
Citation: Dong, C.; Yao, Y.; Xu, Y.;

Liu, X.; Wang, Y.; Zhang, H.; Xu, L.

A Cost-Driven Method for

Deep-Learning-Based Hardware

Trojan Detection. Sensors 2023, 23,

5503. https://doi.org/10.3390/

s23125503

Academic Editor: Antonio Puliafito

Received: 4 May 2023

Revised: 3 June 2023

Accepted: 7 June 2023

Published: 11 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Cost-Driven Method for Deep-Learning-Based Hardware
Trojan Detection
Chen Dong 1 , Yinan Yao 1 , Yi Xu 1, Ximeng Liu 1 , Yan Wang 2 , Hao Zhang 1,* and Li Xu 3

1 College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China;
dongchen@fzu.edu.cn (C.D.); 211027013@fzu.edu.cn (Y.Y.); xuyilaser@foxmail.com (Y.X.);
snbnix@gmail.com (X.L.)

2 Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA;
wang.yan6@northeastern.edu

3 College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China; xuli@fjnu.edu.cn
* Correspondence: zhanghao@fzu.edu.cn

Abstract: The Cyber-Physical System and even the Metaverse will become the second space in which
human beings live. While bringing convenience to human beings, it also brings many security
threats. These threats may come from software or hardware. There has been a lot of research on
managing malware, and there are many mature commercial products, such as antivirus software,
firewalls, etc. In stark contrast, the research community on governing malicious hardware is still in
its infancy. Chips are the core component of hardware, and hardware Trojans are the primary and
complex security issue faced by chips. Detection of hardware Trojans is the first step for dealing
with malicious circuits. Due to the limitation of the golden chip and the computational consumption,
the existing traditional detection methods are not applicable to very large-scale integration. The
performances of traditional machine-learning-based methods depend on the accuracy of the multi-
feature representation, and most of the methods may lead to instability because of the difficulty of
extracting features manually. In this paper, employing deep learning, a multiscale detection model for
automatic feature extraction is proposed. The model is called MHTtext and provides two strategies
to balance the accuracy and computational consumption. After selecting a strategy according to the
actual situations and requirements, the MHTtext generates the corresponding path sentences from
the netlist and employs TextCNN for identification. Further, it can also obtain non-repeated hardware
Trojan component information to improve its stability performance. Moreover, a new evaluation
metric is established to intuitively measure the model’s effectiveness and balance: the stabilization
efficiency index (SEI). In the experimental results for the benchmark netlists, the average accuracy
(ACC) in the TextCNN of the global strategy is as high as 99.26%, and one of its stabilization efficiency
index values ranks first with a score of 71.21 in all comparison classifiers. The local strategy also
achieved an excellent effect, according to the SEI. The results show that the proposed MHTtext model
has high stability, flexibility, and accuracy, in general.

Keywords: integrated circuit security; hardware Trojan; deep learning; computational consumption;
gate level; semantic analysis

1. Introduction

A sudden coronavirus pandemic has greatly promoted the process of all humanity
entering virtual life. Work from home, online learning and shopping, and the remote
operation of various businesses [1], coupled with the birth of new things, such as self-
driving vehicles [2], autonomous robots [3], and Industry 4.0 [4], etc., means the back-
end service equipment supporting these emerging virtual businesses needs to be greatly
expanded and highly relied upon. After more than two years of the epidemic, human
beings have quickly entered the fourth space of life, the cyber-physical system (CPS), where
human life is highly dependent on electronic devices. Hardware is the foundation of CPS,

Sensors 2023, 23, 5503. https://doi.org/10.3390/s23125503 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125503
https://doi.org/10.3390/s23125503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7546-3403
https://orcid.org/0000-0002-1127-8396
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-5869-6333
https://doi.org/10.3390/s23125503
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125503?type=check_update&version=2

Sensors 2023, 23, 5503 2 of 29

and chips are the core of hardware [5], including integrated circuits (ICs) [6], artificial
intelligence (AI) chips [7], biochips [8], and so on.

Hardware has long been considered secure and trustworthy. Global research in
information security is mainly focused on the software level or proposing security protocols
in specific areas [9]. Malicious code [10], software vulnerabilities [11], and intrusion
detection [12] are all hot research topics. Most of the security vendors are committed to
solving the security threats just at the software level, and fortunately, the results in this area
have been effective.

It was also discovered that some security issues come from the hardware [13], and peo-
ple began to realize that threats from hardware are fatal. Since hardware is the foundation of
the CPS, the security of the hardware is related to the security of the entire CPS. As human
life and the CPS become more integrated, chip security issues become important [14].

Guaranteeing the security of chips is difficult. A particular chip often requires the
participation of several third-party manufacturers, electronic design automation (EDA)
software vendors, and intellectual property (IP) core suppliers of unknown trustworthiness.
Untrustworthy implantation in any of these rings may cause the chip to deviate from its
original function, such as data loss and tampering, information leakage and extortion, and
functional failure and change [15].

Most ICs are made up of multiple links on a global scale, and any one of these
untrustworthy links can be implanted with malicious circuits, which are called hardware
Trojans (HT). Both analog and digital circuits are vulnerable to hardware Trojans [16,17].

Research teams worldwide have conducted a lot of research in developing effec-
tive hardware security countermeasures, with one of the key tasks being the creation of
hardware security primitives [18]. Moreover, research into hardware Trojan detection in
conjunction with ML and IP protection techniques has opened up the possibility of securing
hardware [13]. As of now, it seems that malicious circuits are becoming more and more
stealthy, high-hazard, and resistant to detection. Attackers are beginning to apply machine
learning (especially deep learning) to side-channel attacks and reverse engineering [19–21].
Today, hardware Trojans are the main threat to integrated circuits (ICs) [22].

There are a lot of studies on the post-silicon stage for detecting HTs [23], such as side-
channel [24], thermal map [25], and reverse engineering [26]. These post-silicon methods
are indeed effective for the chips, which are not very complex or low integration. While for
ultra-large-scale integrated circuits (ULSI), the existing post-silicon methods are infeasible
because the malicious circuits tend to consist of very few components and account for a
tiny proportion of the whole circuit. Moreover, these methods all need the golden chip as a
reference, and the golden chip is hard to attain or does not exist.

For example, IBM claims its 2 nm nanosheet technology will enable 50 billion transis-
tors to be squeezed onto a chip measuring 150 mm2 (about the size of a fingernail) [27].
On-chip interconnect today is based on copper/low-k wiring, which can be more than
100 km long [28]. The integration of the chips currently in use is very large, with diversified
internal content and complex structure. In contrast, the HT circuit often occupies few parts
and tends to be more hidden. Thus, activating the HT to change the overall parameters
of the circuit, such as the current, power, and temperature, is insignificant. Obviously,
finding the HT by observing changes in current, power, and temperature is very difficult
for Very-Large-Scale Integration (VLSI).

Machine Learning (ML) is not a new subject, but today, with big data and computing
energy, machine learning methods achieve excellent performance by learning from previous
experiences. For finding malicious circuits on VLSI, employing Artificial Intelligence (AI)
methods needs no golden chip as a reference, which is a good means of exploration. Some
research teams are working on ML-based hardware Trojan detection, such as Dong et al. [29]
and Kurihara et al. [30].

However, the existing methods are mainly based on traditional machine learning,
which requires manual feature extraction, and the accuracy of the feature representation
affects the result. The introduction of deep learning (DL) enables the automatic extraction

Sensors 2023, 23, 5503 3 of 29

of netlist features and results in a better generalization of the model. To address the above
purpose, we proposed a DL-based approach for hardware Trojan detection to automatically
extract features to identify and have a certain degree of promotion [31].

This paper proposes a cost-driven deep learning-based detection model named MHT-
text. Two strategies are included in the model: a global strategy and a local strategy.
The global strategy shows excellent detection performance, and the local strategy focuses
more on the flexibility of the detection method to adapt to different training environments
and demands dynamically. Moreover, it reduces time and economic costs. The paper also
proposes a more efficient strategy fusion model to combine the advantages of both strate-
gies.

The main contributions of this paper are as follows:

• A cost-driven deep-learning-based HT detection is proposed, which extracts the
features automatically and eliminates the dependence on the comparison of the gold
chip; it realizes the feasibility of detecting HTs in VLSI.

• A global–local flexible approach is proposed, which extracts the HT components from
the netlist with variable length. Thus, it realizes the selectivity of the accuracy and
computational consumption.

• An evaluation indicator SEI is set up and used to further measure the performance
of the model. In the experiments, the stability and robustness can be shown from the
SEI directly.

2. Threats Faced by Integrated Circuits

Figure 1 illustrates some of the security threats of the ICs from the specification design
stage to the integrated packaging phase. After abstracting the production chain, it can be
seen that it is mainly composed of design, manufacturing, and testing. The red parts of the
figure represent the behavior or things that may lead to security threats, and the design
phase tends to be more likely to reach the underlying implantation.

Figure 1. Security threats during the IC design and manufacturing process.

The design phase of ICs requires two basic vendors: the EDA vendors and the IP core
vendors. The EDA tools supplied by the EDA vendors are compliant in most cases, but they
may be untrustworthy when there is a security threat or malicious operator. The IP cores
supplied by IP vendors can also contain malicious circuits in untrusted states [32], which
are usually implanted by malicious IP designers.

When both the EDA tools and IP cores are provided intact, the IC designers start
designing ICs that meet the requirements, and eventually, a GDS-II file containing the
circuit logic is generated. During this process, an untrustworthy IC designer can easily
implant HTs, and the untrustworthy EDA tools mentioned above also have an impact on
this part of the process.

Sensors 2023, 23, 5503 4 of 29

The foundry can start producing ICs after obtaining the GDS-II files. It is worth
noting that the GDS-II files may be replaced by files with HTs by someone who is not
trustworthy and has access to it. This results in the subsequent production of chips with
HTs as well. The foundry may cooperate with several outsourcing factories [30], and these
outsourcing factories or even the foundry itself may employ untrustworthy employees.
The untrustworthy employees can implant HTs using reverse engineering or replace the
untrustworthy ICs.

The main security threat in the packaging and testing phase comes from untrustworthy
testers or test programs that allow ICs with HTs to pass the test and enter the deployment
and application phase without any report. The main security threat in the deployment
and application phase comes from untrustworthy deployers or implementers who replace
regular ICs with HTs ICs. Then, untrustworthy ICs are thus spread throughout the field.

From the above [33], it seems that the ICs’ production chain is very simple and
fragile, and the issue of hardware security has been extensively researched by academics
in the recent stages. In general, there are several issues with chip design, manufacturing,
and hardware Trojan detection that are still worth discussing:

(1) The normalization of the ICs’ production chain
In general, the chip design and manufacturing chain are intertwined, but almost every

link has untrustworthy factors that may generate security threats. Therefore, complete
and specific IC production specifications can better restrain the behavior of each link.
Some scholars are also conducting research in this area, including the study of trustworthy
behavior constraints from IP cores [34].

