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Abstract: Subsurface inclusions are one of the most common defects that affect the inner quality of
continuous casting slabs. This increases the defects in the final products and increases the complexity
of the hot charge rolling process and may even cause breakout accidents. The defects are, however,
hard to detect online by traditional mechanism-model-based and physics-based methods. In the
present paper, a comparative study is carried out based on data-driven methods, which are only
sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discrim-
inative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation
neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The
scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly
provide forecasting information instead of low-dimensional embeddings. The stacked defect-related
autoencoder back propagation neural network extracts deep defect-related features layer by layer
for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are
demonstrated through case studies based on a real-life continuous casting process, where the im-
balance degree drastically vary in different categories, showing that the defects are timely (within
0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed
scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back
propagation neural network methods regarding the computational burden; the F1 scores of the
developed methods are clearly higher than common methods.

Keywords: real-time forecasting; subsurface inclusion defects; data-driven methods; discriminant
analysis; stack autoencoder

1. Introduction

Continuous casting slabs are a kind of indispensable foundation material in economic
construction, the quality of which crucially guarantees the safety and quality of the final
products [1,2]. A subsurface inclusion is one of the most frequent defects that affects the
inner quality of the continuous casting slabs. Specifically, subsurface inclusion defects refer
to irregular and discontinuous slag chunks embedded in the surface or 2∼10 mm under
the surface. It can cause serious defects in the resultant hot rolling or cold rolling products,
increasing the defective index, the probability of breakout accidents, and the complexity of
the hot rolling process [3–5].

Subsurface inclusion defects are a critical problem in the steel industry. Technologies to
solve this problem have been extensively studied in the past by both academia and industry,
and can be classified into mechanism-model-based methods, physical-parameter-based
methods, and process knowledge (metallurgy function)-based methods. (1) Mechanism-
model-based methods firstly involve the construction of a mechanism model of the contin-
uous casting process. Then analytical solutions are obtained by numerical simulation tools
and subsurface inclusion defects are predicted by the constructed mechanism model [6,7].
The main disadvantages are that it is usually hard to obtain an accurate mechanism model
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and the efficiency of practical application is greatly reduced by artificial assumptions.
(2) Physical-parameter-based methods utilize mechanical and electrical technologies, opti-
cal technology, and the pickling test for hot-rolled steel to detect slab surfaces, including
eddy current testing, the induction heating method, optical detection, photoelectric in-
tegration, macrofractography, etc. The disadvantages include that they are highly time
consuming, inefficient, and highly expensive, requiring a complete set of related equipment.
(3) Process knowledge (metallurgy function)-based methods utilize the metallurgy function,
constructed to describe the functional relationship between quality defects of slabs and
their related technological parameters, to forecast the quality defects and their orders of
severity [8]. The disadvantages are obvious: the insolubility of complex nonlinear features,
the difficulty of setting the weights of all technological parameters, and the inability to
describe the causes of defects.

With the great improvements in measurement techniques and information technology,
a large amount of process data can be expediently collected [9–12]. Data-driven methods
have attracted increasingly more attention, and are characterized by simple implemen-
tation, a broad applicability, and fewer requirements for a model mechanism or process
knowledge [13–18]. The advantages over other techniques are highlighted in the following.

(1) Subsurface inclusion defects cannot be detected by traditional detectors until the slabs
have been rolled in the subsequent hot rolling or cold rolling processes, since the
surface temperature is quite high and the defects may be buried deep inside. Thus,
there exists a large time delay between defect generation and defect detection. The
machines may operate in poor conditions for a long time and the use of defective
slabs may waste valuable time and resources. With the help of data-driven modeling
and prediction methods, the defects can be predicted based on process variables,
which can be collected in real-time during the manufacturing of continuous casting
slabs. “Real-time” signifies that the forecasting information is obtained immediately
following manufacturing of the slab (even if it is quite hot), based on measurements
of process variables such as temperature, flow rate, and speed. Moreover, real-time
forecasting is nondestructive, while some detection devices make destructive incisions
to monitor defects. It is noted that data-driven forecasting models are not incompatible
with traditional devices, but they can make up for each other’s shortcomings. Data-
driven models can provide defect prediction using the process variables with hardly
any delay, while traditional detectors can help to model, revise, and update the data-
driven models.

(2) Data-driven methods do not need precise mechanistic information or expert knowl-
edge, and are characterized by precision, simplicity, straightforwardness, economic
value, and universality without requiring strong first-principle knowledge. Process
data have become abundant with the extensive use of distributed control systems
(DCSs), which reflect the dependency relationship between the quality defects and
their origin. Furthermore, with the proposal of “Industry 4.0”, steel enterprises have
updated their data collection and storage systems, making it easy to acquire rich data,
ranging from Level 1: basic automation data to Level 4: enterprise resource plan data.
This lays the foundation for data-driven methods.

(3) With timely and accurate defect information, slabs with defects would thus not be used
in the subsequent production processes, reducing the defective index and improving
the production efficiency. Furthermore, real-time defect information contributes to
control system performance evaluation and real-time feedback control, enabling ad-
justment of the control strategy to eliminate defects. It can also help operators take
appropriate action to prevent further deterioration of the operating conditions.

In the present paper, a comparative study is carried out on data-driven defect forecast-
ing methods. There are many kinds of data-driven models in the literature; several basic
but representative methods, including LDA [19], LR [20], SVM [21,22], and XGBoost [23],
are introduced to provide a preliminary verification and demonstration of the feasibility
and efficiency of data-driven methods. For SVM, the radial basis function (Gaussian) kernel
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is used, from which the parameters can be determined. This paper also introduces an
intuitionistic method based on practical evaluation metrics to determine the parameters
for XGBoost, including the maximum depth, minimum sum of instance weight, maximum
delta step, subsample, and learning rate. Many data mining techniques can be utilized in
defect forecasting, such as clustering, random forest, regression analyses, association rules,
and anomaly (extreme value) analyses. Clustering is an unsupervised machine learning
technique that automatically discovers natural grouping in data without coming up with a
specific hypothesis; it is not quite suitable for the topic as it is incapable of extrapolation.
For example, Lukauskas et al. proposed an extension to the clustering method based on
the modified inversion formula density estimation to resolve previous method limitations
regarding outliers [24]. Random forest is an ensemble learning method for classification,
regression, and others that constructs a multitude of decision trees [25]. The previously
mentioned XGBoost is more suitable for complex datasets compared to random forest.
Regression analyses, similar to the previously mentioned LR, are a technique for estimating
the relationships between a dependent variable and one or more independent variables [26].
For example, the primary objective function arising from probability regularization was
extended in support vector regression, leading to an automatic selection of hyperparam-
eters. This new algorithm was tested on public benchmark datasets, such as the QSAR
aquatic toxicity dataset (qsar), the yacht hydrodynamics dataset (yachts), and the concrete
compressive strength dataset (concrete) [27]. Anomaly detection can identify items which
deviate significantly from the majority of the data and do not conform to a well-defined
notion of normal behavior [28,29]. This method can work with significantly imbalanced
data (positive samples are rare). However, the advantage of this technique is no longer
clear when the imbalance problem vanishes.

