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Abstract: With the development of 3D sensors technology, 3D point cloud is widely used in industrial
scenes due to their high accuracy, which promotes the development of point cloud compression
technology. Learned point cloud compression has attracted much attention for its excellent rate
distortion performance. However, there is a one-to-one correspondence between the model and
the compression rate in these methods. To achieve compression at different rates, a large number
of models need to be trained, which increases the training time and storage space. To address this
problem, a variable rate point cloud compression method is proposed, which enables the adjustment
of the compression rate by the hyperparameter in a single model. To address the narrow rate range
problem that occurs when the traditional rate distortion loss is jointly optimized for variable rate
models, a rate expansion method based on contrastive learning is proposed to expands the bit rate
range of the model. To improve the visualization effect of the reconstructed point cloud, a boundary
learning method is introduced to improve the classification ability of the boundary points through
boundary optimization and enhance the overall model performance. The experimental results show
that the proposed method achieves variable rate compression with a large bit rate range while
ensuring the model performance. The proposed method outperforms G-PCC, achieving more than
70% BD-Rate against G-PCC, and performs about, as well as the learned methods at high bit rates.

Keywords: point cloud compression; variable bit rate; contrastive learning

1. Introduction

The increasing availability of 3D sensors has driven a wave of innovation of immersive
devices, such as Augmented and Virtual Reality Production. In 2020, Apple successfully
created a more realistic augmented reality experience by bringing point cloud to mobile
devices [1]. Point cloud have achieved significant success in some emerging industries
for its high resolution and high fidelity. However, its huge data volume has brought great
inconvenience to the transmission and storage. Data compression methods help solve the
problem of excessive data volume in its storage and transportation [2]. Therefore, point
cloud compression (PCC) technology has become one of the urgent challenges to be broken
in 3D sensor applications.

Point cloud is a collection of a large number of discrete points, which holds information
about the surface of an object in the form of 3D data. It is widely used in industrial scenes
due to its high accuracy and high resolution. However, due to its extremely large data
volume, which puts great pressure on storage and transmission, efficient PCC algorithms
are urgently needed.

Deep learning has achieved excellent results in many computer vision tasks. With
the revolutionary progress in deep learning, learned PCC has attracted much interest. In
particular, non-linear transform coding designed by deep neural networks has achieved
impressive rate distortion, and even some algorithms outperform classical PCC codecs
designed and optimized by domain experts, such as the G-PCC [3] proposed by MPEG.
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Lossy point cloud compression takes advantage of smaller storage space and trans-
mission costs at the cost of reduced reconstructed point cloud quality. These learned com-
pression methods [4–7] utilize auto-encoders or generative models to learn compact feature
representations. An encoder transforms the point cloud into a latent feature representation,
and a decoder converts the latent features back to the point cloud. The transformation
is designed to obtain the latent representation with the smallest entropy to reduce the
compression rate for a given distortion level. The entropy of latent representation is usually
difficult to calculate directly. Hence, the rate–distortion (R-D) trade-off is optimized by
minimizing an entropy estimate of the latent representation of point cloud. Some accurate
entropy estimation models [8–10] have been developed to improve compression efficiency.

Most of the learned PCC methods optimized their networks by minimizing the sum
of the R-D pairs using the method of Lagrange multipliers. The Lagrange multiplier λ is
a hyperparameter to train a network for a desired compression rate, which indicates that
separate networks for different compression rate are needed to be trained and deployed.
However, it is impractical to operate with fine resolution over a wide range of R-D curves.
Therefore, a variable rate point cloud compression model is of great interest.

The variable-rate compression model trains only one network, and the compression
rate can be flexibly adjusted by the hyper-parameter, which saves a lot of storage space.
At the same time, since the bit rate change of the variable rate model is continuous, the
compression rate can be adjusted according to the network bandwidth, which effectively
improves the transmission efficiency.

Despite the excellent performance achieved by learned PCC methods, variable rate
PCC still has many difficulties. First, most of the currently available variable rate models
are in the field of image compression, while only a small amount of work has been done in
learned PCC. It is urgent to explore the variable rate PCC framework. Moreover, the sum
of R-D pairs for model optimization cannot meet the variable rate model requirements in
the training.