(2) Hardware Trojan concealment
Many effective hardware Trojan protection methods have made traditional hardware

Trojans easily detectable in recent years. For this reason, HT implanters have also optimized
their implantation methods in various ways, especially concealment. For traditional HT
detection methods, to a certain extent, there is a bottleneck in the detection effect, and de-
tection costs can not be further reduced. Thus, more and more scholars are studying the
detection methods incorporated with machine learning (ML).

(3) Limitations of the existing incorporated ML detection methods
Most mainstream detection methods incorporating ML rely on the accuracy of multi-

feature representations, and most of the methods have difficulty extracting the features
manually, which may lead to the instability of the methods. In addition, reasonable control
of the various costs of ML is also an issue worth discussing, and perhaps a more flexible
model is needed to cope with different training environments.

3. Related Work

The security problem of hardware Trojans can be broadly divided into three parts:
detection, localization, and failure, where the detection method of hardware Trojans has
achieved excellent results by many research teams worldwide. For example, the use of
a dual-mode self-test architecture approach for detecting hardware Trojans in design,
manufacturing, and testing is mentioned in [35]. Sabri et al. [36] proposed an SAT-Based in-
tegrated hardware Trojan detection and a localization approach through path-delay analysis.
Some related work on hardware Trojan detection will be presented in a hierarchical manner.

3.1. Pre-Silicon Detection

Pre-silicon hardware Trojan detection refers to the detection of HTs during the design
phase, and most current low-cost detection methods are performed at this stage and can be
further divided into dynamic detection techniques and static detection techniques.

3.1.1. Dynamic Detection Approaches

Methods such as trust verification are used to flag suspicious circuits hidden in the
netlist, and then functional or formal verification is performed to determine the presence of
hardware Trojans.

Sensors 2023, 23, 5503 5 of 29

Functional verification can identify some defects left in the design phase. It is simple
to operate but easy to miss when the hardware Trojan has high concealment characteristics.
Formal verification uses mathematical methods to verify netlists, which is a trust-based
mechanism, but is also very limited when dealing with large integrated circuits. Model-
checking is a common formal verification method in hardware security, and Shen et al. [37]
proposed a method to speed up the verification and detection by reducing the state space,
which can reduce the complexity of the model.

3.1.2. Static Detection Approaches

The static detection approaches use a large amount of information extracted from the
netlist, which is analyzed to determine whether it contains a hardware Trojan. This method
does not require a gold chip as a reference and has the advantage of high flexibility and
low cost. Many scholars have devoted a lot of time to research in this area, and based on
the current literature, this part can be broadly divided into two areas.

(1) Traditional machine learning methods
In the field of hardware Trojan detection combined with traditional machine learning,

the methods generally use shallow neural networks, random forests, SVM, and others.
To a certain extent, machine learning methods solve the problems, such as the cost or
environmental impact, that may exist with traditional non-static detection techniques.

Kurihara et al. [30] discussed a hardware Trojan detection method using neural net-
works and random forests and evaluated it using 24 benchmark tests including IP cores,
which finally achieved excellent detection results. They computed 11 netlist features in
their experiments.

Dong et al. [38] tried to apply XGBoost to the detection of hardware Trojans. They
proposed new Trojan network features and then used XGBoost to build an effective feature
set (49 out of 56 features were taken after discarding the unnecessary features according to
the scoring mechanism). Excellent detection results were achieved after the final training.

ML-HTCL is a framework proposed in [29] that includes hardware Trojan detection
and localization, where the detection part uses multilayer BP neural networks and SVM
techniques. They used multilayer BP neural networks for the control-signal-type HTs and
SVMs for the information leakage HTs.

It is worth noting that all of the above methods provide feasible solutions for hardware
Trojan detection, but the methods are mainly oriented towards specific features and require
some time to construct and filter the features suitable for the model. Moreover, manual
feature extraction is often less convenient, and its performance is somewhat limited to
feature representation. The method proposed in this paper also belongs to the static method
in pre-silicon and is also applied to the gate-level netlist. For this reason, we briefly list
similar solutions in Table 1.

Table 1. Comparison of machine-learning-based approaches.

Ref. Stage Type Level Benchmark Overview

[30] pre-silicon static detection
approach gate-level Trust-hub RS-

The authors evaluated hardware Trojan detection methods using
neural networks and random forests at gate-level intellectual
property (IP) cores that contained more than 10,000 nets.

[38] pre-silicon static detection
approach gate-level Trust-hub RS-

The authors proposed new Trojan-net features and then filtered
49 new effective feature sets using the scoring mechanism of eXtreme
Gradient Boosting. Further, the authors trained and detected
hardware Trojan classifiers respectively based on the new feature
sets by eXtreme Gradient Boosting algorithm.

[29] pre-silicon static detection
approach gate-level Trust-hub RS-

The authors proposed the model named ML-HTCL. It uses the
multilayer BP neural network for the control-signal-type HTs
and the one-class SVM for the information leakage HTs, respectively.

[39] pre-silicon static detection
approach gate-level, RTL Trust-hub RS-

At the gate level of chip design, the authors proposed an algorithm
named lightGBM. The algorithm can quickly process high-dimensional
circuit feature information and effectively improve the detection
efficiency of hardware Trojans.

Sensors 2023, 23, 5503 6 of 29

(2) Deep learning methods
More and more research teams have started to use deep learning methods for static

detection, which also benefits from the fact that they can extract features well automatically
and achieve good results.

For deep learning, the size and quality of the dataset are two important fundamental
prerequisites. Most of the existing methods use open-source data, such as the RS232-series
provided by Trust-Hub, and it is worth mentioning that Liakos et al. [40] proposed a new
tool, GAINESIS, a WCGAN-based algorithm that synthesizes new samples for experiments.
This is a convenient tool for models where it is difficult to extract a sufficient number
of samples.

3.2. Post-Silicon Detection

Post-silicon detection includes destructive and nondestructive detection, which is the
key research area of traditional hardware Trojan detection methods.

3.2.1. Destructive Detection

Destructive detection generally involves reverse engineering, which is rebuilding a
new design model after a series of physical deconstruction, scanning, and analysis, then
comparing it with the golden design to determine whether a hardware Trojan has been
implanted. This detection method works better for early chips with simple structures,
but the destructive detection makes the cost increase, and the time consumption increases
accordingly. As chips become more and more integrated, it has been difficult to break the
bottleneck of detection in this way. In addition, the discovery of specifications in reverse
engineering is also an area for discussion [41].

3.2.2. Nondestructive Detection

The main representatives of nondestructive detection are side-channel analysis and
logic testing, for which more results are available in the existing literature. Yang et al. [42]
proposed a multidimensional self-referencing technique that does not require a gold chip,
based on the traditional side-channel analysis method. With a fully automated detection
framework, it can reliably detect minor hardware Trojans. The side-channel-dependent
approach proposed by Karabacak et al. [43] was also based on self-referencing, and did
not rely on plausible samples. Zhu et al. [44] proposed a Jintide architecture to verify
the chip at runtime using a trusted external monitor. Chen et al. [45] proposed a holistic
self-testing approach to directly detect security threats and malicious attacks on sensors.
Taheri et al. [46] proposed an efficient integrated HT detection technique based on the
evaluation of integrated parasitic capacitance variations, which did not require the support
of a gold IC and could use simulated data to detect HT. Wen et al. [47] proposed a nonde-
structive method based on thermal maps and inception neural networks, where thermal
maps of various sample IC chips were collected and then optimized, and the optimized
data were analyzed using INN. The experiments were also performed with the help of
custom filters and achieved better results.

3.3. Detection and Prevention for Specific Chips

There are many research teams working on certain specific types of chips.
Alhelaly et al. [48] proposed a method for detecting hardware Trojans in 3D integrated

circuits and also explored the performance of this detection method when the attacker
modified the characteristics of TSVs. Cho et al. [49] proposed a bidirectional mechanism
to detect hardware Trojans in FPGAs at any stage in order to efficiently detect them.
Similarly, for FPGA research, Ma et al. [50] proposed an on-chip security framework that
can be used to verify whether an HT has tampered with or corrupted the original design.
Mohd et al. [51] implemented a run-time monitoring design for lightweight ciphers in RCDs
on an FPGA platform. Hossain et al. [35] proposed a safety model to avoid IP theft from
microfluidic biochips at various stages of the biochip design process for drive sequences.

Sensors 2023, 23, 5503 7 of 29

Moreover, the joint extension of split manufacturing and camouflaging techniques to 3D
integration in [52] is an important step forward in the prevention of hardware Trojans.

The remainder of this paper is organized as follows: Section 2 gives the description of
HT treats of chips. Section 3 lists the related work of HT detection. Section 4 describes the
HT detection problem with formulas. Section 5 shows the dataset generation of the netlists,
including path sentences’ generation with the two strategies. Section 6 mainly describes
the deep learning architecture. Section 7 shows the experiment details and analyzes the
performance of the MHTtext. Section 8 gives the discussion about the MHTtext. Finally,
Section 9 provides the conclusion.

4. Problem Formulation

In this section, the problem formulation of the MHTtext model is introduced, including
the mathematical abstraction of global/local-features-based detection models and the goals
of the paper.

4.1. Problem Description

Hardware Trojans are implanted in circuits at the design stage more often than not;
thus, the paper proposes the MHTtext model, which is a TextCNN-based pre-silicon
detection for hardware Trojans. The attack pattern of the design stage defined in the paper
is shown in Situation 1.

Situation 1 Consider a series of chip netlists R =
{

r1, r2, . . . , rp
}

; there could be
a set of HT components, which is implanted into the chips, and it is denoted by H =
{h1, h2, . . . , hm}. When the HTs are not triggered in response, the HTs can coexist with
the normal circuit and do not affect the function of the chip. Once the rare conditions
C = {c1, c2, . . . , ck} or signals S = {s1, s2, . . . , sv} are released by the triggers, the payload
is activated, and the paths P =

{
p1, p2, . . . , pq

}
containing HTs will perform abnormal

behaviors, which cause damage such as signal tampering through signal transmission. p,
m, k, v, and q mean the number of netlists, components, conditions, signals, and paths,
respectively.

For TextCNN to be effective in detecting the HT netlist at model runtime, a full
description of the problem is shown as follows:

• Input: (i) The chip netlist files, which consist of l components, denoted by N =
{n1, n2, . . . , nl}, and t wires, denoted by W = {w1, w2, . . . , wt}; (ii) The multiscale-
based algorithm that can search the specific paths including the simple path fspath :
wi → wj from the input port wire wi to the output port wire wj and the local path
flpath : ne → ne+2δ from the start component to the end component, where δ represents
the predefined search scope.

• Output: A detection result for judging whether the path sentence Tspath / Tlpath is an
HT path sentence TspathHT / TlpathHT (transformed from HT path fspathHT / flpathHT).