Traditional data-driven forecasting methods mainly focus on discovering the low-
dimensional embeddings within a certain class separability, and the forecasting result
can be calculated by supplementary classifiers based on these embeddings. There exist
two main procedures: one extracts features under some criterion and the other builds a
classifier based on these features. In order to design a more suitable model and practically
improve the prediction of subsurface inclusion defects, a novel model, named SR-KDLS,
is developed in this paper to directly provide forecasting information instead of low-
dimensional embeddings. The objective is designed to directly focus on the forecasting
performance by penalizing the difference between the real class information and the predict
class information through least squares. To further improve the forecasting accuracy,
discriminative data information is integrated into the regularization term to pursue both
intra-class compactness and inter-class separability. Specifically, the between-class scatter
is maximized while the within-class scatter is simultaneously minimized to group samples
from the same class and synonymously separate samples from different classes in the
feature space to improve the classification performance. The novel model is used with
the reproducing kernel Hilbert space (RKHS) setting as a scatter-regularized optimization,
guaranteeing both flexibility and feasibility.

Deep learning has become increasingly popular in the field of process system engi-
neering; classical applications include fault detection, fault traceability, virtual sensors,
etc. [30–37]. For example, Zhang et al. developed a conditional variational generative
adversarial network (CVAE-GAN) model for multiclass wind turbine bearing fault diag-
noses by merging the variational autoencoder (VAE) with the deep learning generative
adversarial network (GAN) [33]. Guo et al. proposed a deep multiple attention soft sensor
(DMASS) model with multiple attention mechanisms and a deep learning framework, en-
suring the self-interpretability of data selection and sensor modeling, and tried to integrate
these originally independent phases into a single scheme [34]. Zhang et al. proposed a
three-layer fusion fault diagnosis method based on deep learning to deal with multifault
diagnoses in complex industrial processes [35]. The naive stack autoencoder (SAE), con-
structed by hierarchically stacking autoencoders (AEs), is one of the most widely adopted
deep learning techniques, due to its strong ability to extract informative features from the
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original data. These extracted features improve the performance of traditional predictors
or classifiers. For example, the novel quality-driven regularization (QR) is proposed for
deep network SAEs to learn quality-related features from industrial process data, changing
the loss function to control the weights of the different input variables [36]. To improve
the performance of early fault detection in large-scale nonlinear industrial processes, the
decentralized adaptively weighted stacked autoencoder (DAWSAE)-based fault detection
method was proposed with local and global adaptively weighted feature vectors and resid-
ual vectors [37]. SAEs work well in unsupervised learning tasks such as fault detection;
however, they cannot guarantee extraction of defect-related features for the promotion
of real-time forecasting of subsurface inclusion defects. This is because the pretraining
technique of the AEs in each layer is unsupervised (self-reconstruction), resulting in it
learning the features that largely represent the input data, but not those related to defect in-
formation. In this paper, the stacked defect-related autoencoder (SDAE) and hierarchically
stacked defect-related autoencoder (DAE) are developed to predict defects. In each DAE,
the inputs are low-layer features, while the outputs are the reconstructed low-layer features
combined with reconstructed defect-related information. During layer-by-layer pretraining,
supervised self-reconstruction is adopted to extract defect-related features that can largely
improve the forecasting performance. Successively, all the DAEs are hierarchically stacked
to learn increasingly deeper defect-related features. Fine tuning of the whole network is
finally performed. To predict real-time defects, a back propagation neural network (BPNN)
is trained based on the deepest features learned by the SDAEs. The BPNN also helps to
fine tune the parameters of the SDAE to further improve the performance.

In the strictest sense, this paper solves classification tasks that make predictions based
on data-driven methods upon measurements of process variables. Traditional detection
devices detect defects with a large time delay after slabs have been rolled by hot rolling
or cold rolling processes; on the contrary, the data-driven methods in this paper can
detect defects with hardly any delay, seemingly playing the role of a “forecaster” to some
extent. Thus, this paper title presents “forecasting” with traditional detecting methods.
All of the above techniques will be further discussed in the remainder of this paper. In
Section 2, the backgrounds of the continuous casting process and evaluation metrics are
provided. Sections 3 and 4 present the development of the SR-KDLS model and SDAE
model, respectively, with detailed derivations. Subsequently, in Section 5, application
case studies are evaluated and a comparison is performed of different data-driven defect
forecasting methods based on a real-life slab casting process with eight categories of casting
slabs. Finally, some conclusions and outlooks are presented in the final section.

2. Preliminaries

In this section, the continuous casting process is introduced. As is common knowledge,
the background knowledge of the four representative data-driven forecasting methods
(LDA, LR, SVM, and XGBoost) is omitted for briefness. To facilitate an easy understanding,
the background of evaluation metrics for forecasting performance is reviewed.

2.1. The Continuous Casting Process

The continuous casting process is one of the most important procedures in steel
manufacturing. It produces continuous casting slabs. In this process, molten steel is first
transported to crystallizers through steel tundishes and ladles, where casting powder
is added to preserve heat, prevent secondary oxidation of the molten steel, and absorb
impurities. In the crystallizers, the molten steel cools and solidifies to soft billet covered
by a protective shell with a certain thickness, which is then drawn and straightened by
straightening machines and dummy devices. Finally, it is cut into slabs by torch cutting
machines. Figure 1 presents a sketch of the continuous casting process, modified from
the original version (https://en.wikipedia.org/wiki/Continuous_casting (accessed on
1 June 2023)), where a torch cutting point has been added. The continuous casting slab
is a raw material for subsequent processes such as hot rolling or cold rolling, where the

https://en.wikipedia.org/wiki/Continuous_casting
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final products, including cold-rolled steel or coils, hot-rolled steel or coils, and bar steel,
are manufactured.

Figure 1. Sketch map of the continuous casting process. Legend: A: Liquid metal; B: Solidified
metal; C: Slag; D: Water-cooled copper plates; E: Refractory material; 1: Ladle; 2: Stopper; 3: Tundish;
4: Shroud; 5: Mold; 6: Roll support; 7: Turning zone; 8: Shroud; 9: Bath level; 10: Meniscus;
11: Withdrawal unit; 12: Slab; 13: Torch cutting point.

2.2. Evaluation Metrics

The slabs made by the continuous casting process are either normal (containing defects)
or defective (containing subsurface inclusion defects). In general, a normal slab is labeled as
“negative”, while a defective slab is labeled as “positive”. The forecasting model predicts a
slab as either being negative or positive. There are four cases of the result after an instance
being forecasted: true positive, false positive, true negative, and false negative. Figure 2
illustrates their relations. For a convenient comparison, three general metrics are utilized:

Precision = Truepositive/(Truepositive + Falsepositive)

Recall = Truepositive/(Truepositive + FalsePrecision)

F1 = 2× Precision× Recall/(Precision + Recall)

(1)

where precision (also called the positive predictive value) is the fraction of relevant instances
among the retrieved instances; recall (also known as the sensitivity) is the fraction of the
total amount of relevant instances that was actually retrieved; and F1 (also called the
F-measure) is the harmonic mean of precision and recall.

Condition positive Condition negative

Predicted 
condition 
positive

Predicted 
condition 
negative

True condition

Predicted 
condition

True positive
False positive

(error)

False negative
(error)

True negative

Figure 2. Relations among true positive, false positive, true negative, false negative, true condition,
and predicted condition.

