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Abstract: This paper compares the usability of various Apple MacBook Pro laptops were tested for
basic machine learning research applications, including text-based, vision-based, and tabular data.
Four tests/benchmarks were conducted using four different MacBook Pro models—M1, M1 Pro, M2,
and M2 Pro. A script written in Swift was used to train and evaluate four machine learning models
using the Create ML framework, and the process was repeated three times. The script also measured
performance metrics, including time results. The results were presented in tables, allowing for a
comparison of the performance of each device and the impact of their hardware architectures.
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1. Introduction

In the current age, artificial intelligence algorithms are becoming more and more
omnipresent, not only in robotic applications, but also in a wide range of application
areas [1–3]. From ads and video recommendations [4–6], through text auto completion [7,8],
to algorithms capable of producing award-winning art [9,10], an increasing number of
people are using deep learning (DL) models in their work [11–14]. The production cycle
of a deep learning model is time consuming and preferably requires understanding of
complex concepts such as deep neural networks, neural network topology, training, and
validation [15–17], as well as the application field, e.g., computer vision or natural language
processing. Having that knowledge, training a production-capable model requires a lot
of data [15,18,19] (or, alternatively, the use of transfer learning [18–20], which requires the
knowledge of where to find such a model, and which one to use). Moreover, it is essential
to have proficiency in using DL frameworks such as TensorFlow [21] or PyTorch [22].
Learning to create a good model [23] requires an investment of a considerable amount of
time (preferably introduced at an early stage of education [24]) and knowledge of the basics
of model preparation.

The authors have noticed that the process of learning and experimenting with machine
learning for many researchers, students, or professionals is often preceded or accompanied
by a difficult question—which hardware platform to choose [25–28]. This multi-factor opti-
mization always includes an economical aspect [12,29], but the computational capabilities
are not inessential [30,31]. Proper evaluation of the ‘money-to-value’ assessment is actively
hindered by a ‘marketing fog’ [32,33], which tries to make the choice emotion-based instead
of being based on any measurable factors.

Choosing a purposeful notebook for both everyday work and DL-oriented research is
difficult. The general rule-of-thumb (better CPU, more RAM memory, modest graphics card)
might still be a valid intuition-based choice; however, the evolution of CPUs brought a new
player to the game: ARM-based (ARM—Advanced RISC Machine) ‘Apple M1’ chip (and its
newer versions) [34–37], equipped with specialized GPU cores and NPU (Neural Processing
Unit) cores. The presence of NPU cores sounds especially promising; however, not much
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evidence of the actual computational benefits is available. For this reason, the authors have
decided to design and conduct a series of typical DL-related models/tasks, based upon
readily available datasets, to evaluate and compare the new processors.

In this article, the authors verify the validity of Apple’s Deep Learning framework
for some of the common DL challenges— image classification and regression using the
Animals dataset (available on Kaggle’s webpage [38], consisting of over 29,000 images),
image classification using a custom-made mini-dataset of 24 photos, a tabular dataset (the
Kaggle’s Payment Fraud Detection Dataset [39]), and text-based use case—the Kaggle’s
Steam Reviews [40] dataset.

1.1. Motivation

Deep learning researchers and enthusiasts worldwide are keen to obtain knowledge
concerning new hardware that is affordable and could potentially speed up their experi-
mentation with models. The marketing language is often not specific enough to explain the
performance of the product. While, for most people, Neural Processing Unit performance
is not the most important aspect of the laptop, for those who intend to work on deep
learning, it could be a deciding matter. Moreover, the knowledge of the performance of
particular hardware models at specific price points could be beneficial in terms of deciding
whether to buy the more expensive chip or not. Having clear information about current
hardware capabilities, especially the newest ones, may be of great interest for researchers,
who have to decide on their next project, its budget, and its scope. Although it is feasible
to carry out basic ML experiments on contemporary computers, the authors aim to delve
into and juxtapose the “ML usability” of the aforementioned hardware platforms. In this
context, “usability” is comprehended and examined as a quantitative assessment derived
from employing systematic research methodologies for time-based evaluation of specific
hardware platforms in preliminary machine learning experiments. The primary criterion
under scrutiny is the computation time; nonetheless, it is advisable for the reader to expand
the benefits of reading this paper by also taking into consideration the current prices of
respective models.

This study is intended to deliver reliable information and arguments to scientists and
enthusiasts who are interested in purchasing a new notebook equipped with hardware
capable of accelerating neural network computations.

1.2. Scope and Limitations

The intended readership of this study comprises scientists and practitioners of deep
learning who are considering purchasing an Apple laptop for their research, rather than
investing in specialized High-Performance Computing (HPC) or Workstation equipment.
Apple’s processors with a Neural Processing Unit (NPU) are marketed as ones that are
indeed capable of accelerating model computations. Therefore, it is reasonable to compare
only laptops that are equipped with Apple’s NPU.

Authors of this study compared Apple’s M-chip CPU family, including M1, M1 Pro,
M2, and M2 Pro (details regarding exact hardware specifications are included in Section 2.4).
Research was conducted using the same operating system (latest available to date, which
was macOS Ventura 13.2) to introduce as little potential interference as possible. Addi-
tionally, Section 3.2 presents an alternative comparison–three different macOS versions
whilst using the same hardware. All tests were designed to be used with the same code,
environment, framework, and libraries (see Section 2.4) for all processors tested.

The comparison was performed using the Create ML framework [41] developed by
Apple, designed and implemented with full compatibility and maximum efficiency of the
CPU/hardware. Comparison of other DL frameworks may also be interesting, but, since it
is strongly dependent on the availability of hardware support for the Apple M1/M2 chip
as well as a proper implementation of the CPU extensions within a particular framework,
a fair comparison is not yet possible.
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While it would be interesting to measure the performance differences using statistical
analysis, this work focuses primarily on the processing time of the datasets, as well as
training and evaluation time of models created by Create ML.

1.3. Performance Measurements

The performance measurements were conducted with the usage of specialized soft-
ware that stress-tested the hardware’s computational capabilities. The authors utilized
common deep learning problems such as computer vision (classification) and regression,
while using popular real-world datasets to test the viability of Apple’s chips in the tasks
presented in Section 2.3. The proper analyses, as well as the correct interpretation of results,
are key after collecting enough measurements on a particular hardware platform. The
results wre converted and visualized in an easy-to-read and understandable form.