• Objective: Maximize SEI (SEHT and SEoverall).

Table 2 presents the symbols and notations used throughout this paper; some that are
easy to understand in a specific context are not shown here.

Sensors 2023, 23, 5503 8 of 29

Table 2. Symbols and notations.

Symbols Definitions

δ the predefined search scope for the local strategy
Tspath / Tlpath the simple path sentence generated from two strategies

TspathHT / TlpathHT the HT simple path sentence
SEHT the models’ SEI for sample recognition

SEoverall the models’ SEI for all ML indicators
θ the unacceptable length of the logic component definition part mentioned in Definition 3 (signal flow logic)
Θ the length of the logic component definition part with a preset standard netlist dataset such as RS232-T1000.
ξi the tuple to record each specific component and its in-wire/out-wire information

Xii, Xio the sets of in-wire and out-wire of component ni
Xiport, Xoport the input port wire set and output port wire set

SC, EC the node sets of the start components and end components
fs the signal transfer function in the circuit
fsp the simple path function
n f the specific end component in P

E(θ), Eloc(θ), and Eglo(θ) the total effect, the effect of the local strategy, and the effect of the global strategy

4.2. MultiScale Framework Description

The scale of the netlist, which is used to describe the connections between circuit
components, is not constant. When there is a large-scale netlist in practical application,
an algorithm could perform ordinarily in terms of time efficiency, though it performs well
in terms of accuracy in the final recognition task. The global strategy proposed in this paper
has this property. For this reason, the model is shaped anew, and a strategy based on a
local topology is proposed, which significantly reduces the time overhead. In addition, it is
worth discussing how to rationalize the algorithms used. In this part, a possible subjectively
controlled approach is presented and attempts to solve the problem.

In order to build a subjectively controlled framework, we incorporate global/local
strategies into preprocess integrated operations with a threshold θ for subjective input,
where θ means the unacceptable length of the logic component definition part mentioned
in Definition 3 (signal flow logic). Consider an HT-contained netlist dataset, which is
recognized as a reasonable scale of the past work to be used as the standard, such as
RS232-T1000.

θ = Θ, (1)

where Θ represents the length of the logic component definition part with a preset standard
netlist dataset such as RS232-T1000.

More subjectively, we set a default value θ = θ′ for the subjective input based on
previous experience.

After the threshold θ is determined, each netlist file that enters the preprocessing
session will be classified with different strategies selected based on simple scale perception.
Further, a weighted approach with score items would make this threshold closer to the true
acceptability of different projects.

Assuming that the effect of the current model is only influenced by the global and
local strategies, it can be represented as follows:

E(θ) = Eloc(θ) + Eglo(θ), (2)

where E(θ), Eloc(θ), and Eglo(θ) are the total effect, the effect of the local strategy, and the
effect of the global strategy, respectively. Moreover, Eloc(θ) and Eglo(θ) are made up of the
costs and benefits of the two strategies respectively as follows:

Eloc(θ) =
T

∑
τ=1

n

∑
i=1

H(Lτ
i − θ)(−ατEFτ

i + (1− ατ)Aτ
i) (3)

Eglo(θ) =
T

∑
τ=1

n

∑
i=1

H(−Lτ
i + θ)(−ατEFτ

i + (1− ατ)Aτ
i), (4)

where n is the total number of netlists, i is the current netlist, and τ represents a specific
period of time for the model to run. L and θ denote the length of the netlist and the set

Sensors 2023, 23, 5503 9 of 29

unacceptable value, respectively. α is the experimentally set preference value, which is
used to express the focus between the costs and benefits. EF and A denote the costs and
benefits, respectively, which are generally expected to be minimized and maximized. These
abstract models are validated in the subsequent experimental section with extreme cases,
where a simple description is desired to demonstrate the detection problem. H(x) denotes
the Heaviside function, which is intended to be used here to achieve a preference for the
use of global and local strategies and can be expressed as follows:

H(x) =
{

1, x ≥ 0,
0, x < 0.

(5)

To further explain EFτ
i , where it consists of a time cost and a space cost:

EFτ
i = Tτ

i + Sτ
i . (6)

Here, the costs and benefits are normalized so that the values can be mapped to
between 0 and 1:

Tτ
i =

tτ
i − tτ

min
tτ
max − tτ

min
(7)

Sτ
i =

sτ
i − sτ

min
sτ

max − sτ
min

. (8)

Again normalizing for Aτ
i :

Aτ
i =

aτ
i − aτ

min
aτ

max − aτ
min

. (9)

With Formulas (1)–(9) above, the objective of the framework also becomes clear,
and the optimal θ can be expressed as:

θopt = argminE(θ). (10)

4.3. The Overall Flow of MHTtext

To solve the abstract problem raised above, this paper proposes the MHTtext model as
shown in Figure 2. We redefine the netlist structure through the netlist code to extract the
features of the components and wires. The contents of the netlist structure are divided into
three categories and further reshaped in accordance with global/local-features-based algo-
rithms. Furthermore, the algorithms generate specific sentences to fit two search patterns.
To judge the extra HT path, the generated path sentences are labeled with HT and trained
through word vector pretraining and TextCNN deep learning. The proposed architecture is
the MHTtext model that can solve the above HT netlist detecting problem. The detailed
step-by-step description is shown below:

STAGE I: Netlist preprocessing

Step 1. Redefine the input netlist in the way needed for the two strategies, including
the three parts: the port definition, the wire definition, and the logic component
definition;

Step 2. Select the strategies according to the predefined patterns; the global strategy will go
to STAGE II, and the local strategy will go to STAGE III;

Sensors 2023, 23, 5503 10 of 29

Figure 2. Overall flow of MHTtext.

STAGE II: Global strategy

Step 3. Determine the start component node and the end component node and combine
the two components to obtain the component pair;

Step 4. Use the component pairs as input to the path-filling algorithm to generate path
sentences;

Step 5. Determine whether the generated path sentence is a simple path, and if so, proceed
to Step 4, otherwise search for other component pairs;

Step 6. Determine whether the traversal of all component pairs are complete. If so, generate
the set of simple path sentences, otherwise search for other component pairs;

STAGE III: Local strategy

Step 7. Transform the redefined netlist to an adjacency list. It is also possible to use the
adjacency matrix to easily calculate some information about opposite paths;

Step 8. Determine the parameter δ and then DFS (Depth First Search) the netlist to generate
local path sentences;

Step 9. Determine whether the traversal of all component pairs is complete. If so, generate
the set of simple path sentences, otherwise search for other component pairs;

STAGE IV: ML model

Step 10. Label the generated sentences and input them into the DL model, which will be
used for the determination of HT sentences after the model is trained;

Step 11. Select the type names from the utterances and discard other useless data. The type
of the components should be more appropriate to express the feature;

Step 12. Perform pretraining of the word vectors and the training of TextCNN. This step
usually requires several parameter adjustments to obtain the best performance of
the model.

5. Dataset Generation

In this section, the netlist preprocessing and sentence generating are introduced.
The former is responsible for transforming the netlist file into a TextCNN-fit dataset,
and the latter is the core link in the transformation process.

5.1. Redefinition for Netlist Structure

The netlist is a file used in circuit design to describe the connections between the
circuit components. In this paper, a gate-level netlist is used, i.e., the circuit elements are
the gate-level or the same level as them. In order to sort out the information needed to
generate sentences, the structure of the netlist needs to be rationalized.

Sensors 2023, 23, 5503 11 of 29

Figure 3 shows the netlist file written in Verilog language. The contents of the code
segments are divided into three categories: the port definition, the wire definition, and the
logic component definition.

Figure 3. Netlist code structure division.

Definition 1. The port definition part: This part consists of the module netlist names, the input
wires, and the output wires. The wires connected to the input or output ports and the mathematical
representation can be shown as:

M = Winput ∪Woutput, (11)

where M, Winput, and Woutput mean the set of module netlist names, input wires, and output
wires, respectively.

Definition 2. The wire definition part: This part lists the internal wires in the circuit and their
identifier information. Different from the wires in Definition 1, the internal wire is the wire
connecting the circuit elements to each other. For example, in Figure 4, n102 connects circuit
element U301 to the input port, so it is considered an input wire; n112 connects two circuit elements
(U302 and U304), so it is considered an internal wire. Figures 3 and 4 represent two separate
netlists.

Winternal ∩ (Winput ∪Woutput) = ∅, (12)

where Winternal and W mean the internal wires and the wire set mentioned in Section 4, respectively,
and Winternal ⊆W.

Definition 3. The logic component definition part: This part shows a complete circuit logic. In each
row, it contains the only component with its type name, identifier, and in-wire/out-wire information.
The signal from the in-wire is sent to each component, which outputs the signal via the out-wire
after a logic operation is processed.

Sensors 2023, 23, 5503 12 of 29

Figure 4. Storage structure for generating sentences.

We iterate through each row of the logic component definition part defined in Def-
inition 3; the diagram of the circuit structure can be given, and the signals transmitted
between adjacent components follow the principle of that for the wires with the same
identifier. Figure 4 shows the storage structure of the generated sentences.

5.2. Definition of the Circuit Signal Transmission Law

The expression of word order in generated sentences is related to the way of the signal
is transmitted. The detection model relies on the following law to form a recognizable
text dataset.

The components set N = {n1, n2, . . . , nl}, mentioned in Section 4 is the only identifier
provided by the logic component definition part that corresponds to the specific component
nh (nh ∈ N). The wire set W = {w1, w2, . . . , wt} does too. We consider the components ni,
nj(1 ≤ i, ≤ l, 1 ≤ j ≤ l, i 6= j, ni ∈ N, nj ∈ N) and introduce tuples ξi, ξ j to record each
specific component and its in-wire/out-wire information, respectively.

ξi = (ni, Xii, Xio) (13a)

ξ j = (nj, Xji, Xjo) (13b)

ξ = {ξ1, ξ2, . . . , ξl}. (13c)

The sets of the in-wire and out-wire of component ni are represented as Xii and
Xio, respectively, and Xji and Xjo also mean the sets of the in-wire and out-wire of nj
(Xii, Xio, Xji, Xjo ⊂W), respectively.

With the above predefined context, the description of the signal transmission law can
be given:

Xio ∩ Xji 6= ∅⇒ fs : ni → nj, (14)

where fs is the intuitive representation of the signal transmission, and the binary operation
section is the core condition that describes the transmission of signals between components,

Sensors 2023, 23, 5503 13 of 29

which means the circuit signals can transmit from ni to nj, since they have the same
identifier in the out-wire and in-wire sets, respectively.

5.3. Global Strategy for Dataset Generation

The global-view-based sentence generation is the basic strategy of the MHTtext model.
Its common realization pattern keeps the model from being complicated. A brief description
of the global strategy can be found in [31]. This section shows the details of the global
strategy and proposes a new local strategy and balancing scheme.