As false negatives are undesirable in subsurface inclusion defect forecasting, F1 is
chosen in this paper to simultaneously pursue a high precision and a high recall. In practice,
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both false positives and false negatives are unwanted error situations. A high precision
and a high recall are desirable, resulting in a high F1. Unfortunately, precision and recall
are often at odds for a given forecasting model with the same data. That is, improving the
precision typically reduces the recall and vice versa.

3. Scatter Regularized Kernel Discriminative Least Squares

Data-driven methods have been widely used in forecasting tasks. Despite their fa-
vorable properties, the forecasting performance could be further improved. In order to
design a more suitable model, this paper develops the SR-KDLS model to improve the
real-time forecasting performance for subsurface inclusion defects. It would directly pro-
vide forecasting information, instead of low-dimensional embedding, and is used with the
RKHS setting with one compact optimization step. Specifically, the objective function is
combined with a loss function and a regularization term. The least squares loss function is
designed to directly focus on the forecasting performance by penalizing large differences
between the real class information and the predicted class information. Furthermore, the
regularization term exploits the between-class scatter and within-class scatter of the data to
pursue both intra-class compactness and inter-class separability.

For a Mercer kernel κ : x × x → R, there is an associated RKHS Hκ of functions
x→ R with the corresponding norm || ||κ [38]. Specifically, the optimization of SR-KDLS is
expressed as,

f ∗ = arg min
f∈Hκ

V(y, f (x)) + γRScatter
(2)

where V(y, f (x)) is the loss function to penalize large differences between the real class
information y and the predicted class information f (x). f is the prediction function.
Note that the defective information y is either 0 (negative) or 1 (positive). In this paper,
V(y, f (x)) = ∑N

i=1(yi− f (xi))
2 is simply chosen as the least squares loss function. RScatter is

the scatter-regularization term, derived from discriminative information. γ is the parameter
that balances the order of magnitudes between V(y, f (x)) and RScatter. The classical
Representer Theorem states that the solution to this minimization problem (2) exists with
respect to f inHκ [38] and can be written as

f ∗(x) =
N

∑
i=1

αiκ(xi, x) (3)

Therefore, the problem in (2) is greatly reduced to optimization coefficients αi over
the finite dimensional space. To this end, both the loss function V(yi, f (xi)) and regular-
izationRScatter should be formulated in terms of αi and κ(·, ·). For notation simplicity and
derivation ease, the inner product matrix (Gram matrix) is expressed as K ∈ RN×N and
the ij− th element of K is defined as Kij = κ(xi, xj) = Φ(xi) ·Φ(xj) = Φ(xi)

ᵀΦ(xj), where
κ(·, ·) is the kernel function and Φ(·) is an implicit kernel. In addition, α = [α1 · · · αN ]

ᵀ and
y = [y1 · · · yN ]

ᵀ, where the element yn is binary.
The construction and derivation of V(yi, f (xi)),RScatter and the compact optimization

are explicitly presented in the following.

3.1. Construction of the Loss Function

The loss function can be easily reformulated as

V(y, f (x)) =
N

∑
i=1

(yi − f (xi))
2 = (y− Kα)ᵀ(y− Kα) (4)

3.2. Construction of the Regularization Term

In the SR-KDLS model, the between-class scatter is to be maximized to separate
samples from different classes, while the within-class scatter is to be minimized to group
samples from the same class. The RScatter is constructed by integrating the two scatters
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together. To accomplish this, various indices that quantify the within-class scatter and the
between-class scatter in the unfolded feature space should be defined.

3.2.1. Within-Class Scatter

The within-class scatter, σW
k , for a specific class k and the overall within-class scatter,

σW , can be calculated by,

σW
k = ∑

xi∈Gk

‖ f (xi)− f (x̄k)‖2/Nk ∈ R1

σW =
K

∑
k=1

σW
k

(5)

respectively.
Similar to LDA, x̄k = ∑xi∈Gk

xi
/

Nk denotes the central point (mean) of class k and
represents the class location. However, Equation (5) does not work since it can not be
formulated in terms of α and K. It is noted that K only includes the training data samples,
but the central point x̄k for each class usually does not belong to the training data. Therefore,
the measurement of within-class scatter is slightly modified; one “representative sample”
xsk is selected as the nearest sample to x̄k in Gk for each class to replace the center point x̄k

in (5), where the subscript sk is its serial number in {(xi, yi)}N
i=1,

xk
s = arg min

xi∈Gk
||xi − x̄k||2 (6)

Then,
σW

k

= ∑
xi∈Gk

f (xi)
ᵀ f (xi)− 2 f (xi)

ᵀ f (xsk ) + f (xsk )ᵀ f (xsk )
/

Nk

= ∑
xi∈Gk

[Ki·α]
ᵀKi·α−2[Ki·α]

ᵀKsk ·α+[Ksk ·α]
ᵀKsk ·α

/
Nk

= αᵀ

[
∑

xi∈Gk

Kᵀ
i·Ki· − 2Kᵀ

i·Ksk · + Kᵀ
sk ·Ksk ·

/
Nk

]
α

= αᵀVW
k α

(7)

σW = αᵀVWα can be sequentially reformulated, where VW = ∑K
k=1 VW

k .

3.2.2. Between-Class Scatter

For the same reason, i.e., to replace x̄k with xsk in σW
k to express the objective function

in terms of the elements of K, the measurement of between-class scatter in the projected
feature space is innovatively calculated as

σB

=
K

∑
ki ,kj=1

∥∥∥ f (xski )− f (x
skj )
∥∥∥2

= α

T∑
ki ,kj

(
Kᵀ

ski .
Kski .−2Kᵀ

ski .
K

skj .
+Kᵀ

skj .
K

skj .

)α
= αᵀV Bα

(8)
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3.2.3. The Regularization Term

On the basis of σW and σB,RScatter is constructed as

RScatter = σW − σB

K
= αᵀVα (9)

where V = VW − V B

K . The denominator K is present to balance the order of magnitudes
between σW and σB.

3.3. Optimization

Substituting the Representer Theorem (3), reformulated loss function (4), and the
scatter-regularization item (9) into the compact optimization (2), the convex differentiable
objective function with respect to α is given as,

α∗ = arg min(y− Kα)ᵀ(y− Kα) + γαᵀVα (10)

The derivative of the objective function vanishes at the minimizer. Let the derivative
of (10) with respect to α approach zero,

(y− Kα)ᵀ(−K) + γαᵀV = 0 (11)

which leads to the following solution:

α∗ = [KK + γV ]−1Ky (12)

To make a prediction ynew = f (xnew) at a query sample xnew, the forecasting system
can be successively constructed

ynew = f (xnew) = [κ(x1, xnew), · · · , κ(xN , xnew)]α
∗ = Knew·α

∗ (13)

where
Knew· = [κ(x1, xnew), · · · , κ(xN , xnew)] (14)

3.4. SR-KDLS-Based Forecasting

The detailed procedures of the offline modeling stage and online forecasting stage
of the proposed SR-KDLS-based forecasting method are listed in Algorithms 1 and 2,
respectively. Note that only training data x should be normalized before modeling. To
summarize, Figure 3 illustrates a flowchart of SR-KDLS-based forecasting.

Algorithm 1 Off-line Modeling Stage of SR-KDLS.