2. Materials and Methods

To ensure the repeatability and the ease of implementation of the models and datasets
used within the research, the authors opted for the most native choices for the macOS-
based platforms, which were readily available with fairly low entry threshold. The analyses
and comparisons were implemented using the Swift programming language [42], Xcode
Integrated Development Environment (IDE) [43], Xcode Playground (part of the Xcode
IDE, introduced in 2014 [44], especially useful for rapid prototyping), and Create ML [41]
(merged into a unified Apple ecosystem for creating, managing, and using machine learning
models, with full support of the available hardware acceleration [45], as well as the ability
to deploy the models onto mobile platforms).

Swift is a high-level programming language developed by Apple, released in 2014
as a replacement for Objective-C. It is commonly used as the first-choice language for
applications built for Apple platforms [42].

Xcode is an integrated development environment (IDE) designed by Apple for devel-
oping software for macOS, iOS, iPadOS, watchOS, and tvOS . It includes a suite of tools for
developing software, and also provides access to a wide range of Software Development
Kits (SDKs) and Application Programming Interfaces (APIs) that are required for building
applications for Apple’s platforms [43].

Xcode Playground is an interactive programming environment that allows developers
to experiment with Swift code in an interactive way. It provides a lightweight environ-
ment for writing and running Swift code with live code execution. Xcode Playground is
integrated within the Xcode IDE [44].

Create ML [41] is a framework and a collection of components and tools intended for
easy preparation of machine learning models as well as their easy integration into custom
applications. It features a GUI-based application for creating and training a model, which
can be later distributed and used on other devices, including mobile applications. Create
ML implements the Core ML framework to be able to benefit from the hardware it targets.

Core ML is Apple’s machine learning framework [45], designed specifically to benefit
from the hardware acceleration capabilities of processors used in Apple devices. The Core
ML framework is said to enable optimization of on-device performance by also using
the GPU, NPU (named Neural Engine), and optimization of memory usage and power
consumption [45].

2.1. Model Creation

The measurements were conducted using the ‘Benchmarker.playground’ script, avail-
able (open-source) in [46]. For a detailed insight into how the experiment was carried out,
please refer to [37]. Within the ‘Benchmarker.playground’ script, each model was created
by the use of custom functions written in the Swift programming language. The appro-
priate datasets were passed as arguments, and the trained models were returned. Finally,
the models were tested using custom testing functions. The execution time of each stage
and function was measured, which allowed the comparison of devices on which the script
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was running to be made. All the results were logged into the console output. The process
of training and evaluation of all models was repeated three times.

2.2. Model Export as .mlmodel

Models created with the use of Create ML, (whether implemented in the Playground
sandbox or in an actual application), can be easily exported as a file [47]. This is carried out
using Apple’s Core ML framework file format—an ‘*.mlmodel’ file [48].

The .mlmodel file contains the prediction methods of a machine learning model,
including all of its configuration data and metadata [49]. These parameters were previously
extracted from its training environment and then processed to be optimized for Apple
device performance [50].

The ‘.mlmodel’ file includes the following sections [51]:

1. Metadata—Defines the model’s metadata;
2. Interface—Defines the input and output features;
3. Architecture—Encodes the model’s architecture;
4. Parameters—Stores all values extracted during the model training.

To correctly interpret the input data and produce valid output predictions, features
need to be defined and specified in the .mlmodel [51,52]. This includes “Metadata”, such
as the author, license, and model version, stored in the form of a dictionary [51,53,54].
The “Model description” information such as the names, data types, and shapes of the
features are saved in the “Interface” module [51,52,54].

In the next step, the architecture of the model needs to be defined [51]. This involves the
definition of the model’s structure, including the number and type of layers, the activation
functions, and other operations [50,51].

Then, the model parameters are defined [55]. These are values of variables and
coefficients, including weights and biases of each layer [51,55,56].

The model metadata, interface, architecture, and parameters are encoded into a data
structure called ‘protobuf message definitions’ [51,54,55]. The Protocol Buffer syntax allows
encoding and decoding information about the Core ML model in any language that sup-
ports the Protocol Buffer serialization technology, (including Python, C++, C#, or Java) [54,55].
‘Model.proto’ is the essential file of the Core ML Model protobuff message definitions [57]. It
describes the structure of the model, the type of inputs and outputs it can have, and meta-
data [54,57]. The file also includes the ‘specification version’, which determines the versions
of Core ML format specification and functionalities that it can provide [54,55,57,58]. Each
version of the target device’s operating system has its own way of implementing the model,
so it is crucial to also include these in the model specification [58].

All of the Model’s protobuff message definitions are encoded into binary format, which
can be deployed on Apple platforms and encoded while loading the model [51,55].

2.3. Datasets Used

The authors used four distinct datasets for their study. These datasets were used for
different purposes: two for image classification, one for tabular classification, and one for
tabular regression. Of these, one dataset was created by the authors, and the rest were
obtained from the Kaggle [59] website.

2.3.1. The Animals Dataset

The Animals dataset [38] was downloaded from Kaggle.com [59]. It contains
29,071 images divided into a training subset and testing subset. It is published under
a Creative Commons license. Images are in different shapes, have three colour channels,
and animals often are only partially visible in the picture (e.g., only the head of an ostrich),
while in other cases, the whole body is portrayed. To set the image size for the network
properly, it is essential to know what objects are in the images. One picture could be pre-
senting a large animal (e.g., an elephant), but from a large distance so that it appearz small,
while another could be a picture of a shrimp, but taken from a close distance and zoomed in.

Kaggle.com
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Knowing that the depicted objects may vary in size, and the classes can be similar enough
that differentiating between them requires a certain level of detail, it becomes justified to
increase the input size of the neural network. Hence, it is important to take a good look at
the data.

The training set consists of 22,566 images divided into 80 classes, making the problem
a multiclass classification. The distribution of data in the training subset is presented in
Figure 1. The testing set is made of 6505 images. Figure 2 portrays a random sample of
20 pictures of different classes from the Animals dataset.

Figure 1. (a)—The distribution of data of the first 40 classes, (b)—the distribution of the remaining
40 classes.
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Figure 2. A sample of 20 random images from the Animals dataset [38] subset.

2.3.2. The Payment Fraud Detection Dataset

The Online Payments Fraud Detection Dataset was published on Kaggle under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International license. The dataset
consists of 5,080,807 entries in a “.csv” file, which translates into 493.5 MB. The data are
divided into two classes (fraud or non-fraud), making it a binary classification problem.
Every entry has nine features, as explained on the Kaggle’s dataset webpage [39].