5.3.1. Simple Path Sentence Generation

To gain the text materials formed from simple path sentences, the algorithm processes
the netlist through semantic understanding. TextCNN model learns these simple path sen-
tences to understand the circuit layout and recognize the extra HTs after complete training.

Based on the global strategy, the netlist features’ extracted framework and simple path
sentences’ generation function are introduced as follows:

(1) Determine the start/end component
We consider a global strategy, in which a complete signal transmission path from the

start node to the end node needs to be converted into TextCNN-fit text data; thus, the first
step is to determine the port identifier and recognize the start component and the end
component on a path pair.

To accurately represent this work, a common situation is defined for subsequent iden-
tification.

Situation 2 The input port wire set and output port wire set are analyzed from the
netlist, denoted by Xiport and Xoport (Xiport, Xoport ⊂ W), respectively. For the specific
component ni, the sets of in-wire and out-wire are represented as Xii and Xio, respectively,
mentioned in Section 5.2.

Therefore, the work of identifying the start and end components can be defined with a
binary operation as:

Xii ∩ Xiport 6= ∅⇒ ni ∈ SC (15)

Xio ∩ Xoport 6= ∅⇒ ni ∈ EC, (16)

where SC and EC represent the node sets of the start components and end components,
respectively. The binary operation section is the core condition in judging. Once finding
the same identifier within the in-wire set and in-port set, the model can believe there is one
of the start components in the circuit. Formula (15) shows how component ni is recognized
as a start component, for example. In Formula (16), we use a similar approach to find one
of the end components in the circuit.

After finding the start component and the end component, the model considers them
as the first and the last words for a specific path sentence. Assuming a path sentence
contains these words, it is called a global-view path sentence, which can completely reflect
a panoramic view of the signal transmission throughout the circuit.

(2) Path searching and simple path judging
Determining the start component and the end component is the first step of the global

strategy. After the first and last words are recognized, the model can further complement
the remaining components of the complete path sentence. In most cases, it can be obtained
according to the proposed formula:

Path(nw, nv) : f ε
s (nw) = nv (17)

Path(nw, nv) = {nw, nt1, nt2, . . . , nε−1, nv}, (18)

where nw is the start component, nv is the end component (nw 6= nv), and ε represents the
number of iterations of the function fs mentioned in Formula (14). Each iteration starts
from the current component to find the next that matches the signal transmission law,
and after ε iterations, we finally find one of the end components nw.

Sensors 2023, 23, 5503 14 of 29

The generated path Path (np, nq) consists of a collection of components. However,
when the algorithm searches without certain rules when performing iterations, it generates
a large number of paths with a lot of invalid nodes. The next work of the model is therefore
to find simple paths that meet the requirements according to certain rules.

The following formula expresses promising constraints for generating a simple path:

SimplePath(np, nq) : f ε
sp(np) = nq (19)

SimplePath(np, nq) =
{

np, ne1, ne2, . . . , nε−1, nq
}

(20)

∀α, β(f α
s (np) 6= f β

s (np))⇒ f ε
sp(np), (21)

where 0 ≤ α ≤ ε, 0 ≤ β ≤ ε, α 6= β. f α
s (np) and f β

s (np) are any two unequal components
that are populated for the specific path during the iteration. The function for generating a
simple path is called f ε

sp.
With Formula (21), the model generates the simple path SimplePath(np, nq). It consists

of a collection of nonrepetitive components, i.e., each component element in the search
path (corresponding to the word in the path sentence) is different from any other element
in the path, subject to the constraints of Formula (21).

Based on Formulas (17) and (21), some simple paths extracted from the netlist can
be identified conclusively. The left part of Figure 5 shows a simplified example. For each
simple path, the identifier of a specific component is recorded as a word in the generated
sentence when a signal is transmitted to it in the path. The circuit components drawn in
red in the diagram are HT components. Therefore, an HT path has been identified, and a
sentence has been generated for such a netlist called the HT sentence.

Figure 5. The sample distribution in the comparison models.

5.3.2. The Global Strategy Algorithm Description

In many cases, loop features are also extractable information, but the method proposed
in this section uses non-loop features. In previous studies [29,38], loop features have not
achieved a good evaluation advantage for detecting HTs. In [38], although the loop features
played a significant role in hardware Trojans’ detection work, the proportion of these
particular loop features was relatively low. The method proposed in this section shows that
in further experiments, better detection results can be achieved using only simple paths;
they demonstrate the feasibility of this attempt to some extent.

5.4. Local Strategy for Datasets’ Generation

In this section, a sentence generation algorithm based on a local path strategy is
presented. The freely controllable parameter δ in the algorithm allows the algorithm to be
more flexible when discovering local paths.

Sensors 2023, 23, 5503 15 of 29

5.4.1. Local Path Sentence Generation

With the same aim as the previous strategy, the algorithm processes the netlist through
semantic understanding. The TextCNN model learns local path sentences to understand
the local circuit layout and recognizes the extra HTs after a complete training.

Based on the local strategy, the netlist features’ extracted framework and local path
sentences generation function are introduced as follows:

(1) Netlist storage structure and sentence generation format
The algorithm proposed in this part is based on Depth First Search (DFS) and intro-

duces a custom search scope δ to extract local features from the netlist.
To facilitate the search that follows, the wires and components in the gate-level netlist

are treated here as a node in the graph structure, and the connected nodes (wires or
components) of each node are then stored as an adjacency list. After processing is complete,
each node in the adjacency list has a unique identifier (i.e., the identifiers mentioned in
Section 5.1). Figure 4 shows the schematic diagram of the storage structure.

The next step is to find a suitable sentence format to reflect the local characteristics of
the circuit. The paper gives a meaningful sentence format, which is defined as follows:

Definition 4. The unidirectional multiparameter format: Consider a specific path
P =

{
n1, n2, . . . , nu, . . . , n f

}
, where there exist parameters η, µ that satisfy:

η = u− 1 (22)

µ = f − 1 (23)

MPath = (Pη , Pµ), (24)

where Pη = {n1, n2, . . . , nu}, Pµ = {n1, n2, . . . , n f }, η and µ represent the search scopes in
sample i, and n1 is a specific component in P on which a multisearch is executed based on n1,
generating a path tuple Mpath = (Pη , Pµ). With the Formulas (22)–(24), a sentence can be
transferred from tuple Mpath, and it is called a unidirectional multiparameter format sentence.

For the unidirectional multiparameter format, the time required to process the ex-
tracted sentences has been reduced, but longer sentences still need to be generated to
achieve higher recognition rates. Thus, the paper considers a sentence format that takes
into account the before-and-after effects of a specific component:

Definition 5. The bidirectional single-parameter format: Consider a specific synthesis path
P =

{
n−1 , . . . , n±u , . . . , n+

f

}
, where there exists a parameter δ that satisfies:

δ = u− 1 = f − u, (25)

where δ represents the search scope, n f is a specific end component in P , + denotes a forward
topology sequence, − denotes a reverse topology sequence, and n±u is the common node. With
Formula (25), the path P is called the bidirectional single-parameter path and its central node is n±u .
The sentence transferred from P is considered a bidirectional single-parameter format sentence.

(2) Path searching and sentence extraction
Determining the format of the sentences is the first step of the local strategy. Once the

netlist data storage structure has been defined, the DFS can be started.
Depth First Search is a kind of graph algorithm; the process, in brief, is to move as

deep as possible into each existing branching path, and each node can only be visited once.
That is, when all the edges of a node n have been explored, the searching goes back to the
start node, where the edge of the node n is found. This process continues until all the nodes
are reachable from the source node. If there are still undiscovered nodes, one of them is

Sensors 2023, 23, 5503 16 of 29

selected as the next source node, and the process is repeated. The process is repeated until
all nodes have been visited.

The path obtained by traversing the circuit in the standard signal flow direction is
called the forward path. On the contrary, the path obtained by traversing the circuit after
processing the signal flow direction is called the reverse path.

After the depth priority sequences are given as topological sequences: P+ =
{n1, n2, . . . , nu, . . . , n f } and reverse topological sequences: P− = {p1, p2, . . . , pu, . . . , p f },
the local path can be obtained from:

∃qi ∈ (P+ ∩ P−)(i ≥ δ + 1 and i ≤ f − δ)⇒ flp(ni) (26)

LocalPath(ni) =
{

q−i−δ, . . . , qi, . . . , q+i+δ

}
, (27)

where δ is the search scope, and LocalPath(ni) is considered a bidirectional single-parameter
format path. Moreover, the front and back of qi are forward and reverse topological se-
quences, respectively; + denotes forward, and − denotes reverse. Note that qi is a common
node of P+ and P−. Unlike the previous strategy, here, sentence generation relies on the
component words that pass through the first few levels of the central word in the signaling
direction and the component words that pass through the next few same levels in the
reverse signaling direction to combine into sentences. On the one hand, this is an effective
way to explore the “central word” as the core path feature, and on the other hand, it is
also different from the cut of paths (subpaths of end-to-end paths) generated in the global
strategy. Keeping the same search scope in the forward and reverse directions can control
the overall path length and simplify the problem.

The reverse topology sequence is preserved by the stack introduced during the search,
and the parameter δ is not an arbitrary value. Considering the rate of local features the
model needs, this parameter should be set with care. In the experimental section, several
sets of data obtained through testing are presented to initially determine the value in this
paper. δ should reflect different meanings in different environments and needs. In addition,
if the parameter δ is set sufficiently large, the algorithm degenerates to a DFS search of the
graph in the global field of view.

5.4.2. The Local Strategy Algorithm Description

The proposed Formulas (26) and (27) generate several local paths the algorithm needs.
After the local paths are determined, the sentences are transformed from them and used for
the next training. The local-strategy-based text preprocessing algorithm is introduced in
Algorithm 1 in detail.

The algorithm takes a gate-level netlist L and a custom search range parameter δ as
input and ultimately outputs locally characterized sentences. First, the algorithm abstracts
all three parts of the netlist content to the adjacency list to obtain AL. Then, it performs a
DFS search on AL to generate a depth first search sequence P . Finally, all elements in P are
traversed to find the sentences that match the strategy.

The condition in line 8 of the algorithm is defined in this part as:
Condition 1 (Length of LocalPath) In this part, the max length of LocalPath is set to

300,000. In fact, it needs to be adapted to the specific situation. The 300,000 is set based on
the requirements of the designed training model.

Eventually, the generated local sentences would be imported into the TextCNN model
for training.

Sensors 2023, 23, 5503 17 of 29

Algorithm 1 The Local Strategy Algorithm
Input: the specific netlist L and the search scope δ
Output: the local path sentences
1: Iterate through L to generate the adjacency list AL;
2: P± = DFS(AL)
3: for qi in (P+ ∩ P−) do
4: if i ≥ δ + 1 and i ≤ f − δ then
5: LocalPath(ni) =

{
q−i−δ, . . . , qi, . . . , q+i+δ

}
;

6: LocalPath(ni) ∈ LocalPath
7: end if
8: if meet the condition then
9: continue;

10: end if
11: end for
12: for item in LocalPath do
13: LocalPathSentence← Extract the type name of each component in item;
14: end for
15: return LocalPathSentence.