1: Collect training data {(xi)}N
i=1 and y = [y1 · · · yN ]

ᵀ;
2: Normalize {(xi)}N

i=1 to zero mean and unit variance;
3: Calculate xst for each class t using (6);
4: Calculate the within-class scatter σW

k for each class t using (7);
5: Calculate the total within-class scatter σW ;
6: Calculate the between-class scatter σB using (8);
7: Construct the regularization termRScatter and V (9);
8: Calculate α∗ using (12);
9: Construct the forecasting system using (13).
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Algorithm 2 On-line Forecasting Stage of SR-KDLS.

1: Select the query sample xnew;
2: Apply the same scaling as the one used in the offline modeling stage;
3: Calculate the kernel vector using (14);
4: Calculate the corresponding forecasting result using (13).

Collect training data

Normalize the training data              
                to zero mean

and unit variance

Calculate elements of optimization

Construct the compact 
optimization and calculate

      

Build the forecasting system

Select the query smaple

Apply the same scaling as
the one used in the offline

modeling procedures

In RKHS, calculate the
      kernel vector 

Calculate forecasting 
         result 

Off-line Modeling Stage On-line Forecasting Stage

1 1{( )} [ ]N T
i i Ny y x y 

1{( )}N
i ix

, ,W B  V

*α

newx

newK

newy

Figure 3. Flowchart of SR-KDLS-based defects forecasting.

It is noted that SR-KDLS is currently designed for binary forecasting in this paper, but it
can easily be extended to a more generalized form for multi-class forecasting as the scatters
are already in a multi-class form. The label information yi should be encoded as one-hot and
the least square loss function should be reformulated as V(y, f (x)) = ∑N

i=1‖yi − f (xi)‖2.
Furthermore, note that other loss functions can be chosen, such as the hinge loss function,
and other regularization terms can be integrated into the framework of scatter-regularized
function learning, which would extend the scope of future studies and applications.

4. Stacked Defect-Related Autoencoder

The classical SAE has a strong ability to extract informative features from the original
data in a layer-by-layer manner. However, it cannot guarantee the extraction of defect-
related features for promoting real-time forecasting of subsurface inclusion defects. This is
because feature learning is executed to largely represent the input data, and not the related
defect information. In this paper, a defect-related autoencoder and a stacked defect-related
autoencoder are successively developed.
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4.1. Defect-Related Autoencoder

A simple AE simply reconstructs the input data and provides extracted features in the
hidden layer. It ignores defect information; thus, it cannot extract defect-related features for
promoting real-time forecasting of subsurface inclusion defects. Too much defect-unrelated
information would occupy the information space of the extracted features. Furthermore,
subsequent levels would then learn deeper features of these defect-unrelated features,
and defect-related information would become increasingly rare. For suitability in actual
applications, a defect-related autoencoder (DAE) is designed by introducing defect-related
information in the training procedure.

Specifically, the DAE consists of three layers (the input, hidden, and output layers).
While the former two layers remain the same as a simple AE, the output layer combines
the reconstructed input variables and reconstructed defect-related information. Figure 4
illustrates the network structure of a DAE, where the blue dots, yellow dots, cyan dots,
and red dots represent the input variables (denoted as x ∈ Rdx ), the hidden variables
(denoted as h ∈ Rdh ), the reconstructed input variables (denoted as x̃ ∈ Rdx ), and the
reconstructed class information variables (denoted as ỹ ∈ Rdy ), respectively. The symbols
dx, dh, and dy denote the dimensions of the input variables, the hidden variables, and
the class information variables, respectively. The symbols {W , b} denote the connecting
parameters from the input layer to the hidden layer in the encoder. The symbols {W̃x, b̃x}
denote one part of the connecting parameters in the decoder from the hidden layer to the
reconstructed input variables x̃ in the output layer, while {W̃y, b̃y} denote the other part of
the connecting parameters in the decoder from the hidden layer to the reconstructed class
information variables ỹ in the output layer.

...

... ...

Input 
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Figure 4. Network structure of the DAE.

In the encoding procedure of the DAE, input variables x = [x(1), · · · , x(dx)] ∈ Rdx are
encoded to hidden variables h = [h(1), · · · , h(dh)] ∈ Rdh with the following mapping relation

h = f (Wx + b) (15)

where f is an element-wise nonlinear activation function. W and b are the encoder weight
matrix and bias vector, respectively. Then, in the decoding procedure of the DAE, hidden
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variables h are decoded to the reconstructed input variables x̃ and the reconstructed class
information variables ỹ with the following mapping relations

x̃ =g(W̃xh + b̃x)

ỹ =g(W̃yh + b̃y)
(16)

where W̃x and b̃x are the decoder weight matrix and bias vector for x̃, respectively, and
W̃y and b̃y are the decoder weight matrix and bias vector for ỹ, respectively. Note that the
activation function from the hidden layer to the reconstruction layer is the same for both x̃
and ỹ.

The encoder activation function, f , and the decoder activation function, g, are usu-
ally nonlinear functions such as the sigmoid function, the tanh function, or the rectified
linear unit function in order to capture nonlinear relationships. Given the training data
{(xi, yi)}N

i=1, where N denotes the number of training samples, the parameters set for the
DAE θ = {W , b, W̃x, b̃x, W̃y, b̃y} can be obtained by minimizing the following reconstruc-
tion loss function in the mean squared error form,

JDAE(θ
2) =

1
2N

N

∑
i=1

(
‖xi − x̃i‖2 + λ‖yi − ỹi‖2

)
(17)

where λ is a supplement to balance the order of reconstruction error magnitudes between
the input variables and the class information variables.

The backpropagation (BP) algorithm updates the parameter set with Equation (17)
until an optimal set is found.

4.2. Stacked DAE

To learn deep and more complex features, a single DAE may not be sufficient. Thus,
an SDAE is constructed by hierarchically stacking several DAEs in a layer-by-layer manner.
It is trained by two main procedures: pretraining and fine tuning.

For the pretraining procedure, the following steps are undertaken:

• For the first DAE, the raw training data {(xi, yi)}N
i=1, including the raw input data

and the raw class information data, are exploited to pretrain the model. After this,
θ1 = {W1, b1, W̃1

x , b̃1
x, W̃1

y , b̃1
y}, the parameter set in the first DAE, is learned, while

the defect-related features in the first DAE h1 are extracted in the hidden layer.
• For the second DAE, the extracted features from the first DAE and the raw class

information data {(h1
i , yi)}N

i=1 are exploited to pretrain the model with a modified
Equation (17),

JDAE2(θ
2) =

1
2N

N

∑
i=1

(∥∥∥h1
i − h̃1

i

∥∥∥2
+ λ

∥∥∥yi − ỹ2
i

∥∥∥2
)

(18)

where ỹ2 = g(W̃2
y h1 + b̃2

y). After this, θ2 = {W2, b2, W̃2
x , b̃2

x, W̃2
y , b̃2

y}, the parameter
set in the second DAE, is learned, while the defect-related features in the second DAE,
h2, are extracted in the hidden layer.