2.3.3. The Steam Reviews Dataset

The Steam Reviews Dataset 2021, obtained from Kaggle, represents the most recent
dataset used in this study. It comprises approximately 21 million user reviews pertaining
to approximately 300 games on the Steam platform. The dataset is available under the
GNU GPL 2 license. To prepare the dataset for utilization in “Create ML”, the authors
conducted a data cleaning process using the Python language, along with the “Pandas”
library. The cleaning procedure involved removing specific columns such as “comment
text”, “author”, “creation date”, and others. The resulting cleaned dataset was saved as
“SteamReviewsCleaned.csv”, resulting in a reduction in size from 3 GB to 2.15 GB. This
dataset was utilized for a tabular regression problem within the context of this study.

2.3.4. The ClassifierData Dataset

This very small custom dataset was created by one of the authors. It was composed of
four classes: “IPhone”, “MacBook”, “Apple Watch”, and “AirPods”. Every class contained
25 photos—19 in the training subset and 6 in the test subset. Every image was taken from
different angles as well as in varyied lighting. Some pictures were taken of objects held
in hand, while others were taken while lying on the floor, table, or carpet. Similarly to
the Animals dataset, Figure 3 presents a random sample of images from all four classes.
The data distribution of both training and test subsets is visualized in Figure 4. The subset
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was structured in a Create ML-compliant format [47], i.e., as image files placed inside the
class-related folders. All images were sampled using a mobile device, photographing the
target in various angles and light conditions.

Figure 3. A random sample of 20 images from the ClassifierData training subset.

Figure 4. Distribution of data in training (left) and testing (right) subsets of the ClassifierData dataset.

2.4. Framework and Hardware Used in the Trials

The study was conducted on four notebooks, each one running the macOS Ventura
operating system version 13.2 [60], with the Xcode Integrated Development Environment,
version 14.2 [61].
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The primary objective of the research was to investigate the usability of modern
laptops equipped with ARM-based M1/M2-series CPUs in popular machine learning
tasks. Since the manufacturer of M1- and M2-equipped laptops declares that the presence
of the NPU cores in the CPUs makes them useful and interesting in machine learning
applications, and since there are many researchers willing to buy a suitable portable
platform for everyday work, the authors have decided that it may be worthwhile and
interesting to put the eligibility of the NPU-equipped CPUs in DL tasks to a test.

All examined machines were ARM-based Apple MacBook Pro notebooks.
The first tested computer was the 2020 M1 MacBook Pro. The model started Apple’s

transition from Intel to ARM architecture [34]. It was equipped with the first version of the
Apple M1 chip. The CPU included four high-performance and four energy-efficient cores.
The chip was also equipped with an eight-core GPU. The first version of Neural Engine—a
16-core neural processing unit (NPU) —was also included in this chip [34]. The device had
8 GB of RAM. It is referred to as ‘M1’ in this work.

Another device from the M1-series was the MacBook Pro 2021. It included the strength-
ened version of the M1 Pro chip, which also included an eight-core CPU, but the allocation
of the cores differed: six were high-performance and two were energy-saving.

The M2 series processor is an upgraded version of the previous M1 processor, boasting
a speed increase of about 40%. It features eight cores, which are designed to be four
performance cores and four efficiency cores [35]. Additionally, the processor includes
10 GPU cores and 16 Neural Engine cores. The M2-equipped laptop used in the research
had 16 GB of RAM.

The fourth laptop used for the research was a MacBook Pro equipped with an Apple
M2 Pro processor and 16 GB of RAM. This processor was composed of 10 cores, with 6 of
them being performance cores and 4 being efficiency cores [36]. The processor also included
16 GPU cores and 16 Neural Engine cores.

3. Results

The most important result presented within this paper is the comparison of the com-
putational performance of the M1 and M2 processors in ML tasks, presented in Section 3.1
and discussed in Sections 4 and 5. The comparison is made based on the performance
(processing time) of ML models included within the ‘Benchmarker.playground’ project.

Section 3.2 includes an additional, also interesting, analysis of a possible impact of the
versions of macOS and Xcode on the ML tasks’ processing time.

3.1. Measurement of the Impact of the Processor Model on the Model Creation Time

During the research, three measurements of model training and testing time were
performed. The computer was consistently connected to a power source throughout the
script execution to ensure uninterrupted performance and avoid any potential limitations
caused by energy-saving features. This allowed us to benchmark the efficiency of M-series
processors in machine learning tasks using Apple’s ecosystem.

3.1.1. Running the Benchmark

The measurements were performed on four computers. The ‘Benchmarker.playground’
file was copied to the hard drive of each machine. Then, the file was opened in the Xcode
environment and executed. During the tests, each computer was left without any additional
tasks. When the running of the script had finished, the console output was saved to a
‘.txt’ file.

A screenshot of the ‘M1 Pro.txt’ file with the console output log from the ‘Benchmarker’
playground executed on the M1 Pro Mac is presented in Figure 5.
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Figure 5. A part of the benchmark report of the ‘M1 Pro’ computer.

3.1.2. The Results of the Benchmark

The results of the benchmark performed on the ClassifierData dataset were similar in
terms of overall time, except for the M1 Pro, which was over two times slower than the
other processors. Each training took, on average, a different number of iterations (epochs);
the means spanned from 11 to 14.667. The M1 achieved the best average result by a slight
margin, outperforming the second-fastest (which was the M2 Pro) by 383 ms. The third
average result was achieved by M2, which lost about 70 ms to the Pro variant. The worst
performance on the ClassifierData dataset was the M1 Pro; despite taking the second-lowest
average number of iterations (11.333), it scored by far the worst time of 8.622. Every model
trained on each chip achieved 100% for both training and validation accuracy. This test was
the quickest one due to the small size of the dataset.

Table 1 shows the time and accuracy results of the model training and testing process,
performed on the ‘ClassifierData’ dataset using Create ML.

Table 1. Average results for the processor-related test performed using the ‘ClassifierData’ dataset.