6. Pretraining and Deep Learning Architecture

In this section, the details of pretraining and the model structure of TextCNN are
introduced. Moreover, some parameters in the model are given here.

6.1. Type Names Pretraining

In this part, the work on type name pretraining is presented. In the work mentioned
above, the MHTtext model extracted the type names from the generated sentences. The pre-
training of type names lets the word vectors record the relative relationships of the circuit
components at that location. To better reflect the correlation between words in the word
vector, we use unsupervised learning, word2vec, to calculate the clustering relationships
between all words in the vocabulary after de-duplication.

6.1.1. Selection of Word Vectorization Pattern

The common approaches for word vectorization are one-hot encoding, the TF-IDF
model, and the Word2vec model. One-hot coding and the TF-IDF model are bag-of-
words models. Thus, they are widely used in language modeling and some web applica-
tions. However, seldom does the approximation of the word-to-word relationship emerge;
the words are independent from each other. In other words, the semantic information of the
text is missing in the models. When dealing with high-dimensional vectors, the excessive
dimensionality leads to an exponential expansion of the network computation and a high
training-time cost.

The word embedding approach solves the shortcomings of the bag-of-words model by
mapping each word to a low-dimensional vector of fixed length in space; then, the similarity
between them can be calculated. Word2Vec is a classical word embedding model. There are
two models for word2vec’s vocabulary training, namely the continuous bag-of-word model
(CBOW) and the skip-gram [53]. CBOW predicts the word itself from the context in which
it is found, and skip-gram predicts the word itself from the words that are likely to appear
in its context. Both methods were lightly tested in the early stages of the work, and the
latter model was eventually used because its word vectors allowed more adjustments in
prediction than CBOW and were more likely to obtain better recognition results.

Sensors 2023, 23, 5503 18 of 29

6.1.2. Word Vector Optimization

The formation of a mature word vector expression can be measured by the following
formulas:

log P(wo | wc) = u>o vc − log

(
∑
i∈ν

exp
(

u>i vc

))
(28)

∂ log P(wo | wc)

∂vc
= uo −∑

j∈ν

 exp
(

u>j vc

)
∑

i∈ν
exp

(
u>i vc

)
, (29)

where wo and wc are the surrounding words and the specific center word, respectively.
When the word wc represents the HT component, the corresponding vc is the word vector
of the central word, ui is a word vector representing any word in the thesaurus, and uo
represents the word vector for the surrounding component words. The circuit layout
probabilities are calculated using the three word vector parameters described above. Af-
ter probability normalization, vc learns enough path sentences to record the distribution of
components around HT.

In order to make the word vector more accurately represent the circuit layout to
identify HTs efficiently, Formula (29) [54] given in the form of partial derivatives is proposed,
where uj makes the central word wc (the HT word) to be the word vector represented
by the surrounding words. We minimize Formula (28) [54] in combination with the
gradient descent algorithm and finally derive vc as the word vector needed. The above
procedure has the same effect on learning the circuit layout when the words represent
non-HT components.

6.1.3. Setting the Related Parameters

The above pretrained word vector already contains the location information of the
HT components in advance. This greatly reduces the effort of optimizing the model when
further training the TextCNN. In this work, the word2Vec word vectors were trained with
the skip-gram training mode, the sliding range size was set to five, and the word vector
dimension was set to 100. More experimental parameters and analyses are described in the
experimental section.

6.2. TextCNN Architecture and Parameter Details

A training model that fits the project is extremely important to the overall work.
For TextCNN, in addition to the pretrained word vectors mentioned above, a reasonable
neural network structure and a rich means of parameter optimization also influence the
model’s detection of HTs. In this part, the TextCNN structure used in this paper and the
setting of some parameters are introduced.

6.2.1. TextCNN Construction

The core idea of the convolutional neural network (CNN) is to capture local features
to achieve the prediction of the whole object. TextCNN applies a shallow CNN to text
classification. The framework of TextCNN was constructed referring to [53], as shown in
Figure 5.

All path sentences after text preprocessing were input to the input layer in order,
and TextCNN used a one-dimensional convolutional layer to compute multiple convolu-
tional kernel features for HT words and non-HT words in the sentences. The obtained
results were put into the maximum pooling layer to select the most valuable features for
identifying the HT. Then, the features were pooled in the fully connected layer. Eventually,
multiple neurons were synthesized in the fully connected layer to obtain the judgment of
HT/non-HT.

The word vectors were loaded with two methods: static and non-static forms. The static
approach uses pretrained word vectors from the word2vec model and does not adjust

Sensors 2023, 23, 5503 19 of 29

the word vectors during each training session. The non-static approach uses pretrained
word2vec vectors to initialize the word vectors and updates the word vectors in each
iteration, which allows the model to converge faster. The actual experiment can be con-
ducted in a static or non-static way depending on the environment, and the final results
are acceptable. Moreover, the combination of static and dynamic word vector matrices can
consider both the results of iterative non-updating and updating in TextCNN to optimize
HT detection.

6.2.2. Parameters’ Setting and Optimization

A. Sentence length setting: For the overhead of the model, the model of the global
strategy considered the effect of the length of the sentence on the overhead. About 20% of
the length was discarded, and the sentence length was set to 100. The local strategy was
left untreated, since it has a controllable parameter δ.

B. Convolution kernel width setting: Both strategies proposed in this paper used three
convolutional kernels of different widths, and the number of convolutional kernels used
by the two strategies was different. This was obtained by testing lightly to preserve the
meaning of the parameters to the maximum extent possible. The specific descriptions are
mentioned in the experimental section.

C. Dropout setting: The dropout value in the fully connected layer was 0.5 by default
to alleviate the overfitting in both the global and local strategies.

7. Experiments and Evaluation

In this section, several experiments are described that evaluated the MHTtext model
proposed in this paper. Due to the differences in the dependencies on the two strategies
in different environments, experimental parameters with adaptations were designed for
both strategies. Then, the experiments were analyzed specifically for each of the strategies.
In this work, the proposed HT recognition framework for TextCNN was implemented by
PyTorch code framework in Python language and tested on personal computers (PCs),
such as an i5-7400HQ/i5-10500H CPU, GTX1050Ti/2080Ti graphics card and 16 GB/32 GB
RAM. The datasets used for the experiments in this paper were all from Trust-HUB [55–57].
The datasets were Verilog gate-level netlist files, and each file was labeled with normal and
Trojan modules. The hardware Trojans may pose the threat of signal tampering.

Due to the limitations of the experimental dataset and to better illustrate the differ-
ent focus of the two strategies, extreme values were used for some of the parameters
described in Section 4. In the experiments for the global and local strategies, θ was set
as max

{
Lτ

1 , Lτ
2 , ..., Lτ

i
}

and 0, respectively, in the hope of simplifying the experiments.
Subsequent work will consider more complex dynamic parameter scoring mechanisms.

7.1. Global Strategy Experiments

The number of words in the vocabulary in the pretraining stage was 15, which was
the result of the de-duplication and cleaning of all the words in the netlist sentence.

(1) Pre-stage of the global strategy
In the netlist preprocessing step, each netlist had 180 path pairs. Figure 6 shows the

number of non-timeout path pairs in each benchmark test netlist. According to the overall
statistics, only a few path pairs were not fully extracted. This indicates that the generated
sentences nearly expressed the topology of the circuit. Furthermore, the topological ex-
pressions of these time-out path pairs could be supplemented in other fully extracted path
pairs because the non-timeout path pairs could pass through the blank topology behind
the time-out path pairs in some situations.

Sensors 2023, 23, 5503 20 of 29

Figure 6. Complete extraction rate, label statistics, and sampling coverage in seven netlists.

(2) Training detail of the global strategy
In the training model stage of TextCNN, the training and testing sets were divided

according to the leave-one-out approach. That is, the sentences generated from one netlist
at a time were used as the testing set, and the sentences from the rest of the netlists were
used as the training set. Since the number of sentences collected from the netlist was
too large to obtain better experimental results, a balanced sampling of the dataset was
performed. That is, 25,000 positive samples (with HT sentences) and 25,000 negative
samples (with HT sentences) were randomly selected from each netlist, and all netlists
formed a total of 50 such sampled datasets. The number of samples was determined as a
result of the combination of the dataset and the computational overhead required for neural
network training. According to Figure 6, the amount of data sampled in a single group
(350,000 sentences in total) represented about 0.74% of all the data. On the other hand, the
sentences generated in a single path pair were repetitive in terms of expressing the circuit
structure. After all, if there were many-to-many or even many-to-many components of the
same type in paths with the same starting and ending points, then the expressions of the
content of this part of the sentence were necessarily the same.

For the TextCNN settings, since there was a one-dimensional convolution layer, only
three types of widths to convolution kernels were selected, which were 3, 4, and 5, re-
spectively. There were two convolution kernels of each width and a total of six kernels.
Two groups of three kernels with different widths were assigned to the static word vector
matrix and the dynamic word vector matrix. More clearly, the basic selection of several
settings is shown in Table 3.

Although a single sampling can reflect the effect of the model, considering the influence
of chance factors, the combined sampling can make the results more realistic to the model.
Therefore, 50 random samples were selected for the experiments of the global strategy to
form a multi-group model. Fifty sets of sampled training data were tested sequentially on
an RS232-netlist, and a total of 350 training models was generated in the experiments.

Table 3. Settings used for the global and local strategies.

Setting Glo-Value Loc-Value

Word embedding model Word2vec Word2vec
Model for word2vec skip-gram skip-gram

Word embedding dimension 100 100
Convolution kernel size (3, 4, 5) (2, 3, 4)

Number of convolution kernels 3*2 3*3 , 3*10
Optimizer Adam Adam

Sensors 2023, 23, 5503 21 of 29

7.2. Local Strategy Experiments

The experiments designed for the local feature strategy of the circuit used word2vec
pretrained word vectors as the original input, and the word vector dimension was set to 100.
Three/ten convolutional kernels of sizes 2, 3, and 4 were used. In the local strategy, the non-
static word embedding pattern was used to compensate for the possible detection effect of
an inadequate search scope selection in the early stage of the experiment, together with the
controllable variable δ. The dropout parameter was set to 0.5 after the convolutional layer,
the training batch size was 128, Adam was selected as the optimizer, and cross entropy was
selected as the loss function. More clearly, the basic selection of several settings is shown
in Table 3. The selection of the local strategy validation method used the tenfold cross-
validation method. The mean data and the optimum data are presented in the experimental
part of this paper for comparison.