• In turn, assume that the kth DAE has already been pretrained and hk as well as the
set θk = {W k, bk, W̃ k

x , b̃k
x, W̃ k

y , b̃k
y} has been obtained, then the (k + 1)th DAE would

be pretrained with the loss function

JDAE(k+1)(θ
k+1) =

1
2N

N

∑
i=1

(∥∥∥hk
i − h̃k

i

∥∥∥2
+ λ

∥∥∥yi − ỹk+1
i

∥∥∥2
)

(19)
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where ỹk+1 = g(W̃ k+1
y hk + b̃k+1

y ). The parameter set in the (k + 1)th DAE θk+1 =

{W k+1, bk+1, W̃ k+1
x , b̃k+1

x , W̃ k+1
y , b̃k+1

y }, is then learned, while the high level defect-
related features in the (k + 1)th DAE hk+1 are extracted in the hidden layer.

It is noted that, in the pretraining procedure, the class information variables are not
included in the input for DAEs in each layer, although the reconstruction errors are based
on the raw class information variables. The raw class information variables are treated as set
values for increasingly deeper layers to extract more complex defect-related features. For a
better understanding, Figure 5 illustrates a schematic diagram of the pretraining procedures
of layer-by-layer deep DAEs, where the network below DAEs denote the defect-related
features would be gradually reinforced with the increase in network layers. Additionally,
Figure 6 presents a flowchart of the pretraining procedure of the SDAE.
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Figure 5. Schematic diagram of the pretraining procedure of layer-by-layer deep DAEs.
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Figure 6. Flowchart of the pretraining procedure of the SDAE.

To predict real-time defects, a back propagation neural network (BPNN) is constructed
as a forecasting layer based on the deepest features learned by the SDAE (the top hidden
layer). At this point, fine tuning of the whole network would be finally adopted to modify
the network parameters to further improve the forecasting performance. Assume the
hidden variables of BPNN hBPNN are nonlinearly mapped as

hBPNN = f BPNN(W BPNNhK + bBPNN) (20)
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where f BPNN , W BPNN , and bBPNN are the activation function, the weight parameter, and
the bias parameter, respectively, from the input layer to the hidden layer. K denotes the
total number of DAEs. Then, the forecasting result is calculated as

ỹBPNN = gBPNN(W̃ BPNNhBPNN + b̃BPNN) (21)

where gBPNN , W̃ BPNN , and b̃BPNN are the activation function, the weight parameter, and
the bias parameter from the hidden layer to the output layer.

4.3. SDAE-Based Forecasting

The SDAE-based forecasting network is finally built after pretraining and fine-tuning
procedures. To make a prediction for a query sample xnew, the following features are
successively learned,

h1
new = f (W1xnew + b1)

h2
new = f (W2h1

new + b2)

· · ·
hk+1

new = f (W k+1hk
new + bk+1), k = 1, · · · , K− 1

(22)

Then, the forecasting result, ynew, is obtained,

hBPNN
new = f BPNN(W BPNNhK

new + bBPNN)

ynew = ỹBPNN
new = gBPNN(W̃ BPNNhBPNN + b̃BPNN)

(23)

The detailed procedures of the offline training stage and online forecasting stage of the
proposed SDAE-based forecasting method are listed in Algorithms 3 and 4, respectively,
where h0 = x. To summarize, Figure 7 illustrates a flowchart of SDAE-based forecasting.

Algorithm 3 Off-line Training Stage of the SDAE.

1: Pretraining procedure:
2: Collect training data {(xi, yi)}N

i=1;
3: Set k = 1;
4: while k ≤ K do
5: Construct k− th DAE structure with input variables hk−1;
6: Initialize θk = {W k, bk, W̃ k

x , b̃k
x, W̃ k

y , b̃k
y} randomly;

7: Learn parameter set θk using Equations (15), (16) and (19);
8: Extract features in hidden layer set hk;
9: k = k + 1;

10: Fine-tuning procedure:
11: Construct BPNN network with input variables hK;
12: Initialize θBPNN = {W BPNN , bBPNN , W̃BPNN , b̃BPNN} randomly;
13: Learn parameter set θBPNN using Equations (19)–(21);
14: Fine tune the whole deep network with iterative propagations.
15: Construct the forecasting system using Equations (22) and (23).

Algorithm 4 On-line Forecasting Stage of the SDAE.

1: Select the query sample xnew;
2: Encode to obtain hidden variables h1

new, · · · , hK
new layer-by-layer using Equation (22);

3: Calculate hBPNN
new using Equation (23);

4: Calculate the corresponding forecasting result using (23).
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Figure 7. Flowchart of SDAE-based defect forecasting.

The SDAE in this paper is naturally suitable for multi-class forecasting tasks. It should
be mentioned that at the present stage, the predictor was expected to only binarily forecast
whether the slab is defective or not, so there should only be one class information variable
y (Rdy = 1), while the vector y ∈ Rdy degenerates to the scalar y ∈ R1.

5. Case Studies and Comparisons

In this section, case studies are provided to demonstrate the feasibility and efficiency of
the data-driven defect forecasting methods based on a real-life continuous casting process
with eight types of casting slabs. The case studies also help to improve the understanding
of the continuous casting process and the data characteristics. Both classical methods and
the developed methods (SR-KDLS and SDAE-BPNN) are employed.

All the data were collected from the daily process records of a real-life continuous
casting process in China. The subsurface inclusion defects were reported and recorded in
subsequent production procedures. A total of 33 process variables were selected from all
the available variables to construct the data-driven forecasting models according to the
engineering experience, and are tabulated together in Table 1. Specifically, eight types of
casting slab are included. One dataset was collected for each category with both normal
data and defective data, as shown in Table 2. The sampling time ranges from 1 October 2018
through to 11 November 2018. It is noted that the numbers of samples vary a lot between
different datasets, while the percentages of positive samples also vary a lot. Each dataset
was randomly segmented into a training sub-dataset and a testing sub-dataset, roughly
preserving similar percentages of positive and negative samples in both the training set and
the testing set. The ratio of the number of training samples to the number of testing samples
is approximate 7:3. Detailed configurations of the eight datasets are listed in Table 2, where
the “Imbalance degree” denotes the ratio of the percentage of negative samples to the
percentage of positive samples. The categories are ordered according to the imbalance
degree from large to small. For proprietary reasons, other specific details about the process
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will not be further disclosed. A general descriptions of the continuous casting process can
be found in Section 2.1.

Table 1. Process variables of the real-life continuous casting process.

No. Description Type No. Description Type

V01 Ladle weight float V18 Mold water flow (east) float
V02 Ladle temperature float V19 Mold input water pressure float
V03 Ladle shroud Ar flow float V20 Mold out water pressure (north) float
V04 Ladle shroud Ar pressure float V21 Mold out water pressure (south) float
V05 Tundish weight float V22 Mold out water pressure (west) float
V06 Tundish temperature float V23 Mold out water pressure (east) float
V07 Tundish Ar flow 1 float V24 Mold actual open (north) float
V08 Tundish Ar flow 2 float V25 Mold actual open (south) float
V09 Tundish Ar pressure float V26 Mold actual open (west) float
V10 Mold input water temperature float V27 Mold actual open (east) float
V11 Mold output water temperature (north) float V28 Speed (set) integer
V12 Mold output water temperature (south) float V29 Speed (actual) integer
V13 Mold output water temperature (west) float V30 Up nozzle Ar flow (5L) float
V14 Mold output water temperature (east) float V31 Up nozzle Ar pressure float
V15 Mold water flow (north) float V32 Stopper Ar flow float
V16 Mold water flow (south) float V33 Stopper Ar back pressure float
V17 Mold water flow (west) float

Table 2. Configurations of the eight datasets: (a) original dataset, and (b) training sub-dataset and
testing sub-dataset.