In this paper, we have proposed a variable rate point cloud geometry compression
framework, named VRPCGC. In particular, we have proposed the modulated network,
which takes the Lagrange multiplier as an input and produces the weight of latent represen-
tation. The compression rate depends on the input value. Meanwhile, we suggest keeping
changing the Lagrange multiplier during training. It should be noted that the Lagrange
multiplier λ are set to discrete values during training, but are continuous in the test, which
ensures that continuous compression rates are achieved. Meanwhile, we have proposed a
contrastive learning to increases the range of compression rates of the model. Specifically,
models with different hyperparameters are considered as negative pairs to distance their
latent representation during training, which pulls apart the rate distribution of the model.

Furthermore, boundary learning is introduced to improve the visualization of re-
constructed point clouds. Tang et al. [11] proposed boundary learning in point cloud
segmentation to improve the classification ability of point cloud boundaries. In this paper,
we use the boundary information of point cloud to increase the accuracy of classifier on
edge regions and improve the texture details of reconstructed point clouds, which give the
reconstructed point clouds better visualization quality.

In summary, the main contributions of this paper are:

1. We have proposed a variable rate point clouds geometry compression framework
based on modulation network. We analyze the impact of different modulation net-
works on the model performance, and the experimental results show that the convo-
lution neural network achieves better performance.

2. We have introduced the contrastive learning to increase the bit rate range of the
model, which solves the bit rate concentration problem brought by the traditional rate
distortion optimization.

3. We have proposed the boundary learning for the point cloud reconstruction, which
focuses on the boundary points to ensure the visualization quality of the point cloud.
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2. Related Work

Related researches of this work can be classified into learned point cloud compression
and variable rate compression.

2.1. Learned Point Cloud Compression

Deep learning has achieved remarkable results in data processing. Zhao et al. [12,13]
introduced deep learning in federal learning and achieved remarkable results. Jin et al. [14]
proposed using deep transfer learning from face recognition to perform the computer-
aided facial diagnosis on various diseases. Liu et al. [15] proposed a generative adversarial
network for point cloud upsampling to generate point clouds with the better visual quality.

The learned compression approach has gained much attention due to its excellent
rate distortion performance. The compression process could be divided into lossy and
lossless compression according to whether there is a loss in the quality of the point cloud.
Lossless compression methods [7,16] use neural networks to estimate the probability of
point cloud occupancy, and then the estimated probability is losslessly compressed by an
arithmetic encoder. However, it is difficult to achieve high compression rates in this way.
More studies [17,18] want to achieve higher compression ratios with less distortion. A
tighter point cloud representation is obtained by downsampling, and then the point cloud
is reconstructed by upsampling at the decoder.

Currently, deep learning is applied to the octree domain [19,20], voxel domain [21–24]
and point domain [25] of PCC. Huang et al. [19] have proposed an octree structured
conditional entropy model to model the probability of octree symbols and encode the octree
symbols into a compact bit stream. However, this approach leads to an exponential decrease
in the number of point clouds as the depth of the octree decreases as well as the block effect
phenomenon. Que et al. have proposed VoxelContext-Net, which achieves better entropy
estimation by using neighboring points of parent nodes as contextual information.

Quach et al. [21], Wang et al. [22] and Guarda et al. [23] have proposed a 3D convolution-
based PCC. They have transformed the point cloud reconstruction task into a binary clas-
sification task, and optimized the geometric information distortion of the point cloud
according to the binary classification loss. Wang et al. [24] have made further optimization
of the voxel-based PCC method and proposed a sparse convolution-based PCC framework,
which greatly reduces the computational. Nguyen et al. [26] have attempted to mix octree
and voxel-based coding, which partition the point cloud into multi-resolution voxel blocks.
You et al. [25] have proposed a direct way to deal with points, they divide the point cloud
into multiple blocks, encode each block independently, and recombine all patches into a
complete point cloud in the decoding process.