M1 M1 Pro M2 M2 Pro

Training data—analysis time (s) 2.543 7.083 3.157 2.987
Validation data—analysis time (s) 0.346 0.912 0.366 0.402
Model training—total time (s) 0.213 0.214 0.261 0.256
Model training—number of iterations 11 11.333 14.667 12.333
Training Accuracy 100% 100% 100% 100%
Validation Accuracy 100% 100% 100% 100%
Total model creation time (s) 3.689 8.622 4.145 4.072

Evaluation data—analysis time (s) 0.824 2.203 0.876 0.949
Evaluation Accuracy 97.22% 98.6% 98.6% 95.8%
Total model evaluation time (s) 1.047 2.421 1.022 1.147

The multiclass classification test was performed by utilizing the Animals dataset of
over 29,000 images, split into training and testing subsets. The results of the benchmark are
presented in Table 2. The quickest of all tested processors while training the model on the
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Animals dataset was M2 Pro. It took the M2 Pro 169.7 s to complete the test. The second-
fastest processor, (M2), took 186.689 s to train the model, which is 9% slower than the
Pro variant; however, the evaluation time was basically the same, at 40.796 for the Pro
and 40.796 for the basic M2. The M1 Pro finished the training process in 193.219 s, which
earned it third place. This result is 12% slower than the M2 Pro. The evaluation time was
approximately 5 s slower than both M2 and M2 Pro. The slowest one, M1, achieved a result
of 236.285 s. It was 28% slower than the fastest processor; simultaneously, it was the only
one that completed the training in over 200 s on average. The evaluation also took the
longest, exceeding 47 s. All processors achieved similar training and validation accuracy,
of about 88% and 86.5%, respectively.

Table 2. Average results for the processor-related test performed using the ‘Animals’ dataset.

M1 M1 Pro M2 M2 Pro

Training data—analysis time (s) 132.333 132.333 116.667 116.333
Validation data—analysis time (s) 7.240 7.043 6.087 6.133
Model training—total time (s) 79.364 39.442 49.746 33.356
Training Accuracy 88.26% 88.24% 88.11% 88.13%
Validation Accuracy 85.98% 86.64% 86.13% 86.52%
Total model creation time (s) 236.285 193.219 186.689 169.777

Evaluation data—analysis time (s) 41.050 40.393 36.033 36.050
Evaluation Accuracy 84.87% 84.84% 84.91% 84.87%
Total model evaluation time (s) 47.284 45.415 40.768 40.796

Upon examining the results of the benchmark conducted on the PaymentFraud dataset
displayed in Table 3, it is apparent that the accuracy levels for all tested cases were compa-
rable, with minor disparities emerging during the data analysis phase. During this stage,
the M2 Pro processor exhibited the quickest performance, taking only 1.924 s, while the
slowest was the M1 at 2.310 s. The M2 processor, on the other hand, completed the data
analysis in 2.01 s, and the M1 Pro required 2.161 s.

The most notable differences in processing time were found during the overall model
building phase. The M2 processor was the speediest in this regard, finishing the model
building task in 102.109 s. The M1 processor took 13% longer, completing the same
assignment in 117.546 s, while the Pro version of the M1 took 146.641 s, which was 43%
slower than the M2 processor. Interestingly, in this case, the M2 Pro processor proved to be
the slowest, taking 151.659 s to complete the task, which was 48% slower than the M2’s
base version.

Table 3. Average results for the processor-related test performed using the ‘PaymentFraud’ dataset.

M1 M1 Pro M2 M2 Pro

Data processing time (s) 2.310 2.161 2.010 1.924
Training accuracy 99.96% 99.96% 99.96% 99.96%
Validation accuracy 99.96% 99.95% 99.97% 99.96%
Total model creation time (s) 117.546 146.641 102.109 151.659

Evaluation accuracy 99.96% 99.96% 99.96% 99.95%
Total model evaluation time (s) 1.280 1.279 1.139 1.107

Table 4 displays the benchmark outcomes for the SteamReviewCleaned dataset. No-
ticeably, the table does not present the maximum error and root-mean-square error findings
for the training, validation, and test data. These results are excluded due to their consistency
across all cases, as was shown in our preceding publication [37].

The M2 Pro processor boasted the swiftest processing time, taking only 7.981 s to
complete the task, while the M1 Pro and M2 processors processed the data in nearly the
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same amount of time, clocking in at 8.143 s and 8.255 s, respectively. Meanwhile, the M1
proved to be the slowest, taking 9.276 s.

During the model building phase, the M2 Pro processor was once again the fastest,
completing the task in only 12.545 s. The M2 processor followed closely, requiring 13.395 s
to build the model. The M1 Pro took 14.713 s to finish the task, while the M1 took 15.545 s.
With the exception of the M1, which took 2.023 s, all processors required less than 1.75 s
to evaluate the model. The M2 Pro processor was once again the quickest in this task,
taking only 1.596 s, while the M1 Pro and M2 processors achieved similar times of 1.736
and 1.665 s, respectively.

Table 4. Average results for the processor-related test performed using the ‘SteamReviewsCle-
aned’ dataset.

M1 M1 Pro M2 M2 Pro

Data processing time (s) 9.276 8.143 8.255 7.891
Total model creation time (s) 15.545 14.713 13.395 12.545

Total model evaluation time (s) 2.023 1.736 1.665 1.596

Table 5 displays the execution times of a script on various tested platforms. The Mac-
Book with an M2 processor completed the entire script in the fastest time, taking 1088.989 s,
with an average of 362.996 s per iteration. All iterations took a similar amount of time,
with the fastest iteration completed in 359.398 s and the slowest in 364.796 s. The MacBook
with an M2 Pro processor took 9% longer to execute the script, taking 1186.557 s, with an
average of 395.519 s per iteration, and the slowest iteration took 397.401 s. The MacBook
with an M1 Pro processor took 1281.761 s, with an average of 427.254 s per iteration, which
was 18% longer than the M2 MacBook. The MacBook with M1 took the longest time, taking
1314.943 s, with an average of 438.314 s per iteration. This took 21% longer than the fastest
tested MacBook. The fastest iteration took 436.706 s, and the slowest iteration took 439.858 s
on the slowest MacBook tested.

Table 5. Average iteration times of the ‘Benchmarker_Playground.playground’ program.

M1 M1 Pro M2 M2 Pro

Average iteration time (s) 438.314 427.254 362.996 395.519
Fastest iteration (s) 436.706 423.018 359.398 394.179
Slowest iteration (s) 439.858 431.328 364.796 397.401
Total measurement time (s) 1314.943 1281.761 1088.989 1186.557

3.2. Measurement of the Impact of the macOS Version on the Model Creation Time

An evaluation of the influence of the macOS wersion on the script execution time was
carried out on the MacBook Pro referenced as ‘M1 Pro’. The measurement was performed
on three various versions of macOS and Xcode IDE:

• macOS Monterey 12.4 and Xcode 13.4 ;
• macOS Ventura 13.0.1 and Xcode 14.2;
• macOS Ventura 13.2 and Xcode 14.2.