For the selection of the search scope parameter δ, we also conducted a lightweight test
in an attempt to achieve a balance between the time cost and effectiveness by rationalizing
the selection of δ. This is the reason why the local-feature-based strategy was proposed in
this paper. After a lightweight test, for which the data are shown in Table 4, δ was set to
three as an empirical value. The time-cost result was acceptable in terms of the time budget
of the whole model. Different environments may be suitable for different parameters.
In the treatment of this issue, a readily acceptable vested parameter was used as a criterion
in this paper, and all subsequent experiments were based on the criterion parameter for
lightweight testing to determine its value.

Table 4. Lightweight tests for different scopes.

Benchmark Search Scope δ Time Cost ACC

RS232-T1000 2 0.72 s 97.52%
RS232-T1000 3 0.83 s 97.83%
RS232-T1000 4 1.11 s 97.36%
RS232-T1000 5 2.30 s 96.94%
RS232-T1000 6 6.98 s 97.57%
RS232-T1000 7 23.75 s 94.35%

7.3. Evaluation

The evaluation results of the experiments were derived from the machine learning
indicators, i.e., the true positive rate, true negative rate, precision, accuracy, and the
F-measure. The paper also uses a custom indicator SEI to quantify the detection data
more efficiently.

7.3.1. Previous and Traditional ML Indicators’ Evaluation

This part compares the experimental data of the two strategies and further compares a
variety of models.

(1) Model sample distribution
Figure 7 shows the division of the netlist samples in several models. Positive samples

(PS) and negative samples (NS), respectively, represent the HT samples and non-HT sam-
ples. The global strategy model relies on a balanced data set for training, which makes
the structure of the dataset better than the other five models that depend on the wire to
judge the HT. Note that the local strategy proposed in this paper did not perform balanced
sampling, and the sample distribution was relatively unbalanced due to the limitations
of the dataset and the aim of preserving the local characteristics of the individual parts of
the circuit logic. The details of the local strategy sample data are presented in Figure 8,
and the sample distribution remained stable within a certain range. Moreover, the PS and
NS concepts in reference [58] were contrary to all the other comparison models; so, the
paper recalculated them.

Sensors 2023, 23, 5503 22 of 29

Figure 7. The sample distribution of the comparison models (Our - glo, Our - loc, Dong et al. 2019 -
49/51 features [38], Kurihara et al. 2020 - RF [30], Dong et al. 2019 RG-Secure [39]).

Figure 8. The sample distribution of the local strategy model.

(2) Feasibility and data comparison of the global and local strategies
Tables 5 and 6 list the HT detection effect of each netlist of the training models. These

experimental results were sufficient to declare that the proposed two methods were feasible
with incomplete data collection. At the same time, it can be seen that the global strategy
had better performance in all cases than the DFS-based local strategy. The sentences
extracted by the global strategy were long texts, which had more valid information. For the
local strategy, the experiments also demonstrated that the local feature model with the
controllable parameter δ could also achieve good results. Making the parameter δ adjust
autonomously to the needs of the environment may maximize the advantages of the local
strategy. The optimal and mean values of the local strategy in the experimental group are
presented in Table 6. The data in the mean effect table show that the local strategy also
achieved the desired effect by controlling the time cost.

Sensors 2023, 23, 5503 23 of 29

Table 5. The result of TextCNN’s classification for path sentences (GLO).

Benchmark TPR TNR PRE ACC F-Measure

RS232-T1000 99.97% 95.95% 96.11% 97.96% 98.00%
RS232-T1100 99.95% 100.00% 100.00% 99.98% 99.98%
RS232-T1200 99.98% 100.00% 100.00% 99.99% 99.99%
RS232-T1300 99.99% 97.11% 97.19% 98.55% 98.57%
RS232-T1400 99.98% 100.00% 100.00% 99.99% 99.99%
RS232-T1500 96.75% 100.00% 100.00% 98.37% 98.35%
RS232-T1600 99.98% 100.00% 100.00% 99.99% 99.99%

Mean 99.51% 99.01% 99.04% 99.26% 99.27%

Table 6. The result of TextCNN’s classification for path sentences (LOC).

Local Strategy - 1 - OPT Local Strategy - 2 - MEAN

Benchmark TPR TNR PRE ACC F-Mesure TPR TNR PRE ACC F-Mesure

RS232-T1000 95.1% 98.1% 98.5% 96.4% 91% 84% 99.90% 99.4% 98.0% 91%
RS232-T1100 95.2% 97.1% 97.8% 96.2% 85% 81.90% 99.90% 99.50% 97.9% 90%
RS232-T1200 96.7% 98.9% 98.9% 97.1% 95% 72.50% 99.90% 99.2% 97.1% 84%
RS232-T1300 93.2% 99.5% 98.1% 95.8% 93% 82.40% 99.90% 99.30% 98.3% 90%
RS232-T1400 96.4% 97.3% 97.9% 96.8% 88% 85.70% 99.90% 99.40% 98.3% 92%
RS232-T1500 94.3% 98.5% 96.9% 95.5% 84% 73.30% 99.90% 98.7% 95.5% 84%
RS232-T1600 96.7% 98.4% 96.1% 97.8% 92% 73.40% 99.9% 98.90% 97.8% 84%

Mean 95.37% 98.26% 97.74% 96.51% 89.71% 79% 99.90% 99.20% 97.6% 87%

(3) Traditional machine learning indicators’ evaluation
Figure 9 compares the performance of the centrally different methods on the machine

learning indicators [30,38,39]. The results showed that the proposed global strategy model
was the best on the TPR and F-measures and ranked second on the PRE. Although both
the TNR and ACC were only fourth, they were only about one percentage point behind
the leaders, which can be considered at the same level. The results of all the average ML
indicators were higher than 99%. The fact proves that the global strategy model is feasible.
Moreover, the overall performance for the other methods had large fluctuations compared
with this work, and the local strategy also achieved the desired results while controlling
the time costs with δ.

Figure 9. Comparison results for five ML indicators (Our - glo, Our - loc-opt, Our - loc-avg, Dong
et al. 2019 - 49/51 features [38], Kurihara et al. 2020 - RF [30], Dong et al. 2019 RG-Secure [39]).

Sensors 2023, 23, 5503 24 of 29

7.3.2. Stabilization Efficiency Index (SEI) Evaluation

In order to fit the abstract problem itself presented in Section 4 of this paper, the exper-
imental group introduced a new evaluation indicator, the stabilization efficiency index (SEI)
after extensive calculations and analysis. With the help of the SEI, it is possible to quantify
more effectively the stability of the model in detecting HTs. The SEI can be described as:

SEHT =
avg(TPR) + avg(TNR)
σ(TPR) + σ(TNR) + 1

, (30)

where avg(TPR)and avg(TNR) represent the mean values of the TPR and TNR, respec-
tively. σ(TPR) and σ(TNR) are the TPR standard deviation and TNR standard deviation,
respectively. The standard deviation can be calculated by the following formula:

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2, (31)

where µ is the expectation. From Formulas (30) and (31), it can be obtained that if the
model has a higher ability to correctly identify the PS and NS, and the performance
fluctuation for each netlist is smaller, then it has better stability in general. In Formula (30),
the denominator should be greater than 1 to circumvent the effects that arise in the case
of less than 1 (the amplification effect of the ratio). Normally both the numerator and
denominator have the same trend, as the model does not fluctuate significantly in stability
and accuracy from one dataset to another. However, in a practical setting, uncertainties in
the dataset and model parameter settings can cause several of the parts to have different
effects from the others. This difference is magnified if compared to a more standard model.
This is a reflection of the requirements of the SEI indicator in terms of the accuracy and
stability of the model balance.

For more indicators, the following formula is defined:

SEoverall =
∑i∈FI avg(i)

(∑i∈FI σ(i)) + 1
, (32)

where FI = {TPR, TNR, PRE, ACC, F−measure}.
Formula (32) is obtained by the further expansion of Formula (30). Several key

indicators from traditional machine learning are considered together to obtain a more
comprehensive measure.

(1) Performance of each model on the SEI
In Figure 10, the global strategy model achieved high scores of 53.27 and 71.21 on

the SEHT and SEoverall , respectively, maintaining an acceptable position. The local strategy
model achieved high scores of 64.26 and 63.92 on the SEHT and SEoverall (OPT), respectively.
On average, the local strategy also achieved acceptable results with the controlled time
cost and was better than the other methods except for the global strategy. The other four
models had lower SEI evaluations due to large performance fluctuations. Since the models
for other references detected the HT based on the wire features, not only were the rare HT
samples extracted (Figure 6 also shows the low proportion of HT samples in these models),
but their feature calculations only considered the local range for the circuit. They obtained
a fluctuating performance when using traditional ML algorithms to train on unbalanced
datasets.

Sensors 2023, 23, 5503 25 of 29

Figure 10. Statistical values of the SEHT and SEoverall on each model (Our - glo, Our - loc-opt, Our
- loc-avg, Dong et al. 2019 - 49/51 features [38], Kurihara et al. 2020 - RF [30], Dong et al. 2019
RG-Secure [39]).

(2) Evaluation of the two strategies on the SEI
The global strategy model’s end-to-end path sentence expression depends on the word

vector to include the information for the global circuit under the feature calculation of the
TextCNN. Moreover, using the simple path, it can be found that multiple path sentences
are passing through the same HT component. Then, it magnifies the HT information to
meet the balanced training for the dataset. These factors are the core reasons for the stable
performance of the proposed model. Table 7 shows a comparison of the two strategies in
the MHTtext model.

Table 7. Comparison of the two strategies on the SEI (SEHT and HToverall).

TYPE TPR TNR PRE ACC F-Measure SEHT SEoverall

1 AVG(%) 99.51 99.01 99.04 99.26 99.26 53.27 71.21
σ 1.13 1.60 1.54 0.85 0.85

2 AVG(%) 95.37 98.26 97.74 96.51 89.71 64.26 63.92
σ 1.23 0.79 0.88 0.73 3.8

3 AVG(%) 79.0 99.9 99.2 97.6 87 28.44 42.52
σ 5.29 0.00 0.27 0.92 3.40

1 GLO, 2 LOC-1-OPT, 3 LOC-2-MEAN.

On the SEHT , the local strategy (OPT) obtained a relatively excellent value. This is
because the global strategy did not perform well on the RS232-T1000 and RS232-T1300
in the experiment, but the other datasets were close to 100%. Then, it affected the TNR
value to some extent. In contrast, the local strategy proposed as a balance of multiple
elements (although not as accurate as the global strategy with the current parameter
settings) was instead closer to the data with less fluctuation because it took into account
the local characteristics of each part of the circuit logic. On average, on the other hand,
it was still the global strategy that prevailed. However, the local strategy proved its
controllable parameters δ could provide new possibilities for balancing both the time cost
and effectiveness.