2.2. Variable Rate Compression

Most of the currently available variable rate models are in the field of image compres-
sion. Toderici et al. [27] is the first to propose a variable compression approach based on
LSTM. The learned variable rate model achieves the effect of changing the compression
bit rate by deflating the features. Cui et al. [28] and Guo et al. [29] have proposed the gain
matrix to recover the features at the decoder. Gupta et al. [30] have proposed to weigh
the importance of the features at different locations by the importance distribution map.
However, the corresponding importance correlation maps are difficult to obtain in practical
applications. Choi et al. [31] have designed a conditional autoencoder structure to adjust
the feature weights between different channels and introduced a hyperparameter into the
training process of rate distortion optimization.

In the field of PCC, Kathariya et al. [32] have proposed a variable rate compression
method based on tree structure. However, this method only deals with point clouds
represented by the tree structure and cannot be applied to point clouds of other structures.
In order to avoid the errors caused by voxelization, Muzaddid et al. [33] have proposed
a direct treatment of point cloud model structures, and they have proposed a weighted
entropy loss and inference strategy to achieve the variable rate compression task.
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Huo et al. [34] have proposed variable-rate point cloud attribute compression, which
adjusts the weights of different channels of point cloud features through multiple scale
networks. This is the only learned variable rate point cloud compression model as we know.
However, they only address attribute compression of point clouds and does not apply to
the domain of geometry compression of point clouds. Moreover, they do not designed the
corresponding objective optimization function according to the variable rate model, which
often produces no ideal model performance.

3. Proposed Method

This section provides a detailed description of the proposed VRPCGC. We introduce
the three aspects of the system, namely, the overall framework, the modulation network,
and the improved rate-distortion optimization.

3.1. Overall Framework

The proposed framework is presented in Figure 1. The two main components are
pre-processing and compression network. The pre-processing converts the point cloud into
a data format suitable for compression network processing, which transforms the point
cloud into a volume model through point cloud voxelization. The volume model represents
the point cloud geometry information by occupancy state, using “1” to indicate that the
point is occupied and “0” to indicate that it is not occupied. After the voxelization, the
point cloud is encoded and decoded using a compression network.

Pre-

processing

Compression  Network

Encoder Decoder

Q AE AD

OE OD

Entropy 

model

code 

stream

code 

stream

Figure 1. Learned point cloud compression framework, which is composed of pre-processing and
compression network. “Q” stands for “Quantization”. “AE” and “AD” are Arithmetic Encoder and
Decoder, respectively. “OE” and “OD” are Octree Encoder and Decoder, respectively.

The compression network is based on autoencoder structure, where the autoencoder
takes the input information as the learning target and becomes a high-dimensional repre-
sentation of the data. It includes encoder network, quantization and entropy model and
decoder network, which can be expressed by Equation (1)

y = E(x; θ), F̂y = Q(Fy), x̂ = D(ŷ; δ) (1)

where E(·), Q(·) and D(·) represent encoding, quantification, and decoding function, θ and
δ are the parameters of encoder network and decoder network, respectively. It is important
to note that the y is composed of Gy and Fy , which are geometric coordinates and latent
feature of point cloud, respectively. The former is losslessly compressed by the octree codec,
while the latter is losslessly compressed by an arithmetic encoder. So only Fy is quantified.
In practice, we usually approximate this process by adding uniform noise as follows:

ŷ = y + µ (2)
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where µ is uniform noise ranging from −0.5 to 0.5. In addition to adding uniform noise,
gradient back-propagation can also be achieved by soft quantization [8] or skipping quanti-
zation layers to ensure the training of the model.

Figure 2 (Top) displays the encoder network structure, which mainly includes three
parts, down-sampling, feature enhancement, and modulation network. The down-sampling
operation is implemented by sparse convolution with a stride size of 2, which reduce the
spatial scale of point cloud and obtain a denser point cloud. The attention mechanism is
often used to improve the network performance [35,36]. The AttentionVRN is designed to
capture the effective feature information using the attention mechanism. The ScalingNets
adjust the current features according to hyperparameter to achieve control of the bit rate.
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Figure 2. Detailed architecture of the encoder and decoder. “ReLU” stands for the Rectified Linear
Unit. “Attention-VRN” is the Attention Voxception ResNet for feature aggregation.