The computer was not used during each execution of the script. The device remained
connected to the power source at all times to prevent any limitations due to energy-
saving features.

Table 6 displays the benchmark results for various versions of systems and Xcode for
the ClassifierData dataset. The Macbook with macOS 12.4 and Xcode 13.4 installed achieved
the fastest training dataset, finishing the task in 6.957 s. A very similar time was recorded
on a Macbook with macOS 13.2 and installed Xcode 14.2, at 7.083 s. The slowest was macOS
13.0.1, taking 7.573 s to complete the task. However, when analyzing the validation set,
macOS 13.2 Macbook was the fastest, taking merely 0.912 s. The other platforms analyzed
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the validation set at a similar time, with macOS 12.4 and 13.0.1 completing the task in 0.921
and 0.922 s, respectively. The macOS 13.2 performed the fastest training, with the entire
training taking 0.214 s, attaining completion after 11.3 iterations. The training took 0.217 s
on a Macbook with macOS 12.4 after 12 iterations. The longest training, lasting 0.263 s, was
on macOS 13.0.1, ending after 14 iterations. In all cases, the model achieved 100% accuracy
on the training and validation sets. Overall, the entire process of analyzing the sets and
building the model was the fastest on a Macbook with macOS 12.4, taking 8.571 s. A few
milliseconds longer, the task was completed on a Macbook with macOS 13.2 in 8.662 s.
The Macbook with macOS 13.0.1 took the longest at 9.175 s. The test set was analyzed the
fastest on a Macbook with macOS 12.4, completing the task in 1.993 s. On a Macbook with
macOS 13.0.1, the task was completed in 2.093 s. This task took the longest on a Macbook
with macOS 13.2, requiring 2.203 s. The evaluation of the entire model on the test set was
the fastest on a Macbook with macOS 12.4, taking 2.138 s, and the previously prepared
model on this version achieved 95.83% accuracy. The same accuracy was achieved by the
model prepared for macOS 13.0.1, but it took 2.309 s. The best accuracy was achieved on
macOS 13.2, at 98.61%, but evaluating the model on the test set required 2.421 s.

Table 6. Average results for the OS-related test performed using the ‘ClassifierData’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Training data—analysis time (s) 6.957 7.573 7.083
Validation data—analysis time (s) 0.921 0.922 0.912
Model training—total time (s) 0.217 0.263 0.214
Model training—number of iterations 12 14.7 11.3
Training Accuracy 100% 100% 100%
Validation Accuracy 100% 100% 100%
Total model creation time (s) 8.571 9.175 8.622

Evaluation data—analysis time (s) 1.933 2.093 2.203
Evaluation Accuracy 95.83% 95.83% 98.61%
Total model evaluation time (s) 2.138 2.309 2.421

Table 7 presents the development times of the model for the Animals set using differ-
ent versions of macOS and Xcode. The analysis of the training set took the longest time on
macOS 12.4, i.e., 137.667 s. The Macbook with macOS 13.2 analyzed the set for 132.333 s,
while macOS 13.0.1 achieved the best result by completing the task in 130.667 s. The val-
idation set was analyzed for 7.16 s on macOS 12.4 and 7.043 s on macOS 13.2, while the
shortest time of 6.937 s was achieved on macOS 13.0.1. The model was trained for 40.424 s
on a MacBook with macOS 12.4, achieving an accuracy of 87.91% for the training set and
86.12% for the validation set. The entire modeling process took 198.985 s. On macOS 13.0.1,
the model was trained for 39.709 s, achieving an accuracy of 87.97% for the training set and
86.95% for the validation set. The entire modelling process took 191.641 s. For macOS 13.2,
it took 193.219 s to build the entire model, with 39.442 s dedicated to training. In this case,
the model achieved an accuracy of 88.24% for the training set and 86.64% for the validation
set. The shortest time to evaluate the model on the test set was on a MacBook with ma-
cOS 13.2, taking 45.415 s, with an achieved accuracy of 84.84%. The model was evaluated
on the test set in 46.095 s on macOS 13.0.1, with an accuracy of 84.87%. On a MacBook
with macOS 12.4, the model was evaluated for the longest time of 46.590 s, achieving an
accuracy of 84.94% for the test set.
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Table 7. Average results for the OS-related test performed using the ‘Animals’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Training data—analysis time (s) 137.667 130.667 132.333
Validation data—analysis time (s) 7.160 6.937 7.043
Model training—total time (s) 40.424 39.709 39.442
Training Accuracy 87.91% 87.97% 88.24%
Validation Accuracy 86.12% 86.95% 86.64%
Total model creation time (s) 198.985 191.641 193.219

Evaluation data—analysis time (s) 41.977 40.887 40.393
Evaluation Accuracy 84.94% 84.87% 84.84%
Total model evaluation time (s) 46.590 46.095 45.415

Table 8 presents the results acquired for the PaymentFraud dataset. Each system
analyzed the training set for a similar amount of time. The macOS 13.0.1 with Xcode 14.2
installed analyzed the fastest set in 2.153 s, and the slowest analysis was on macOS 13.2 with
the same Xcode version in 2.161 s. The analysis on macOS 12.4 took 2.158 s. The accuracy
of the test set was 99.96% on each tested system, with only minor differences. The highest
accuracy of 99.99% was achieved on macOS 13.0.1, and the lowest accuracy of 99.95% was
achieved on macOS 13.2. The model trained on macOS 12.4 achieved an accuracy of 99.97%
for the same validation set. The fastest model was built on macOS 12.4 in 143.456 s, while
the slowest model building process was on macOS 13.2 in 146.641 s. It took 144.639 s to
build the entire model on macOS 13.0.1. The accuracy measurement for the test set took
1.298 s on macOS 12.4 and 1.292 s on macOS 13.0.1. The fastest accuracy measurement of
the model was on macOS 13.2 in 1.279 s.