8. Discussion

In recent years, it has been discovered from a spate of security incidents that the secu-
rity threats posed by hardware should not be underestimated. Hardware Trojan protection
is an important topic in hardware security. Traditional hardware Trojan detection methods
are effective for low integration and complexity chips. Post-silicon methods are inadequate

Sensors 2023, 23, 5503 26 of 29

for VLSI and 3D ICs. More importantly, these methods require gold chips as a reference,
which are difficult to obtain or do not exist for specific chips. With big data and computing
power, machines can easily be trained to bring satisfactory results.

At this stage, many research teams have tried to introduce deep learning into the
VLSI hardware Trojan detection task. However, deep learning mostly requires a high time
cost. Therefore, balancing the detection effect and time cost is also a problem that needs
to be solved. Our experimental results show that the introduction of deep learning for
netlist-level hardware Trojan detection can achieve excellent results. For different scenarios
(e.g., the precise detection of hardware Trojans or the fast detection of a large number of
chips, etc.), our proposed dynamic tuning scheme can effectively select a suitable strategy
according to the actual situation. Due to the limitation of the existing datasets, we used
the RS232 series dataset available on Trust-Hub, which contains hardware Trojans with
the effect of changing the original circuit function. Since this paper focuses on detecting
netlist-level hardware Trojans, this series of gate-level netlist data was used.

As with the other methods, our approach achieved excellent results detecting hardware
Trojans on gate-level netlists. Moreover, we proposed a more comprehensive scheme to
deal with different scenarios. The accuracy-driven global strategy is suitable for tasks that
require high detection accuracy. Hardware Trojan detection methods that use a global
strategy have strength in high accuracy performance because the model uses a complete
path sentence representation implemented end-to-end from the boundary ports of the entire
circuit topology. Long sentences allow a complete record of how the signal travels through
the component paths from input to output. Multiple global port-level path sentences
generated by a single netlist can be integrated and provide a complete representation of the
circuit topology.

The hardware Trojan detection method using the local strategy had a faster detection
performance because of the lightweight work on the sentence generation method. A path
sentence generation expression for the local component domain was used for sentence
generation. It only applied short path sentences to record topological information in a
limited range around each component, and the range size can be customized to make
it flexible in lightweighting. This detection scheme applies to small netlists and can be
extended to larger netlists to compensate for the limitations of accuracy-oriented detection
schemes in netlist size. It can even be considered for fast and coarse inspection work.

It was difficult to obtain the netlist of the implanted chip during the experiment,
and most of the existing work on netlist-level hardware Trojan detection was performed
on the benchmark provided by Trust-Hub; so, the types of hardware Trojans detected
were also limited by the data provided by it. Hardware Trojan implantation and hardware
Trojan detection are mutual game processes, and more effective methods will emerge by
optimizing hardware Trojan implantation technology.

9. Conclusions

The design and production of a chip require many steps and are performed by multiple
manufacturers. It is easy to implant hardware Trojans in this process. In this paper, an MHT-
text model consisting of two strategies was proposed and successfully demonstrated that
generating sentences corresponding to circuit logic information can effectively detect HTs.
These sentences are constructed from actual signal transmission processes within the circuit
ports. The two strategies proposed in this paper are each suitable for use in different
environments. The global strategy can achieve better accuracy in most cases, and the
local strategy has better performance in flexibility and cost control by balancing the time
overhead and detection effectiveness according to controllable parameters δ. The automatic
single-feature detection mechanism provides the possibility of automatic feature learning.
Both strategies have perfect performances in their specific situations.

Author Contributions: Methodology, C.D., Y.Y., Y.X. and Y.W.; Validation, Y.X.; Writing—original
draft, C.D., Y.Y., Y.X. and Y.W.; Writing—review & editing, C.D., Y.Y., X.L., H.Z. and L.X. All authors
have read and agreed to the published version of the manuscript.

Sensors 2023, 23, 5503 27 of 29

Funding: This work was supported by the Construction Funding of Fujian Province Digital Economy
Alliance. The work of Chen Dong was supported in part by the Natural Science Foundation of Fujian
Province (No. 2020J01500). The work of Ximeng Liu was supported in part by the National Natural
Science Foundation of China (No. 62072109, No. U1804263) and the Natural Science Foundation of
Fujian Province (No. 2021J06013). The work of Hao Zhang was supported in part by the the Natural
Science Foundation of Fujian Province (No. 2021J01616) and the Fund of China Scholarship Council.
The work of Li Xu was supported in part by the National Natural Science Foundation of China
(No. U1905211).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Biddle, C.J. Epidemics and pandemics as high consequence events: Expanding leadership challenges and responsibilities in

business continuity during the COVID-19 pandemic and beyond. J. Bus. Contin. Emerg. Plan. 2020, 14, 6–16.
2. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixao, T.M.; Mutz, F.; et al.

Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [CrossRef]
3. Chen, Z.; Chen, K.C.; Dong, C.; Nie, Z. 6G Mobile Communications for Multi-Robot Smart Factory. J. ICT Stand. 2021, 9, 371–404.

[CrossRef]
4. Hong, Q.; Chen, Z.; Dong, C.; Xiong, Q. A Dynamic Demand-driven Smart Manufacturing for Mass Individualization Production.

In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20
October 2021; pp. 3297–3302. [CrossRef]

5. Dong, C.; Xu, Y.; Liu, X.; Zhang, F.; He, G.; Chen, Y. Hardware Trojans in chips: A survey for detection and prevention. Sensors
2020, 20, 5165. [CrossRef]

6. Dong, C.; Liu, Y.; Chen, J.; Liu, X.; Guo, W.; Chen, Y. An unsupervised detection approach for hardware trojans. IEEE Access 2020,
8, 158169–158183. [CrossRef]

7. He, G.; Dong, C.; Huang, X.; Guo, W.; Liu, X.; Ho, T.Y. HTcatcher: Finite State Machine and Feature Verifcation for Large-scale
Neuromorphic Computing Systems. In Proceedings of the Proceedings of the 2020 on Great Lakes Symposium on VLSI, Virtual
Event, China, 7–9 September 2020; pp. 415–420. [CrossRef]

8. Guo, W.; Lian, S.; Dong, C.; Chen, Z.; Huang, X. A Survey on Security of Digital Microfluidic Biochips: Technology, Attack, and
Defense. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2022, 27, 1–33. [CrossRef]

9. Liu, X.; Deng, R.H.; Yang, Y.; Tran, H.N.; Zhong, S. Hybrid privacy-preserving clinical decision support system in fog–cloud
computing. Future Gener. Comput. Syst. 2018, 78, 825–837. [CrossRef]

10. Cui, Z.; Zhao, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. Malicious code detection under 5G HetNets based on a multi-objective RBM
model. IEEE Netw. 2021, 35, 82–87. [CrossRef]

11. Shahzad, M.; Shafiq, M.Z.; Liu, A.X. Large scale characterization of software vulnerability life cycles. IEEE Trans. Dependable
Secur. Comput. 2019, 17, 730–744. [CrossRef]

12. Zhang, H.; Li, J.L.; Liu, X.M.; Dong, C. Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion
detection. Future Gener. Comput. Syst. 2021, 122, 130–143. [CrossRef]

13. Hu, W.; Chang, C.H.; Sengupta, A.; Bhunia, S.; Kastner, R.; Li, H. An overview of hardware security and trust: Threats,
countermeasures, and design tools. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 1010–1038. [CrossRef]

14. Choo, K.; Gai, K.; Chiaraviglio, L.; Yang, Q. A Multidisciplinary Approach to Internet of Things (IoT) Cybersecurity and Risk
Management. Comput. Secur. 2020, 102, 102136. [CrossRef]

15. Sravani, M.M.; Durai, S.A. Attacks on cryptosystems implemented via VLSI: A review. J. Inf. Secur. Appl. 2021, 60, 102861.
[CrossRef]

16. Ali, L.; Farshad. Analog hardware trojan design and detection in OFDM based wireless cryptographic ICs. PLoS ONE 2021,
16, e0254903. [CrossRef]

17. Bidmeshki, M.M.; Antonopoulos, A.; Makris, Y. Proof-Carrying Hardware-Based Information Flow Tracking in Analog/Mixed-
Signal Designs. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 415–427. [CrossRef]

18. Rajendran, G.; Banerjee, W.; Chattopadhyay, A.; Aly, M.M.S. Application of Resistive Random Access Memory in Hardware
Security: A Review. Adv. Electron. Mater. 2021, 7, 2100536. [CrossRef]

19. Mittal, S.; Gupta, H.; Srivastava, S. A survey on hardware security of DNN models and accelerators. J. Syst. Archit. 2021,
117, 102163. [CrossRef]

http://doi.org/10.1016/j.eswa.2020.113816
http://dx.doi.org/10.13052/jicts2245-800X.934
http://dx.doi.org/10.1109/SMC52423.2021.9659114
http://dx.doi.org/10.3390/s20185165
http://dx.doi.org/10.1109/ACCESS.2020.3001239
http://dx.doi.org/10.1145/3386263.3406955
http://dx.doi.org/10.1145/3494697
http://dx.doi.org/10.1016/j.future.2017.03.018
http://dx.doi.org/10.1109/MNET.011.2000331
http://dx.doi.org/10.1109/TDSC.2019.2893950
http://dx.doi.org/10.1016/j.future.2021.03.024
http://dx.doi.org/10.1109/TCAD.2020.3047976
http://dx.doi.org/10.1016/j.cose.2020.102136
http://dx.doi.org/10.1016/j.jisa.2021.102861
http://dx.doi.org/10.1371/journal.pone.0254903
http://dx.doi.org/10.1109/JETCAS.2021.3075098
http://dx.doi.org/10.1002/aelm.202100536
http://dx.doi.org/10.1016/j.sysarc.2021.102163

Sensors 2023, 23, 5503 28 of 29

20. Hu, X.; Zhao, Y.; Deng, L.; Liang, L.; Zuo, P.; Ye, J.; Lin, Y.; Xie, Y. Practical attacks on deep neural networks by memory trojaning.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 1230–1243. [CrossRef]

21. Liu, W.; Chang, C.H.; Wang, X.; Liu, C.; Fung, J.M.; Ebrahimabadi, M.; Karimi, N.; Meng, X.; Basu, K. Two Sides of the Same Coin:
Boons and Banes of Machine Learning in Hardware Security. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 228–251. [CrossRef]

22. Naveenkumar, R.; Sivamangai, N.; Napolean, A.; Janani, V. A Survey on Recent Detection Methods of the Hardware Trojans. In
Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India,
13–14 May 2021; pp. 139–143. [CrossRef]

23. Jain, A.; Zhou, Z.; Guin, U. Survey of Recent Developments for Hardware Trojan Detection. In Proceedings of the 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [CrossRef]

24. Lyu, Y.; Mishra, P. Automated test generation for Trojan detection using delay-based side channel analysis. In Proceedings of the
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 1031–1036.
[CrossRef]

25. Su, T.; Shi, J.; Tang, Y.; Li, S. Golden-Chip-Free Hardware Trojan Detection Through Thermal Radiation Comparison in
Vulnerable Areas. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 1052–1059. [CrossRef]

