 0.0875 0.0954
w 0.1089 0.1215 0.1260
l 0.3874 0.4141 0.4382
θ 0.0360 0.0473 0.0510

5.2. Evaluation Results

We evaluate both the detection and uncertainty models, but our focus is the uncertainty
model. The detection model achieves 28.33 AP for the car class in the KITTI 3D object
detection benchmark. The standard deviation errors of the uncertainty model are visualized
in Figure 3. There are seven subplots of bounding box parameters and nine sample points
in each subplot. The equally sampled points are marked by the green dots on the blue line,
where the horizontal coordinate is the raw standard deviation prediction and the vertical
coordinate is the prediction adjusted by Equation (10). For the red dots in the figure, the
vertical axis is the actual standard deviation, calculated using Equation (9). Ideally, the
red dots should be located on the blue lines, similar to the green dots, indicating that the
prediction is equal to the actual value. We can see that the estimated actual values differ
slightly from the predicted values, but they are generally highly correlated.



Sensors 2023, 23, 5395 8 of 11Sensors 2023, 23, x FOR PEER REVIEW  8  of  11 
 

 

 

Figure 3. Scatter plot of actual standard deviations against predicted standard deviations for the 

seven 3D bounding box parameters. The green dots are the adjusted predictions, and the red dots 

are the actual standard deviation calculated by Equation (9). 

The numerical results are presented in Table 3. The mean error of the nine sample 

points and the mean error rates at the sample points are calculated. The four cases are 

evaluated with different  input compositions  for  the uncertainty model. The worst case 

comes from the least information. Inference from only bounding box parameters results 

in the  largest error. As more  input information  is appended, the accuracy  improves. In 

particular, probabilities for occlusion-level classification, denoted as ‘occlusion prob.’ in 

the  table, help reduce error considerably, as we expected.  It reduces 7.1% of  the mean 

standard deviation error compared to the result without it. However, occlusion probabil-

ities are available only when the training dataset has occlusion-level labels, as in the KITTI 

object detection dataset. To generalize this approach, we calculate the occlusion ratio of a 

2D bounding box and replace occlusion probabilities with this value. Occlusions are found 

by checking overlapping 2D bounding boxes, and an object with a greater depth  is re-

garded as occluded. When the occlusion ratio is appended to the input, the result is some-

what improved from the input without it, but it is not as effective as occlusion probabilities 

trained by manual labels. This means that human labelers evaluate the severity of the oc-

clusion qualitatively more accurately than quantitatively. In addition, occlusion probabil-

ities are  learned more effectively using  cross entropy  loss, while  the occlusion  ratio  is 

learned using the L1 smooth loss. 

Figure 3. Scatter plot of actual standard deviations against predicted standard deviations for the
seven 3D bounding box parameters. The green dots are the adjusted predictions, and the red dots are
the actual standard deviation calculated by Equation (9).

The numerical results are presented in Table 3. The mean error of the nine sample
points and the mean error rates at the sample points are calculated. The four cases are
evaluated with different input compositions for the uncertainty model. The worst case
comes from the least information. Inference from only bounding box parameters results
in the largest error. As more input information is appended, the accuracy improves. In
particular, probabilities for occlusion-level classification, denoted as ‘occlusion prob.’ in
the table, help reduce error considerably, as we expected. It reduces 7.1% of the mean
standard deviation error compared to the result without it. However, occlusion probabilities
are available only when the training dataset has occlusion-level labels, as in the KITTI
object detection dataset. To generalize this approach, we calculate the occlusion ratio of
a 2D bounding box and replace occlusion probabilities with this value. Occlusions are
found by checking overlapping 2D bounding boxes, and an object with a greater depth
is regarded as occluded. When the occlusion ratio is appended to the input, the result
is somewhat improved from the input without it, but it is not as effective as occlusion
probabilities trained by manual labels. This means that human labelers evaluate the severity
of the occlusion qualitatively more accurately than quantitatively. In addition, occlusion
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probabilities are learned more effectively using cross entropy loss, while the occlusion ratio
is learned using the L1 smooth loss.