Table 8. Average results for the OS-related test performed using the ‘PaymentFraud’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Data processing time (s) 2.158 2.153 2.161
Training accuracy 99.96% 99.96% 99.96%
Validation accuracy 99.97% 99.99% 99.95%
Total model creation time (s) 143.456 144.639 146.641

Evaluation accuracy 99.96% 99.96% 99.96%
Total model evaluation time (s) 1.298 1.292 1.279

The training times for the SteamReviewsCleaned dataset on various versions of Mac-
book Pro with M1 Pro processor are displayed in Table 9. The quickest model was trained
on macOS 13.2 equipped with Xcode 14.2, which took 14.713 s, with 8.143 s spent on
analyzing the dataset. The longest training time was documented on macOS 13.0.1, where
the whole process took 15.006 s, and dataset analysis took 8.356 s. The model evaluation
process on different systems had similar timings, with macOS 13.0.1 having the longest
evaluation time of 1.834 s and macOS 12.4 having the shortest evaluation time of 1.732 s.
In the case of macOS 13.2, the evaluation process took 1.736 s.

Table 9. Average results for the OS-related test performed using the ‘SteamReviewsCleaned’ data-set.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Data processing time (s) 8.347 8.356 8.143
Total model creation time (s) 14.924 15.006 14.713

Total model evaluation time (s) 1.732 1.834 1.736
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Table 10 provides a summary of the benchmark results for different versions of macOS.
The quickest benchmark was completed in 1276.076 s on a MacBook running macOS 13.0.1
with Xcode 14.2 installed. On average, each iteration took 425.359 s. The fastest iteration
was completed in 421.602 s, while the slowest iteration took 432.384 s. The benchmark took
the longest time to complete on a MacBook running macOS 12.4 with Xcode 13.4 installed,
taking 1293.449 s to finish, with one iteration taking 431.150 s. In this case, the slowest
iteration took 436.282 s, while the quickest iteration was completed in 431.150 s. On macOS
13.2, the benchmark took 1281.761 s to complete, with an average of 427.254 s needed for
each iteration.

Table 10. Cumulative results of all OS-related tests performed.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Average iteration time (s) 431.150 425.359 427.254
Fastest iteration (s) 428.403 421.602 423.018
Slowest iteration (s) 436.282 432.384 431.328
Total measurement time (s) 1293.449 1276.076 1281.761

4. Discussion

The gathered results present the comparative computational performances of the
Apple laptops equipped with four different M-family processors, including the most recent
M2 Pro chip. All of the tested hardware (including the previous M1 generation) is perfectly
capable of performing ML tasks that do not require processing millions of images or
hundreds of gigabytes (or more) of data. Each and every dataset has been successfully
analyzed and processed. Every created model had similar efficacy; regardless of the chip it
was trained on, the results were satisfactory.

Three of the used datasets are available to the public; as well, the hardware and
software specifications provided in this research ensure that the reproducibility and compa-
rability of the results is possible for other researchers.

The chips were tested for machine learning applications with the use of Apple’s Create
ML. A rather surprising average result is the overall performance of the M2 Pro variant.
It was outperformed by the base variant by approximately 9%; however, this was mainly
due to poor performance of the more expensive variant on the PaymentFraud dataset. This
result may affect someone’s decision as to whether it is beneficial to increase their budget
to buy the Pro chip or save money and buy the cheaper standard M2. The M1 Pro also
had the same difficulties with the same dataset that its newer counterpart had, achieving a
much worse time than the base version of the chip.

The research also included an evaluation of the script execution time on various
macOS versions. The tasks were performed on the same MacBook Pro laptop, with different
versions of the operating system and development environment.

The obtained results showed, that the version of the macOS has an impact on the script
execution times. For the ‘ClassifierData’, almost all times were longer after updating the
operating system from the previous ‘major version’ (macOS 12.4) to the next new ‘major
version’ (macOS 13.0.1). However, the installation of a system update with bug fixes and
improvements (macOS 13.2) decreased the execution time to a value which was comparable
with the results from the previous ‘major version’.

In case of the ‘Animals’ dataset, the data analysis time also changed with the version
of the operating system, with macOS 13.0.1 being the fastest. The model training time
was comparable in each test, which suggests that system updates have no impact on the
training process.

The tests performed on tabular datasets (‘PaymentFraud’ and ‘SteamReviewsCleaned’)
showed no remarkable difference between the execution time of the training and evaluation
process. This shows that differences are visible only when working with image datasets.
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5. Conclusions

Upon conducting an in-depth analysis of the collected results, our study revealed
significant findings that may provide insights into the performance of distinct chips when
employed for training and testing models using Create ML.

The results presented in the paper demonstrate that the M2 chip may exhibit superior
performance compared to the M2 Pro (as shown in Table 5), implying that the M2 chip may
be a favorable choice for tasks demanding efficient model creation.

While it is difficult to provide a definitive recommendation for future processors
or operating systems due to their evolving nature, in this study, the authors proposed a
methodology for evaluating the effectiveness of specific hardware architectures, which can
be investigated by the researchers themselves, using the proposed [46] benchmark.

The observations also reveal that the ‘Pro’ series of respective chips (namely, M1 Pro
and M2 Pro) do not meet the anticipated time-related performance efficiency for model
creation using the ‘Payment Fraud’ dataset (see Table 3). Moreover, the processing perfor-
mance of the ‘M1 Pro’ chip proved to be below average for the small ‘ClassifierData’ dataset,
whereas the ‘M1’ chip exhibited surprisingly good performance on the same dataset (see
Table 1). These observations indicate that certain characteristics of datasets can indeed
impact the performance of specific chip models. The research provided evidence that the
expected superiority of the ‘Pro’ variant should be challenged for model training, even
when using Apple’s own ‘Create ML.’

Lastly, the experimental comparative research resulted in the formulation of addi-
tional insights of minor significance: it was confirmed that the multiclass classification
performance results were consistent with the CPU-generation-related expectations, and
that the operating system version had an impact on the processing time, particularly in the
case of image datasets.

The results presented within this study bring theoretical and managerial implications
that extend beyond the immediate scope of hardware platform performance evaluation.
The insights gained from comparing respective processors and their performance in ma-
chine learning tasks using Create ML shed light on the complexities and nuances of
hardware-platform-specific characteristics. From a theoretical standpoint, these findings
help to understand the impact of particular hardware choices on the efficiency and effec-
tiveness of ML computation time. By examining the performance (and its variations across
various chips), researchers can refine their theoretical models and develop more nuanced
frameworks for leveraging the benefits of hardware acceleration for typical Machine Learn-
ing applications. On a managerial level, the research findings have substantial value for
decision-makers who are considering hardware platforms for machine learning researchers
and initiatives. The performance disparities observed among the tested chips help to
highlight the benefits and importance of careful evaluation of the hardware requirements,
based on the specific needs and characteristics of current machine learning projects.