(a)

No. Original Dataset

Numbers of Samples Percentage of Negative Samples Percentage of Positive Samples Imbalance Degree

1 1198 96.8% 3.2% 30.250
2 148 94.6% 5.4% 17.519
3 1538 91.2% 8.7% 10.483
4 262 82.4% 17.6% 4.682
5 6058 73.0% 27.0% 2.704
6 112 72.3% 27.7% 2.61
7 239 63.2% 36.8% 1.717
8 422 53.8% 46.2% 1.16

(b)

No. Training Sub-Dataset Testing Sub-Dataset

Numbers of
Samples

Perc. of
Negative
Samples

Perc. of
Positive
Samples

Imbalance
Degree

Numbers of
Samples

Perc. of
Negative
Samples

Perc. of
Positive
Samples

Imbalance
Degree

1 838 96.5% 3.5% 27.57 360 97.5% 2.5% 39
2 103 94.2% 5.8% 16.24 45 95.6% 4.4% 21.73
3 1076 91.4% 8.6% 10.63 462 90.9% 9.1% 9.90
4 183 83.6% 16.4% 5.10 79 79.7% 20.3% 3.93
5 4240 73.0% 27.0% 2.70 1818 73.0% 27.0% 2.70
6 78 74.4% 25.6% 2.91 34 67.6% 32.4% 2.09
7 167 61.7% 38.3% 1.61 72 66.7% 33.3% 2.00
8 295 57.3% 42.7% 1.34 127 45.7% 54.3% 0.84

It should also be noted that the percentage of negative samples is much higher than
the percentage of positive samples for most original datasets (Table 2). Thus, this is an
imbalanced forecasting problem, in which the model is very much inclined to the majority
class [39–41]. As a result, the minority forecasting accuracy will be quite poor. Weiss
pointed out that, in this case, the forecasting performance is much poorer than the general
situation and the minority samples are easily treated as noise during training [42,43]. The
SMOTE (synthetic minority oversampling technique), proposed by Wallace [44], increases
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the minority class by synthesizing new samples from the existing samples, not by simply
oversampling the minority class. In this paper, SMOTE is employed to eliminate the
imbalance problem. As a result, the ratio of the percentage of negative samples to the
percentage of positive samples in the augmented training data should be approximately 1.
All the models will be trained on the augmented training sub-dataset.

The hardware configuration is listed as follows: CPU: Intel(R) Core(TM) i9-12900K
(16 cores); RAM: 32 GB × 2; no discrete graphics card. The software configuration is
listed as follows: OS: Windows 10 (64 bit); Python 3.10.10; MATLAB(R) R2022a. For
convenience and standardization, the numerical tools provided by “scikit-learn” (ver-
sion 1.2.2), “xgboost” (version 1.7.4), and “imbalanced-learn” (version 0.10.1) [23,45,46]
are utilized, such as “train_test_split” and “GridSearchCV” in “sklearn.model_selection”;
“SMOTE” in “imblearn”; “LinearDiscriminantAnalysis”, “QuadraticDiscriminantAnalysis”,
and “LogisticRegression” in “sklearn.linear_model”; and “XGBClassifier” in “xgboost”.

5.1. Parameter Selection

To obtain the highest forecasting performance possible, the parameter optimization
method was designed to choose a set of optimal parameters for a learning algorithm. There
are no parameters to be tuned when using LDA and LR.

For SVM, the radial basis function (Gaussian) kernel κ(xi, xj) = exp(− ||xi−xj ||2

2δ2 ) is used
as it is robust to parameter variations and has infinite degrees of freedom. To determine
the optimal value of kernel width, a rough value is chosen by υ = 1/2δ2 = c× m× σ2

according to [47], where m and σ are the dimension of the input space and the variance of
training data, respectively. Then, the final value would be exhaustively adjusted around
the rough value. To exploit the training data as much as possible, k-fold cross-validation is
recommended instead of splitting an independent validation dataset.

For XGBoost, this paper introduces an intuitionistic and highly efficient method based
on a grid search [48] to determine the parameters of maximum depth, minimum sum of
instance weight, maximum delta step, subsample, and learning rate. It is noted that the
evaluating metrics should be chosen according to the practical situation and requirements,
such as precision, recall, area under curve (AUC), and other model evaluation metrics.
Specifically, the maximum depth and minimum sum of instance weight are searched among
“1, 2, 3, 4, 5, 6” and “1, 2, 3, 4”, respectively, while other parameters are fixed (by default,
learning rate = 0.2, subsample = 1, and maximum delta step = 0.7). After that, the subsample
and maximum delta step are searched among “0.6, 0.7, 0.8, 0.9, 1.0” and “0, 1, 2, 3, 4”,
respectively, with the tuned maximum depth and minimum sum of instance weight and
learning rate = 0.2. Finally, the learning rate is searched among “0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.40, 0.50”.

For SDAE, considering that the dimensions of the input variables and class information
variables are 33 and 1, respectively, three DAEs are stacked to construct a seven-layer deep
network, while the numbers of the hidden variables are set to 30, 25, and 20. For BPNN,
one hidden layer is set with 15 hidden variables. The dimensions of the input variables
of BPNN are equal to the number of the deepest hidden variables of SDAE, i.e., 20. The
dimensions of the output variables of BPNN are equal to the dimensions of the class
information variable, i.e., 1. The reciprocal of λ is equal to the imbalance degree plus 1.
In this paper, the basic BPNN, SAE-BPNN, and SDAE-BPNN are considered. It should
be noted that the activation function provides a curvilinear match between the input and
output layers and also determines the output of the cell by processing the net input to the
cell [49–53]. In this paper, the widely used sigmoid function is selected as the activation
function for artificial neural networks for primitive comparisons and verification, which
may not give optimal results without any validation to choose the activation function
for specific data. The learning rate is set to 0.01, which empirically works well in all the
repeated simulations in this work. The locks are removed when updating operations in the
optimizer “tf.train.GradientDescentOptimizer”.
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For SR-KDLS, the forms of the kernel function and kernel parameter are set to be the
same as SVM for a fair comparison. γ is chosen by the grid search from the candidate set
with an exponential sequence {5× 10e|e = −8,−7, . . . , 7, 8}.

5.2. Results and Analysis

The forecasting results of all eight data-driven forecasting methods are tabulated in
Table 3, where the highest and second-highest F1 scores for each category are in bold and
underlined, respectively. It is emphasized that all the data-driven forecasting methods
are trained with identical samples for each category of slabs to eliminate randomness;
technically, the SMOTE uses the same random state.

Table 3. Forecasting results of the data-driven forecasting methods.