Figure 2 (Bottom) shows the decoder network structure, which mainly includes up-
sampling, feature enhancement, classifier, and scaling networks. The upsampling operation
is implemented by transpose convolution with step 2 to recover the scale of the point cloud.
A simpler structure of residual block (RB) is used for feature enhancement. Each feature
enhancement module is followed by a scale network.

The encoder network obtains a compact latent representation by three downsamplings,
which contains the contextual information of the point cloud. Scaling networks are embed-
ded in the model to control the compression rate of the model. The input to the scaling
network contains not only the Lagrange multiplier but also the geometric information of the
current point cloud, which gives the model the ability to focus on the spatial characteristics.

The AttentionVRN structure is shown in Figure 3, where Figure 3a displays the
overall structure of the AttentionVRN, and Figure 3b displays the VRN [37] structure. The
AttentionVRN contains two branches, the main branch uses three consecutive VRNs to
extract features, and the mask branch is computed by a ResBlock. A Sigmoid activation
is applied to obtain the joint spatial channel attention mask M. The calculation process is
shown in Equation (3)

M = Sigmoid(RB(Fin)) (3)

where Fin is the input feature and M is the generated attention mask.
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Figure 3. Architecture of AttentionVRN and submodules.

After downsampling, the geometric information of point cloud is compressed sep-
arately from the latent features by the traditional coders. The geometric coordinates of
the point cloud are losslessly encoded by an octree encoder while the latent features are
first quantized and then lossy encoded using an arithmetic encoder, which is assisted by a
conditional encoder to improve the encoding efficiency.

The point cloud is reconstructed by upsampling in the decoder, and the details of
point cloud are recovered using classification function. The boundary learning is proposed
for the point cloud reconstruction. The points in the point cloud are classified in the spatial
structure, and the edge point determination method is proposed to focus on the edge
points and their neighborhood information. A boundary loss is proposed to enhance the
classification ability for boundary points. The decoder network is also embedded with
scale networks to adjust the decoding features when the model compression rate changes
and reduce the distortion of the point cloud.

3.2. Variable Rate Point Cloud Geometry Compression

We have proposed a variable rate point cloud geometry compression via ScalingNets,
which modulate the latent features of different layers in the encoder and the decoder. As
shown in Figure 4a, a simple way to modulate the features is to multiply the hyperparameter
directly with the current features, which can be expressed as Equation (4):

X′ = λX (4)

where X is the input tensor. However, such a regulation is too simple to achieve the
ideal results.
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Figure 4. Different feature modulation methods (a–c).
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Figure 4b displays a common scaling network modulated in the channel dimension,
consisting of two full connection networks. It means multiplying the feature map and the
modulating/demodulating tensor in a channel-wise production manner. Civen a feature
map X, the output map of scaling network can be calculated as

m(λ) = exp(w2ReLU(w1λ)) (5)

where w1 and w2 are the parameters of the two fully connected layers, respectively. Then a
channel-wise production is preformed:

X′ = m(λ)X (6)

However, it is difficult to achieve fine modulation and to effectively control tensor with
few feature channels. The small number of feature channels in the geometric information
compression process of point clouds makes this approach unsuitable to apply.

Figure 4c displays the structure of the convolution-based scaling network proposed in
this paper. The input of this network contains not only the hyperparameter, but also the
geometric information of the input tensor. Specifically, the hyperparameters are used as the
attribute information of the current point cloud to form a new sparse tensor. The network
consists of two sparse convolutions, each of which uses a Relu activation function. The
output tensor is the same size as the input and is multiplied by the corresponding elements
in the input tensor. This scaling network not only achieves more accurate modulation, but
also learns the spatial information of the point cloud due to the input geometric information.

The variable rate point cloud compression model based on the above three scaling
networks are named VRPCGC(I), VRPCGC(II), and VRPCGC(III).