Future Work

The research conducted in this study opens avenues for further exploration in the
realm of multi-platform analysis (the comparison of Apple platforms against other, non-
Apple, platforms). While this research focused on the performance evaluation of hardware
platforms utilizing primarily Create ML, future studies could extend the analysis to encom-
pass a broader range of machine learning frameworks, especially the most popular ones—
TensorFlow and PyTorch. By conducting experiments using TensorFlow and PyTorch across
different hardware platforms and operating systems, a more comprehensive understanding
of the performance variations and platform compatibility can be obtained. Additionally, in-
vestigating the impact of different frameworks on the efficiency and effectiveness of model
creation would contribute valuable insights to the field. Such multi-platform approaches
will provide a more comprehensive assessment of the hardware-platform-specific charac-
teristics and guide researchers and practitioners in making informed decisions regarding
the choice of frameworks and hardware configurations for their machine learning tasks.
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of artificial intelligence and machine learning in higher education institutions. Sustainability 2021, 13, 10424. [CrossRef]
24. Sanusi, I.T.; Oyelere, S.S.; Vartiainen, H.; Suhonen, J.; Tukiainen, M. A systematic review of teaching and learning machine

learning in K-12 education. In Education and Information Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–31.
25. Wang, Y.E.; Wei, G.Y.; Brooks, D. Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv 2019, arXiv:1907.10701.
26. Saha, S.S.; Sandha, S.S.; Srivastava, M. Machine learning for microcontroller-class hardware—A review. IEEE Sens. J. 2022,

22, 21362–21390 . [CrossRef] [PubMed]
27. Sze, V.; Chen, Y.H.; Emer, J.; Suleiman, A.; Zhang, Z. Hardware for machine learning: Challenges and opportunities. In

Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 30 April–3 May 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–8.

28. Berggren, K.; Xia, Q.; Likharev, K.K.; Strukov, D.B.; Jiang, H.; Mikolajick, T.; Querlioz, D.; Salinga, M.; Erickson, J.R.; Pi, S.; et al.
Roadmap on emerging hardware and technology for machine learning. Nanotechnology 2020, 32, 012002. [CrossRef] [PubMed]

29. An, L.; Peng, K.; Yang, X.; Huang, P.; Luo, Y.; Feng, P.; Wei, B. E-TBNet: Light Deep Neural Network for automatic detection of
tuberculosis with X-ray DR Imaging. Sensors 2022, 22, 821. [CrossRef] [PubMed]

30. Hadjis, S.; Abuzaid, F.; Zhang, C.; Ré, C. Caffe con troll: Shallow ideas to speed up Deep Learning. In Proceedings of the Fourth
Workshop on Data analytics in the Cloud (DanaC’15), Melbourne, VIC, Australia, 31 May–4 June 2015; pp. 1–4.

31. Courville, V.; Nia, V.P. Deep learning inference frameworks for ARM CPU. J. Comput. Vis. Imaging Syst. 2019, 5, 3.
32. Sinha, I.; Foscht, T.; Sinha, I.; Foscht, T. The era of anti-marketing. In Reverse Psychology Marketing: The Death of Traditional

Marketing and the Rise of the New “Pull” Game; Springer: Berlin/Heidelberg, Germany, 2007; pp. 143–167.
33. O’Gorman, D.E. The Fog of (marketing) Wars: The Need for Assumption-Based Decision Making Processes. In Proceedings

of the Marketing Management Association 2007 Educators’ Conference Proceedings, San Diego, CA, USA, 16–19 February
2007; p. 44.

34. Apple Inc. The ‘Apple Event’—10 November 2020. Apple Event. 2020. Available online: https://www.youtube.com/watch?v=
5AwdkGKmZ0I (accessed on 1 June 2023).

35. Apple Inc. Macbook Pro 13—Official Source Link with the Specification of the Macbook Pro 13 Laptop. 2023. Available online:
https://support.apple.com/kb/SP870?locale=en_GB (accessed on 1 June 2023).

36. Apple Inc. Macbook Pro 14—Official Source Link with the Specification of the Macbook Pro 14 Laptop. 2023. Available online:
https://support.apple.com/kb/SP889?locale=en_GB (accessed on 1 June 2023).

37. Kasperek, D.; Podpora, M.; Kawala-Sterniuk, A. Comparison of the Usability of Apple M1 Processors for Various Machine
Learning Tasks. Sensors 2022, 22, 8005. [CrossRef] [PubMed]

38. Jana, A. Animals Detection Images Dataset. Collection of Wild Animal Species with Annotations. Available online: https://www.
kaggle.com/datasets/antoreepjana/animals-detection-images-dataset (accessed on 1 June 2023).

39. Roy, R. Online Payments Fraud Detection Dataset. Online payment fraud big dataset for testing and practice purpose. Available
online: https://www.kaggle.com/datasets/rupakroy/online-payments-fraud-detection-dataset (accessed on 1 June 2023).

40. Marko M. Steam Reviews Dataset 2021. Large Collection of Reviews of Steam Games. Available online: https://www.kaggle.
com/datasets/najzeko/steam-reviews-2021 (accessed on 1 June 2023).

41. Apple Inc. Create ML Overview—Machine Learning—Apple Developer. 2022. Available online: https://developer.apple.com/
machine-learning/create-ml/ (accessed on 1 June 2023).

42. Goodwill, J.; Matlock, W. The swift programming language. In Beginning Swift Games Development for iOS; Apress: Berkeley, CA,
USA, 2015; pp. 219–244.