No LDA LR SVM XGBoost

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

1 4.9% 55.5% 9.0% 2.8% 44.4% 5.3% 3.1% 44.4% 5.9% 22.2% 22.2% 22.2%
2 18.2% 100% 30.8% 11.8% 100% 21.1% 2.6% 50.0% 4.9% 50.0% 50.0% 50.0%
3 18.4% 64.3% 28.6% 14.9% 69.0% 24.5% 11.4% 57.1% 19.0% 52.5% 50.0% 51.2%
4 48.0% 75.0% 58.5% 50.0% 75.0% 60.0% 46.9% 93.8% 62.5% 54.5% 37.5% 44.4%
5 60.4% 75.8% 67.2% 48.6% 70.5% 57.5% 42.2% 76.2% 54.3% 65.0% 70.1% 67.5%
6 56.3% 81.8% 66.7% 50.0% 72.7% 59.3% 58.8% 90.9% 71.4% 100% 81.8% 90.0%
7 61.3% 79.2% 69.1% 71.4% 83.3% 76.9% 33.9% 83.3% 48.2% 72.7% 66.7% 69.6%
8 75.0% 73.9% 74.5% 70.9% 81.2% 75.7% 63.0% 91.3% 74.6% 72.7% 69.6% 71.1%

No BPNN SAE-BPNN SDAE-BPNN SR-KDLS

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

1 3.6% 100% 6.9% 22.2% 22.2% 22.2% 40.0% 22.2% 28.6% 66.7% 22.2% 33.3%
2 4.5% 100% 8.7% 16.7% 100% 28.6% 22.2% 100% 36.4% 50.0% 50.0% 50.0%
3 9.4% 97.6% 17.1% 64.3% 42.9% 51.4% 60.5% 54.8% 57.5% 71.4% 47.6% 57.1%
4 40.0% 37.5% 38.7% 44.4% 50.0% 47.1% 45.8% 68.8% 55.0% 59.1% 81.3% 68.4%
5 29.5% 88.4% 44.2% 72.2% 62.9% 67.2% 74.2% 65.0% 69.2% 75.0% 81.8% 78.3%
6 45.0% 81.8% 58.1% 68.8% 100% 81.5% 84.6% 100% 91.2% 90.9% 90.9% 90.9%
7 32.8% 91.7% 48.4% 70.0% 58.3% 63.6% 66.7% 75.0% 70.6% 75.0% 91.7% 82.5%
8 57.5% 72.5% 64.1% 78.0% 66.7% 71.9% 80.6% 78.3% 79.4% 62.5% 94.2% 75.1%

The highest and second-highest F1 scores for each category are in bold and underlined, respectively.

5.2.1. Overall Analysis

Overall, it can be easily found that the forecasting results in Table 3 provide preliminary
verification and demonstration of the feasibility and efficiency of the data-driven methods.
Unlike traditional methods based on a mechanism model, physical parameters, or process
knowledge (metallurgy function), data-driven methods do not need precise mechanistic
information or expert knowledge; they merely rely on abundant process data to provide a
precise, straightforward, economical, and universal forecasting performance.

However, the performances of different data-driven methods vary a lot. Based on
F1 metrics, the developed SR-KDLS and SDAE-BPNN intuitively perform better than
other methods. LDA is conducted upon the restrictive assumptions of multivariate normal
distribution and linearity, which are very likely contrary to the practical situation. The
use of LR removes the multivariate normal distribution assumption; however, it may
suffer from under-fitting. SVM is one of the most classical machine learning algorithms
and is characterized by nonlinear mapping, a maximum forecasting gap, and robustness.
However, it only focuses on the forecasting boundary and does not consider the within-
class scatter. XGBoost is as a powerful decision-tree-based ensemble machine learning
algorithm. The results in Table 3 verify the efficiency of XGBoost. However, its flaw is that
it contains too many parameters and thus cannot be artificially tuned. Although this paper
introduces an intuitionistic method based on practical evaluation metrics to determine the
parameters for XGBoost, it is still an open question to obtain more adapted parameters.

The developed SDAE, a deep learning method, is derived from AEs and SAEs. How-
ever, AEs are a shallow network which cannot extract complex features. SAEs cannot
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guarantee the extraction of defect-related features, since they ignore defect-related informa-
tion. In the SDAE, each DAE is designed by minimizing the reconstruction error of both
the input variables and the class information variables, such that defect-related features are
guaranteed to be extracted. All the DAEs are hierarchically stacked to learn increasingly
deeper defect-related features which can greatly improve the forecasting performance.
When combined with a BPNN, SDAE-BPNN more accurately forecasts subsurface inclu-
sion defects. Comparing the results between BPNN, SAE-BPNN, and SDAE-BPNN in
Table 3, BPNN clearly performs the worst as it has a shallow structure. By considering
defect-related information, the SDAE-BPNN captures more valuable representations than
SAE-BPNN. The results confirm that SDAE-BPNN performs better than SAE-BPNN.

Traditional data-driven forecasting methods mainly focus on discovering
low-dimensional embeddings with a certain class separability, and the forecasting re-
sult is calculated by supplementary classifiers based on these embeddings. In this paper,
the SR-KDLS is designed as a more suitable model for forecasting as it directly provides
forecasting information, instead of low-dimensional embeddings. It exploits the discrimina-
tive information in the scatter-regularization term of optimization to pursue both intra-class
compactness and inter-class separability. It has the ability to deal with nonlinear data by
integration of the kernel function, and with the help of the Representer Theorem for RKHS,
an analytical solution can be pursued without iterative procedures. The forecasting results
verify and demonstrate its feasibility and efficiency.

5.2.2. Discussion of Imbalance Degree

It is noted that the F1 scores of data-driven forecasting methods are inversely related
(approximately) to the imbalance degree of the dataset, especially when the imbalance
degree is large. Figure 8 shows the F1 score of SR-KDLS (on behalf of the involved data-
driven methods) versus the imbalance degree. Qualitatively, when the imbalance degree is
large, the information of the minority class is too scarce to train a precision model. As the
imbalance degree decreases towards 1, the imbalanced problem becomes less severe (if the
imbalance degree is equal to 1, the imbalance problem disappears); thus, more information
on the minority class is available. The relation is not strictly negative when the imbalance
degree is small (still greater than 1), since the imbalance problem is no longer the decisive
factor in this situation.
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Figure 8. The F1 score of SR-KDLS versus the imbalance degree.

Table 3 shows that when the imbalance degree is large, the forecasting performance is
not very satisfactory. It is known that sufficient information is necessary for valid forecasting
results. As the information in the minority class is insufficient, the SMOTE is employed.
The SMOTE works by selecting examples that are close in the feature space, drawing a
line between the examples in the feature space, and randomly drawing a new sample at a
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point along the line to increase the minority class. Without the SMOTE, all models would
be severely biased towards the majority class (the results without SMOTE are omitted,
since they are obviously worse). Although some new information is introduced and the
performances of the data-driven models are greatly improved, the randomly augmented
information is unreliable and may sometimes be inconsistent with the practical process.
New data-augmentation techniques for specific processes are expected to further improve
the forecasting performance when there is a large imbalance degree.