The sum of the R-D pairs using the method of Lagrange multipliers is usually opti-
mized for a desired performance. However, it causes the compression rate to be concen-
trated in the high bit rate region. As shown in Figure 5, the overall loss of the model is
much lower at the high rates than at the low rates, which makes it difficult to obtain a low
rate model.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
bpp

2.0

2.5

3.0

3.5

4.0

lo
ss

bpp-loss

Figure 5. Rate-loss curve during the training.

Contrastive learning maps the data to the projection space, and then closes the distance
between positive samples, while pulling the distance between negative samples. Inspired
by the contrastive learning, the models corresponding to different Lagrange multipliers are
expected to be less similar to each other in order to pull apart the rate distribution of the
models. Therefore, it is beneficial to obtain a model with a wider compression rate range by
treating the models corresponding to different Lagrange multipliers as negative samples to
enlarge their distance. Therefore, a rate similarity penalty is proposed, which is calculated
as Equation (5)

Lcon = 1/ ∑ exp(Sim(R, R f ormer)/τ) (7)
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where R is the bit rate of the current model, R f ormer is the bit rate of the previous model,
τ is the temperature coefficient, which controls speed of change. Sim(·) is the similarity
between the two bit rates, which is calculated as Equation (6):

Sim(R, R f ormer) =
{

R/R f ormer,R < R f ormerR f ormer/R,R ≥ R f ormer
}

(8)

3.3. Boundary Learning

Most of the existing point cloud processing methods ignore the segmentation of the
scene boundaries. Little attention has been paid to the boundaries of 3D point clouds, while
accurate segmentation of scene boundaries is very important [11]. In image segmentation,
accurate boundary segmentation is the key to produce high-fidelity masks. Second, incor-
rect boundary segmentation may cause great harm for some objects with few occupied
points, which can have an impact on many downstream tasks.

The accurate segmentation of boundary regions affects the reconstruction quality of
point cloud in PCC. The boundary region represents some detailed texture points. Without
accurate segmentation, point cloud visualization will be worse. Due to the lack of sufficient
points in the boundary area, it is difficult to extract effective information. Therefore, a
boundary learning for PCC is proposed.

As shown in Figure 6, for each point of the ground-truths data, all points that are less
than r away are considered as its neighborhood. Then, a point is considered as a boundary
point when the number of points in its neighborhood is less than ε. For the voxelized point
cloud, the radius of the neighborhood is set to 2 to avoid the huge computation due to
oversized settings.

Figure 6. The framework of boundary learning, which is composed of three parts: neighborhood
determination, boundary points screening, and boundary points optimization.

For a given point cloud, the boundary points are filtered out first. The classification
accuracy of them is considered more important. A boundary learning (BL) loss is proposed
to enhance the focus on boundary points. The set of all boundary points and their neighbors
in the reconstructed point cloud is counted and denoted as N. Then the Binary Cross
Entropy (BCE) loss is used as the distortion in training, i.e.,

LBL =
1
N ∑

xi∈N
−[li log(pi) + (1− li) log(1− pi)] (9)

where pi is the occupancy probability estimate of the points in the neighborhood, li is the
true label, and N is the number of all points in the domain. The boundary loss reinforces
the classification of boundary points and increases the loss weight of the boundary region,
whic brings greater attention to the boundary.

3.4. Loss Function

In our model, a total rate consumption comes from the F̂y, and rate approximation can
be written as:

R = EF̂y∼pF̂y
[−log2qŷ(F̂y)] (10)
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The details of the point cloud are recovered by binary classification. The BCE loss is
used as the distortion of each up-sampling in training, i.e.,

Dk =
1
N ∑i −[li log(pi) + (1− li) log(1− pi)] (11)

where pi is the occupancy label of the current voxel, pi is the voxel occupancy probability
and N represents the number of generated points. Considering that the importance of each
up-sampling is not the same, different weights should be performed, i.e.,

D = ∑
k

δkDk (12)

where δk denotes the weights, set to (1, 2, 4). In our end-to-end learning framework, we
define the loss function considering all the above losses, so as to maximize the overall
performance, i.e.,

L = RF̂Y
+ λD + (1− 0.95λ)Lcon + 2LBL (13)

Since the calculation of the additional loss increases the distortion of reconstructed
point cloud, it is necessary to control the weight of Lcon. When the λ becomes larger,
the weight of Lcon becomes smaller, which ensures the performance of the model at high
bit rates.