43. Kelly, M.; Nozzi, J. Mastering Xcode: Develop and Design; Peachpit Press: Berkeley, CA, USA, 2013.
44. Feiler, J. Introducing Swift Playgrounds. Exploring Swift Playgrounds: The Fastest and Most Effective Way to Learn to Code and to

Teach Others to Use Your Code; Apress: Berkeley, CA, USA, 2017; pp. 1–11.
45. Apple Inc. Core ML Framework Documentation. 2023. Available online: https://developer.apple.com/documentation/coreml,

(accessed on 1 June 2023).
46. Kasperek, D. The ‘Benchmarker.playground’ Project and Apple Devices Image Dataset. Available online: https://github.com/

dKasperek/Benchmarker (accessed on 1 June 2023).
47. Apple Inc. Creating an Image Classifier Model | Apple Developer Documentation. 2022. Available online: https://developer.

apple.com/documentation/createml/creating_an_image_classifier_model (accessed on 1 June 2023).
48. Apple Inc. “Getting a Core ML Model”. 2023. Available online: https://developer.apple.com/documentation/coreml/getting_

a_core_ml_model (accessed on 1 June 2023).
49. Apple Inc. MLModel|Apple Developer Documentation. 2023. Available online: https://developer.apple.com/documentation/

coreml/mlmodel (accessed on 1 June 2023).

http://dx.doi.org/10.3102/1076998619872761
http://dx.doi.org/10.3390/su131810424
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://www.ncbi.nlm.nih.gov/pubmed/36439060
http://dx.doi.org/10.1088/1361-6528/aba70f
http://www.ncbi.nlm.nih.gov/pubmed/32679577
http://dx.doi.org/10.3390/s22030821
http://www.ncbi.nlm.nih.gov/pubmed/35161567
https://www.youtube.com/watch?v=5AwdkGKmZ0I
https://www.youtube.com/watch?v=5AwdkGKmZ0I
https://support.apple.com/kb/SP870?locale=en_GB
https://support.apple.com/kb/SP889?locale=en_GB
http://dx.doi.org/10.3390/s22208005
http://www.ncbi.nlm.nih.gov/pubmed/36298358
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset
https://www.kaggle.com/datasets/rupakroy/online-payments-fraud-detection-dataset
https://www.kaggle.com/datasets/najzeko/steam-reviews-2021
https://www.kaggle.com/datasets/najzeko/steam-reviews-2021
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/documentation/coreml
https://github.com/dKasperek/Benchmarker
https://github.com/dKasperek/Benchmarker
https://developer.apple.com/documentation/createml/creating_an_image_classifier_model
https://developer.apple.com/documentation/createml/creating_an_image_classifier_model
https://developer.apple.com/documentation/coreml/getting_a_core_ml_model
https://developer.apple.com/documentation/coreml/getting_a_core_ml_model
https://developer.apple.com/documentation/coreml/mlmodel
https://developer.apple.com/documentation/coreml/mlmodel


Sensors 2023, 23, 5424 18 of 18

50. Apple Inc. WWDC 2018, What’s New in Core ML, Part 1. In Proceedings of the Apple Worldwide Developers Conference,
Online, 4–8 June 2018, Available online: https://developer.apple.com/videos/wwdc2018 (accessed on 1 June 2023).

51. Apple Inc. WWDC 2021, Tune your Core ML models. In Proceedings of the Apple Worldwide Developers Conference, Cupertino,
CA, USA, 8–11 June 2021, Available online: https://developer.apple.com/videos/wwdc2021 (accessed on 1 June 2023).

52. Apple Inc. MLModelDescription|Apple Developer Documentation. 2023. Available online: https://developer.apple.com/
documentation/coreml/mlmodeldescription (accessed on 1 June 2023).

53. Apple Inc. Metadata|Apple Developer Documentation. 2023. Available online: https://developer.apple.com/documentation/
coreml/mlmodeldescription/2879386-metadata (accessed on 1 June 2023).

54. Apple Inc. MLModel Overview. 2023. Available online: https://coremltools.readme.io/docs/mlmodel (accessed on 1 June 2023).
55. Apple Inc. WWDC 2019, Core ML 3 Framework. In Proceedings of the Apple Worldwide Developers Conference, Online, 3–7

June 2019. Available online: https://developer.apple.com/videos/wwdc2019 (accessed on 1 June 2023).
56. Apple Inc. MLParameterKey. Apple Developer Documentation. 2023. Available online: https://developer.apple.com/

documentation/coreml/mlparameterkey (accessed on 1 June 2023).
57. Apple Inc. Core ML Format Specification—Core ML Format Reference Documentation. 2023. Available online: https:

//apple.github.io/coremltools/mlmodel/index.html (accessed on 1 June 2023).
58. Apple Inc. Core ML Format Reference Documentation. 2023. Available online: https://apple.github.io/coremltools/mlmodel/

Format/Model.html (accessed on 1 June 2023).
59. Kaggle. Kaggle Competitions Webpage. Available online: https://www.kaggle.com/competitions (accessed on 1 June 2023).
60. Apple Inc. macOS Ventura—Official Source Link from Mac App Store. 2023. Available online: https://apps.apple.com/us/app/

macos-ventura/id1638787999?mt=12 (accessed on 1 June 2023).
61. Apple Inc. Xcode—Official Source Link from Mac App Store. 2023. Available online: https://apps.apple.com/us/app/xcode/

id497799835?mt=12 (accessed on 1 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://developer.apple.com/videos/wwdc2018
https://developer.apple.com/videos/wwdc2021
https://developer.apple.com/documentation/coreml/mlmodeldescription
https://developer.apple.com/documentation/coreml/mlmodeldescription
https://developer.apple.com/documentation/coreml/mlmodeldescription/2879386-metadata
https://developer.apple.com/documentation/coreml/mlmodeldescription/2879386-metadata
https://coremltools.readme.io/docs/mlmodel
https://developer.apple.com/videos/wwdc2019
https://developer.apple.com/documentation/coreml/mlparameterkey
https://developer.apple.com/documentation/coreml/mlparameterkey
https://apple.github.io/coremltools/mlmodel/index.html
https://apple.github.io/coremltools/mlmodel/index.html
https://apple.github.io/coremltools/mlmodel/Format/Model.html
https://apple.github.io/coremltools/mlmodel/Format/Model.html
https://www.kaggle.com/competitions
https://apps.apple.com/us/app/macos-ventura/id1638787999?mt=12
https://apps.apple.com/us/app/macos-ventura/id1638787999?mt=12
https://apps.apple.com/us/app/xcode/id497799835?mt=12
https://apps.apple.com/us/app/xcode/id497799835?mt=12

	Introduction
	Motivation
	Scope and Limitations
	Performance Measurements

	Materials and Methods
	Model Creation
	Model Export as .mlmodel 
	Datasets Used
	The Animals Dataset
	The Payment Fraud Detection Dataset
	The Steam Reviews Dataset
	The ClassifierData Dataset

	Framework and Hardware Used in the Trials

	Results
	Measurement of the Impact of the Processor Model on the Model Creation Time
	Running the Benchmark
	The Results of the Benchmark

	Measurement of the Impact of the macOS Version on the Model Creation Time

	Discussion
	Conclusions
	References