26. Fyrbiak, M.; Wallat, S.; Reinhard, S.; Bissantz, N.; Paar, C. Graph similarity and its applications to hardware security. IEEE Trans.
Comput. 2019, 69, 505–519. [CrossRef]

27. Pollie, R. Nanosheet Chips Poised to Rescue Moore’s Law. Engineering 2021, 7, 1655–1656. [CrossRef]
28. Interconnect. On-Chip Interconnect. 2022. Available online: https://research.tsmc.com/schinese/research/interconnect/on-

chip-interconnect/publish-time-1.html (accessed on 1 May 2022).
29. Dong, C.; Zhang, F.; Liu, X.; Huang, X.; Guo, W.; Yang, Y. A locating method for multi-purposes HTs based on the boundary

network. IEEE Access 2019, 7, 110936–110950. [CrossRef]
30. Kurihara, T.; Hasegawa, K.; Togawa, N. Evaluation on hardware-Trojan detection at gate-level IP cores utilizing machine learning

methods. In Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS),
Napoli, Italy, 13–15 July 2020; pp. 1–4. [CrossRef]

31. Xu, Y.; Chen, Z.; Huang, B.; Liu, X.; Dong, C. HTtext: A TextCNN-based pre-silicon detection for hardware Trojans. In Proceedings
of the 2021 IEEE ISPA/BDCloud/SocialCom/SustainCom, New York, NY, USA, 30 September–3 October 2021; pp. 55–62.
[CrossRef]

32. Elshamy, M.; Di Natale, G.; Sayed, A.; Pavlidis, A.; Louërat, M.M.; Aboushady, H.; Stratigopoulos, H.G. Digital-to-Analog
Hardware Trojan Attacks. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 69, 573–586. [CrossRef]

33. Huang, Z.; Wang, Q.; Yang, P. Hardware trojan: Research progress and new trends on key problems. J. Comput. 2019, 42, 993–1017.
34. He, G.; Dong, C.; Liu, Y.; Fan, X. IPlock: An Effective Hybrid Encryption for Neuromorphic Systems IP Core Protection.

In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 612–616. [CrossRef]

35. Hossain, F.S.; Sakib, T.H.; Ashar, M.; Ferdian, R. A dual mode self-test for a stand alone AES core. PLoS ONE 2021, 16, e0261431.
[CrossRef]

36. Sabri, M.; Shabani, A.; Alizadeh, B. SAT-Based Integrated Hardware Trojan Detection and Localization Approach Through
Path-Delay Analysis. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2850–2854. [CrossRef]

37. Shen, L.; Mu, D.; Cao, G.; Qin, M.; Zhu, J.; Hu, W. Accelerating hardware security verification and vulnerability detection through
state space reduction. Comput. Secur. 2021, 103, 102167. [CrossRef]

38. Dong, C.; Chen, J.; Guo, W.; Zou, J. A machine-learning-based hardware-Trojan detection approach for chips in the Internet of
Things. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719888098. [CrossRef]

39. Dong, C.; He, G.; Liu, X.; Yang, Y.; Guo, W. A multi-layer hardware trojan protection framework for IoT chips. IEEE Access 2019,
7, 23628–23639. [CrossRef]

40. Liakos, K.G.; Georgakilas, G.K.; Plessas, F.C.; Kitsos, P. GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS. Electronics
2022, 11, 245. [CrossRef]

41. Azriel, L.; Speith, J.; Albartus, N.; Ginosar, R.; Mendelson, A.; Paar, C. A survey of algorithmic methods in IC reverse engineering.
J. Cryptogr. Eng. 2021, 11, 299–315. [CrossRef]

42. Yang, S.; Hoque, T.; Chakraborty, P.; Bhunia, S. Golden-Free Hardware Trojan Detection Using Self-Referencing. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 2022, 30, 325–338. [CrossRef]

43. Karabacak, F.; Ogras, U.; Ozev, S. Malicious Activity Detection in Lightweight Wearable and IoT Devices Using Signal Stitching.
Sensors 2021, 21, 3408. [CrossRef]

44. Zhu, J.; Luo, A.; Li, G.; Zhang, B.; Wang, Y.; Shan, G.; Li, Y.; Pan, J.; Deng, C.; Yin, S.; et al. Jintide: Utilizing Low-Cost
Reconfigurable External Monitors to Substantially Enhance Hardware Security of Large-Scale CPU Clusters. IEEE J. Solid-State
Circuits 2021, 56, 2585–2601. [CrossRef]

45. Chen, E.; Kan, J.; Yang, B.Y.; Zhu, J.; Chen, V. Intelligent Electromagnetic Sensors for Non-Invasive Trojan Detection. Sensors 2021,
21, 8288. [CrossRef]

46. Taheri, H.E.; Mirhassani, M. A Pre-Activation, Golden IC Free, Hardware Trojan Detection Approach. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 2022, 30, 315–324. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2020.2995347
http://dx.doi.org/10.1109/JETCAS.2021.3084400
http://dx.doi.org/10.1109/ICSPC51351.2021.9451682
http://dx.doi.org/10.1109/ISCAS51556.2021.9401143
http://dx.doi.org/10.23919/DATE48585.2020.9116461
http://dx.doi.org/10.1109/TrustCom50675.2020.00140
http://dx.doi.org/10.1109/TC.2019.2953752
http://dx.doi.org/10.1016/j.eng.2021.11.008
https://research.tsmc.com/schinese/research/interconnect/on-chip-interconnect/publish-time-1.html
https://research.tsmc.com/schinese/research/interconnect/on-chip-interconnect/publish-time-1.html
http://dx.doi.org/10.1109/ACCESS.2019.2932478
http://dx.doi.org/10.1109/IOLTS50870.2020.9159740
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00022
http://dx.doi.org/10.1109/TCSI.2021.3116806
http://dx.doi.org/10.1109/ITNEC48623.2020.9085144
http://dx.doi.org/10.1371/journal.pone.0261431
http://dx.doi.org/10.1109/TCSII.2021.3074549
http://dx.doi.org/10.1016/j.cose.2020.102167
http://dx.doi.org/10.1177/1550147719888098
http://dx.doi.org/10.1109/ACCESS.2019.2896479
http://dx.doi.org/10.3390/electronics11020245
http://dx.doi.org/10.1007/s13389-021-00268-5
http://dx.doi.org/10.1109/TVLSI.2022.3140250
http://dx.doi.org/10.3390/s21103408
http://dx.doi.org/10.1109/JSSC.2021.3058551
http://dx.doi.org/10.3390/s21248288
http://dx.doi.org/10.1109/TVLSI.2021.3138303

Sensors 2023, 23, 5503 29 of 29

47. Wen, Y.; Yu, W. Combining thermal maps with inception neural networks for hardware trojan detection. IEEE Embed. Syst. Lett.
2020, 13, 45–48. [CrossRef]

48. Alhelaly, S.; Dworak, J.; Nepal, K.; Manikas, T.; Gui, P.; Crouch, A.L. 3D Ring Oscillator Based Test Structures to Detect a Trojan
Die in a 3D Die Stack in the Presence of Process Variations. IEEE Trans. Emerg. Top. Comput. 2020, 9, 774–786. [CrossRef]

49. Cho, M.; Jang, J.; Seo, Y.; Jeong, S.; Chung, S.; Kwon, T. Towards bidirectional LUT-level detection of hardware Trojans.
Comput. Secur. 2021, 104, 102223. [CrossRef]

50. Ma, H.; He, J.; Liu, Y.; Kuai, J.; Li, H.; Liu, L.; Zhao, Y. On-chip trust evaluation utilizing tdc-based parameter-adjustable security
primitive. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 1985–1994. [CrossRef]

51. Mohd, B.J.; Abed, S.; Hayajneh, T.; Alshayeji, M.H. Run-Time Monitoring and Validation Using Reverse Function (RMVRF)
for Hardware Trojans Detection. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2689–2704. . [CrossRef]

52. Patnaik, S.; Ashraf, M.; Sinanoglu, O.; Knechtel, J. A modern approach to IP protection and trojan prevention: Split manufacturing
for 3D ICs and obfuscation of vertical interconnects. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1815–1834. [CrossRef]

53. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

54. Rong, X. word2vec Parameter Learning Explained. arXiv 2014, arXiv:1411.2738v4.
55. Trust-HUB. Trust-HUB. 2022. Available online: https://www.trust-hub.org/#/benchmarks/chip-level-trojan (accessed on 1

May 2022).
56. Salmani, H.; Tehranipoor, M.; Karri, R. On design vulnerability analysis and trust benchmarks development. In Proceedings of

the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 471–474.
[CrossRef]

57. Shakya, B.; He, T.; Salmani, H.; Forte, D.; Bhunia, S.; Tehranipoor, M. Benchmarking of hardware trojans and maliciously affected
circuits. J. Hardw. Syst. Secur. 2017, 1, 85–102. [CrossRef]

58. Qiu, H.; Qiu, M.; Lu, Z. Selective encryption on ECG data in body sensor network based on supervised machine learning.
Inf. Fusion 2020, 55, 59–67. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LES.2020.3000008
http://dx.doi.org/10.1109/TETC.2020.2984162
http://dx.doi.org/10.1016/j.cose.2021.102223
http://dx.doi.org/10.1109/TCAD.2020.3035346
http://dx.doi.org/10.1109/TDSC.2019.2961902
http://dx.doi.org/10.1109/TETC.2019.2933572
https://www.trust-hub.org/#/benchmarks/chip-level-trojan
http://dx.doi.org/10.1109/ICCD.2013.6657085
http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1016/j.inffus.2019.07.012

	Introduction
	Threats Faced by Integrated Circuits
	Related Work
	Pre-Silicon Detection
	Dynamic Detection Approaches
	Static Detection Approaches

	Post-Silicon Detection
	Destructive Detection
	Nondestructive Detection

	Detection and Prevention for Specific Chips

	Problem Formulation
	Problem Description
	MultiScale Framework Description
	The Overall Flow of MHTtext

	Dataset Generation
	Redefinition for Netlist Structure
	Definition of the Circuit Signal Transmission Law
	Global Strategy for Dataset Generation
	Simple Path Sentence Generation
	The Global Strategy Algorithm Description

	Local Strategy for Datasets' Generation
	Local Path Sentence Generation
	The Local Strategy Algorithm Description

	Pretraining and Deep Learning Architecture
	Type Names Pretraining
	Selection of Word Vectorization Pattern
	Word Vector Optimization
	Setting the Related Parameters

	TextCNN Architecture and Parameter Details
	TextCNN Construction
	Parameters' Setting and Optimization

	Experiments and Evaluation
	Global Strategy Experiments
	Local Strategy Experiments
	Evaluation
	Previous and Traditional ML Indicators' Evaluation
	Stabilization Efficiency Index (SEI) Evaluation

	Discussion
	Conclusions
	References