4. Results and Discussion
4.1. Implementation Detail
4.1.1. Dataset

Our model was trained on the well-known 3D shape dataset ShapeNet [38]. We
randomly sampled these CAD models to obtain point clouds, with the number of points in
each point cloud being random. Meanwhile, a random rotation was performed to increase
the diversity of the data. Each coordinate dimension of the point cloud is 7-bit accuracy.

In total, eight dense point clouds were selected for the test, which is from 8i Vox-
elized Full Bodies (8iVFB) [39], and Owlii dynamic human mesh (Owlii) [40]. These point
clouds vary in size and structure. We list some of the information of these point clouds in
Table 1. They are used in the MPEG Common Test Conditions (CTC) [41] for compression
task exploration.

Table 1. Test data format.

Point Cloud Points Precision

MVUB

Andrew 279,664 9 [t]
Davaid 330,791 9

Phil 356,256 9
Sarah 302,437 9

8iVFB

Longdress 857,966 10
Loot 805,285 10

Redandblack 757,691 10
Soldier 1,089,091 10

Owill

Basketball player 2,925,514 11
Dancer 2,592,758 11
Excise 2,591,718 11
Model 2,458,429 11

4.1.2. Training Strategy

The loss function for training is shown in Equation (13). The temperature coefficient τ
is set to 2. The model is randomly initialized at the beginning. A model with a high bit
rate range is trained while the λ is set to (0.9, 1), which is used as an initialized model for
training lower bit rates. The lower bound of λ is continuously decreasing until 0 to obtain
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a model with a larger bit rate range. In addition, we use the Adam optimizer with the
learning rate dynamically declining from 8× 10−4 to 1× 10−5. The batch size is set to 16.

4.2. Performance Evaluation

We have compared the VRPCGC(III) with other PCGC methods, including traditional
algorithms and learning-based methods, while the performance of VRPCGC(I) and VR-
PCGC(II) are analyzed in the ablation experiments. Traditional compression algorithms
include G-PCC [3] and V-PCC [42]. G-PCC contains two model representation methods:
the octree model and the trisoup model, which are referred to as G-PCC (octree) and G-PCC
(trisoup). Learned methods include Learned-PCGC [22] and PCGCv2 [24]. To achieve a
fair comparison, the coding parameters were set according to the MPEG PCC General Test
Conditions [41] while enforcing the similar bit rate ranges for the all methods.

In this paper, objective performance is evaluated using the BD-Rate, using D1 (p2point)
PSNR and D2 (p2plane) PSNR as the distortion matrix and bits per input point (bpp) as
the bit rate. The results are shown in Table 2. The PSNR is calculated via the mean
squared error (MSE) [43]. Our method outperforms the G-PCC and Learned PCGC by a
significant margin, which obtains −83.06% D1 BD-Rate gains and −80.80% D2 BD-Rate
gains on average compared to G-PCC (octree), −64.49% D1 BD-Rate gains and −76.66% D2
BD-Rate gains on average compared to G-PCC (trisoup), −16.91% D1 BD-Rate gains and
−24.53% D2 BD-Rate gains on average compared to Learn-PCGC. Our method achieves a
comparable performance performance with V-PCC. Results have shown that the average
+35.60% D1 BD-Rate gains and +6.37% D2 BD-Rate gains are captured. However, the
encoding time for V-PCC is too long because it requires chunking and projection of the
point cloud. Furthermore, the visualization quality of its decoded point cloud is poor due
to its decomposition of the point cloud into multiple chunks. V-PCC performs better on
the Owill set. This is because our method takes into account more changes of bit rate,
regardless of not adapt well to changes in the data precision. Compared with PCGCv2, our
method has some performance gap with it, which is an unavoidable problem for variable
rate PCC methods. However, these learned PCC algorithms require training a large number
of models to achieve multiple bit rate compression, e.g., the PCGCv2 have trained seven
models while our method trained only one model. What is more, our method is able to
operate with fine resolution over a wide bit rate range.