Table 3. The mean standard deviation errors and error rates (%) per bounding box element according
to input compositions.

Parameter Box Only Box + Class
Prob.

Box + Class
Prob. +

Occlusion Prob.

Box + Class
Prob. +

Occlusion Ratio

x 0.0189/9.10 0.0185/7.75 0.0089/3.65 0.0141/5.55
y 0.0059/8.30 0.0034/4.88 0.0040/3.93 0.0041/4.71
z 0.1269/11.60 0.1196/13.03 0.1203/10.19 0.1277/10.14
h 0.0042/3.83 0.0036/3.63 0.0052/5.46 0.0062/5.76
w 0.0062/4.85 0.0129/8.71 0.0048/3.68 0.0094/6.24
l 0.0260/6.15 0.0159/3.34 0.0183/3.79 0.0184/4.00
θ 0.0015/2.74 0.0022/3.92 0.0022/3.76 0.0036/6.17

Mean 0.0271/6.65 0.0252/6.46 0.0234/4.92 0.0262/6.08

It is noteworthy that the z element shows the highest standard deviation errors among
all parameters. This is because the absolute value of the z element is generally high, and
the monocular camera is not suitable for estimating depths. This is analyzed as the main
reason for the low detection accuracy of the monocular approaches.

Some parameters are manually selected in the uncertainty model and evaluation
process, and the most impactful parameter is σω, the standard deviation to compute
Gaussian weights in Equation (8). It influences the estimation of the actual standard
deviation, ρ̂x,n. Ideally, σω should be as small as possible so that only data close to the
selected sample points, ρx,n, are used. However, small σω results in losing numerical
stability by estimating standard deviation from a small effective number of samples. On the
other hand, large σω yields numerical stability, but it considers data farther from the sample
points to calculate ρ̂x,n. Table 4 shows the standard deviation errors with different σω . The
default value of σω given in Equation (8) is denoted by σ′ω . Reducing σ′ω to one-fourth of its
value results in doubling errors on average, and increasing σ′ω by a factor of four slightly
reduces errors. Larger σω results in smaller errors because large σω numerically stabilizes
the estimation of actual standard deviation, ρ̂x,n. As a result, the actual values at the sample
points are linearly aligned, and thus, it is easy to fit predicted standard deviations to the
actual values.

Table 4. Sigma error probability/ratio by changing σω .

Parameter σ′w/4 σ′w 4σ′w

x 0.0274/12.67 0.0089/3.65 0.0119/5.32
y 0.0097/9.10 0.0040/3.93 0.0042/4.74
z 0.0938/12.70 0.1203/10.19 0.0954/8.79
h 0.0072/6.83 0.0052/5.46 0.0016/1.56
w 0.0156/8.88 0.0048/3.68 0.0066/4.49
l 0.0424/7.53 0.0183/3.79 0.0087/1.75
θ 0.0030/5.36 0.0022/3.76 0.0032/5.46

Mean 0.0286/8.40 0.0234/4.92 0.0199/4.47

6. Conclusions

We have proposed a direct approach to estimating uncertainty at the absolute scale for
monocular 3D object detectors. Uncertainties of bounding box parameters are measured as
standard deviations and predicted by a simple MLP from the detected object information.
We demonstrate how to prepare input and output data to train the uncertainty model.
Moreover, in order to evaluate the accuracy of predicted standard deviations, the actual
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standard deviation is estimated against the specific predicted standard deviation. Although
the actual uncertainty is estimated approximately, we can adjust the scale and offset to the
predicted uncertainties with training data and evaluate the accuracy of the predicted values
with test data using the estimated actual uncertainty. Through the evaluation process, we
prove that occlusion information helps improve uncertainty accuracy.

Unlike previous studies, our model does not require repetitive inferences but estimates
uncertainty as a standard deviation in a metric unit. Model uncertainty and data uncertainty
are not treated separately, but what we need for self-driving is the total uncertainty on a
physical scale. Theoretically, standard deviations predicted from our model can be used
directly to set a safe margin for the detected objects. Our approach can be extended further
to any regression problem, such as various forms of object detection or pose estimation.
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