5.2.3. Calculation Time

As this paper focuses on real-time forecasting, the timing of the models is worth an
inspection. Table 4 details the calculation time of the whole modeling procedure, marked as
“Offline”, as well as the mean calculation time of forecasting per one testing sample, marked
as “Online”. The training durations for all models are acceptable in real applications; the
longest is less than 2 min (SDAE-BPNN for Category 5). All the online forecasting times
are less than 0.1 ms per sample, which is much faster than the shortest sampling period
of commonly used process variables in the continuous casting process. It is shown that
all models meet the time requirements of real-time forecasting. For traditional detectors,
defects are detected when the slabs have already been rolled by subsequent hot rolling or
cold rolling process, leading to a large time delay between defect generation and defect
detection. With the help of data-driven modeling and prediction methods, the defects
can be predicted in real time during the manufacture of continuous casting slabs. Note
that it takes a lot longer to train the developed SR-KDLS and much longer to train the
developed SDAE-BPNN than traditional methods, especially with Category 5. However,
this computational complexity is far from being unacceptable since the training is conducted
offline; it is not related to online forecasting procedures. It is worth having high-accuracy
SDAE-BPNN and SR-KDLS models at the cost of some offline computational complexity.

Table 4. Calculation time of different methods (milliseconds).

No.

Method
LDA LR SVM XGBoost

Offline Online Offline Online Offline Online Offline Online
1 3.987 <0.100 25.917 <0.100 53.348 <0.100 32.891 <0.100
2 1.993 <0.100 4.982 <0.100 0.992 <0.100 16.944 <0.100
3 3.986 <0.100 23.921 <0.100 79.735 <0.100 36.876 <0.100
4 0.997 <0.100 19.934 <0.100 1.994 <0.100 17.941 <0.100
5 11.960 <0.100 32.932 <0.100 806.321 <0.100 68.226 <0.100
6 0.997 <0.100 4.978 <0.100 0.997 <0.100 18.937 <0.100
7 1.996 <0.100 4.925 <0.100 1.994 <0.100 14.950 <0.100
8 2.006 <0.100 22.946 <0.100 2.990 <0.100 14.951 <0.100

No.

Method
BPNN SAE-BPNN SDAE-BPNN SR-KDLS

Offline Online Offline Online Offline Online Offline Online
1 1330.552 <0.100 2993.018 <0.100 23,163.590 <0.100 111.316 <0.100
2 28.904 <0.100 530.228 <0.100 3227.460 <0.100 51.690 <0.100
3 2204.629 <0.100 3589.460 <0.100 27,572.919 <0.100 164.479 <0.100
4 60.796 <0.100 569.234 <0.100 3061.574 <0.100 10.041 <0.100
5 5254.771 <0.100 13,523.745 <0.100 11,1557.549 <0.100 3215.067 <0.100
6 21.926 <0.100 182.774 <0.100 301.108 <0.100 4.243 <0.100
7 382.720 <0.100 581.570 <0.100 3087.267 <0.100 2.932 <0.100
8 726.571 <0.100 963.562 <0.100 5771.627 <0.100 30.998 <0.100

All the results of the comparison case studies have verified and demonstrated the
feasibility and efficiency of the five representative data-driven methods and also the im-
provement demonstrated by the developed SR-KDLS and SDAE-BPNN in forecasting
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subsurface inclusion defects. Table 3 in Section 5.2.1 shows that the defects are accurately
predicted, while Table 4 in Section 5.2.3 shows that the defects are timely predicted.

6. Outlook

Real-time forecasting of subsurface inclusion defects, from an industrial perspective,
needs further research. Some outlooks to further improve the subsurface inclusion defect
forecasting performance are given in the following.

• Feature engineering. There is a saying that is widely circulated in the industry:
data and features determine the upper limit of machine learning, and models and
algorithms approach this upper limit. Feature engineering is fundamental to the
application of machine learning; this can be carried out either manually upon domain
knowledge or automatically, which is called automated feature learning. This paper
primitively uses all the original process variables (features) to train the data-driven
model. A better forecasting performance would be obtained with elaborate features.
It would be helpful to extract feature characteristics or to reduce the dimensionality
with a manifold learning algorithm.

• Activation function. The selection of an appropriate activation function significantly
affects artificial neural network performance. There are many types of activation
function, such as the threshold function, step activation function, sigmoid function,
and hyperbolic tangent function. This paper simply sets the activation function as
a sigmoid function. However, future work should include an analysis of different
activation functions, and the function that gives the best performance should be
utilized. One method could be to evaluate the multivariate distribution of the input
variables by performing a goodness-of-fit test.

• Time delay estimation. As subsurface inclusion defects cannot be detected by tradi-
tional detectors until the slabs have already been rolled in subsequent hot rolling or
cold rolling processes, there exists a large time delay between process variable mea-
surements and defective information gathering; thus, alignment of data is necessary.
In this paper, data are aligned according to a rough estimate of the time delay by
operation experiences and logs; thus, the data may not be accurately aligned, which
presents an obstacle in the construction of a data-based model with high precision. A
variable time delay estimation technique is worth studying in this situation.

• Imbalanced data. The imbalance problem is obvious when training forecasting models,
since there are usually many more normal (negative) samples than defective (positive)
samples. Although some tools (such as down-sampling, SMOTE, and cost-sensitive
learning) are designed to handle this problem, they are flawed by the failure to generate
reliable new information in the data domain and only simply combine the original
information or randomly generate information. New data-augmentation techniques
for specific processes to increase reliable information are expected to further improve
the forecasting performance in the case of a large imbalance degree. Generative
adversarial networks (GANs) may be a promising solution. In addition, synthesizing
data by transferring information from data-intensive regions to data-scarce regions
may also help to enhance the forecasting performance.

• Data-driven methods fused by process knowledge. Although data-driven methods
do not need precise mechanistic information or expert knowledge, available process
knowledge, which may not or may only partially be inferred in the collected data,
would further help to design a targeted model with a greatly improved forecasting per-
formance. Additionally, process knowledge would also help to increase the minority
class with reliable information, as well as estimate an accurate time delay.

7. Conclusions

Real-time forecasting of subsurface inclusion defects for continuous slab casting is of
great significance to the steel industry. It is, however, a hard task. This paper introduces
data-driven methods to solve this problem and presents a comparative study. In order
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to design more suitable models and improve the subsurface inclusion defect forecasting
performance, the SR-KDLS model and SDAE-BPNN model were developed. The former is a
kernel discriminant analysis method, and the latter is a deep neural network method. Case
studies were carried out based on a real-life continuous casting process where the imbalance
degree drastically ranged from 1 to 30 in different categories. The feasibility and efficiency
of the data-driven methods are demonstrated; the defects could be predicted within 1 ms
with acceptable F1 scores. For example, XGBoost achieves a 71.1% F1 score when the
imbalance problem is mild (category 8, imbalance degree 1.16). Moreover, experiments
show that the forecasting performance is further improved in the developed SR-KDLS and
SDAE-BPNN methods without much computational burden; the F1 scores are obviously
higher than those for the common data-driven methods. For example, the F1 scores are
91.2% and 90.9% for SR-KDLS and SDAE-BPNN, respectively, for category 6, while SVM
only achieves a 71.4% F1 score. All the prediction procedures for the developed SR-KDLS
and SDAE-BPNN methods take less than 0.1 ms per sample; there will be hardly any
delay in real-life application of the models considering the manufacturing procedure of
continuous slab casting.

A real industry issue—real-time forecasting of subsurface inclusion defects—is the
focus of this study and has been discussed in detail. This study not only improves the
performance of subsurface inclusion defect forecasting, but also offers potential economic
benefits for the steel industry.
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