Table 2. BD-Rate gains against G-PCC (Octree), G-PCC (Trisoup), V-PCC, Learned-PCGC, PCGCv2
in D1 and D2 based BD-Rate measurement. The ‘-’ means that BD-rate can’t be quantified by the area
difference between the two curves due to the insufficient bit rate overlap.

Point Cloud

D1 D2

G-PCC (octree) G-PCC (trisoup) V-PCC Learned-PCGC PCGCv2 G-PCC (octree) G-PCC (trisoup) V-PCC Learned- PCGC PCGCv2

8iVFB

Longdress −81.70 −62.32 26.39 −10.46 44.24 −79.16 −75.88 −0.84 −19.77 25.51
Loot −81.90 −67.10 20.41 −16.77 45.22 −80.04 −79.63 −4.82 −25.20 22.42

Redandblack −81.58 −64.34 −5.09 −11.88 36.69 −79.25 −74.44 −27.26 −20.94 22.39
Soldier −82.01 −64.20 5.59 −14.09 34.21 −79.43 −76.70 −17.12 −19.65 19.44
average −81.80 −64.49 11.83 −13.30 40.09 −79.47 −76.66 −12.51 −21.39 22.44

Owill

Basketball player −84.56 - 50.79 −13.46 76.99 −84.51 - 17.74 −25.17 35.25
Dancer −84.93 - 50.12 −24.64 67.81 −84.47 - 17.29 −28.03 32.38
exercise −82.79 - 73.64 −28.41 70.04 −80.85 - 38.40 −26.17 38.67
model −85.02 - 62.97 −32.45 59.47 −78.67 - 27.57 −31.34 33.33

average −84.33 - 59.38 −24.74 68.58 −82.13 - 25.25 −27.68 34.91
Overall average −83.06 −64.49 35.60 −16.91 54.33 −80.80 −76.66 6.37 −24.53 28.67

Illustrative Rate-distortion curves are presented in Figure 7. The performance of
our method has surpassed most algorithms in the high bit rates, and is close to or even
surpasses the best overall performance of PCGCv2. At low bit rates. The performance
of our method decreases and is pulled apart by the V-PCC and PCGCv2, but still has
a significant advantage over the G-PCC. The performance degradation at low bit rates,
causing that the overall performance is not optimal. For variable rate compression models,
a certain performance degradation is acceptable under the premise of ensuring the bit rate
range of the model.
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Figure 7. Rate distortion curves plotted on different test samples.

To further analyze the variable rate model, we have visualized the latent features of
the ScalingNet. Figure 8 shows the visualization of one of the layers of features of the
second ScalingNet of the encoder at different λ. The scale network output value becomes
larger as λ, which amplifies the latent features and the increases the entropy latent features.

It can also be seen that the features within a feature map are not equal everywhere. If
the brightness of a feature map is uniform, the ScalingNets scale a tensor directly, which is
difficult to achieve precise feature modulation to accommodate bit rate changing, causing
the poor performance when λ is small. Our method have achieved a better performance
for that the ScalingNets learns the geometric information of the point cloud.

0.950.750.550.250.05

Figure 8. The visualization of latent features of ScalingNet corresponding to different λ.
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5. Ablation Experiments

We further extend our studies by examining various aspects of our VRPCGCC, includ-
ing the scaling networks, contrastive learning, and the boundary learning, to demonstrate
the robust and reliable performance of our method.

5.1. Scaling Networks

We have analyzed the performance of the scaling networks which modulate the features
in different dimensions. The VRPCGC(I), VRPCGC(II), and VRPCGC(III) are trained for the
same number of rounds under the same settings.

Figure 9 shows the rate distortion curves of the VRPCGC based on different scaling
networks. VRPCGC(I) achieves the largest range of bit rates for that the hyperparameter
is able to affect the latent features directly. However, its overall performance is the worst
because such a coarse control cannot guarantee the reconstruction quality of the model
when the bit rate changes. VRPCGC(II) achieves a relatively good result in D1 PSNR, but
does not perform ideally enough in the D2 PSNR metric. Moreover, it is difficult to adapt to
low bit rates, and its performance drops sharply at low bit rates. VRPCGC(III) achieves the
optimal rate distortion performance because the convolutional layer has powerful ability of
feature processing to finely modulate the features and better adapt to the change of bit rate.

Figure 9. Rate distortion curves based on different ScalingNets.

For the scaling network, the fine scaling network ensures that model can precisely
modulate the feature structure to minimize the distortion when a desired bit rate is changing.
The convolution-based scaling network can focus on more important regions based on
point cloud geometry information to achieve more effective modulation.

5.2. Contrastive Learning

Contrastive learning is proposed to extend the range of bit rates of the model. We
aimed to analyze the impact of contrastive learning on model performance.

As shown in Figure 10, the bit rate range achieved by VRPCGC(noLcon) is narrow
and the model concentrates in the high bit rate region. The density of sampling points
at high bit rates is much higher than that at low bit rates. Overall, VRPCGC (noLcon)
performs better at high bit rates, but the model performance drops sharply when the bit
rate decreases to a certain range. Though the model with contrastive learning does not
perform well at high bit rates, its bit rate range is larger, which is of more practical value.
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Figure 10. Visualization of the reconstructed point cloud, where VRPCGC denotes a variable rate
model based on contrastive learning while VRPCGC(noLcon) denotes the model optimized only by
the sum of the R-D pairs.

We concluded that the sum of the R-D pairs is not suitable for the VRPCGC, which
does not yield a ideal bit rate range. The bit rate similarity penalty, at the cost of reducing
the quality of the reconstructed point cloud, has the ability to expand the bit rate range to
meet the practical requirements.

5.3. Boundary Learning

We could set different ε to explore its impact on the model. We have exemplified
our studies using Longdress. To simplify the experiment and facilitate comparison, this
subsection analyzes the performance through the single rate model. The performance was
evaluated using D1 PSNR in a fixed bit rate.

As shown in Figure 11, the model performance increases and then decreases when
gradually increasing. This is because when the number of boundary points is too large,
the effect of boundary points is diluted, which degrades the quality of reconstructed point
cloud. The peak occurs when ε = 6.

Figure 11. Visualization of the reconstructed point cloud.

Figure 12 shows the visualization of the reconstructed point cloud, and the detail part
can be viewed by zooming. Figure 12a is the ground-truth, which is used as a reference
comparison. Figure 12b shows the visualization of the reconstructed point cloud with the
boundary learning added while Figure 12c without. The model classifies the boundary
points better after adding boundary learning. For example, the hair in Figure 12b is more
complete, while Figure 12 loses some points. Moreover, boundary learning increases the
texture reconstruction ability of the model, which is due to the delineation of boundary
points that makes the texture more clear.
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Figure 12. Visualization of the reconstructed point cloud (a–c).

6. Conclusions

We have proposed a variable rate point cloud compression algorithm, which solves
the problem of single correspondence between model and bit rate of learned compression
algorithm by adjusting the model bit rate through hyperparameters. The ScalingNet based
on convolutional operations is proposed for feature modulation, which modulates the
latent features according to the the Lagrange multipliers λ to obtain the model bit rate
that meets the expectation. The geometric information of current point cloud is added to
the ScalingNet, so that the scale network can learn the spatial information and achieve
modulation of the features. Second, a bit rate expansion method based on contrastive
learning is proposed for variable rate model. The model bit rate distribution is pulled apart
by contrastive learning and bit rate range is improved. Finally, a point cloud reconstruction
method based on boundary learning is proposed to achieve better visualization effects by
focusing on boundary points. The experimental results demonstrate that the model achieves
variable rate PCC with guaranteed performance. By training a single model, a large range
of bit rate compression is achieved, which avoids the time cost caused by multiple model
training and increases the practical application value of point cloud compression.
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