Affective Neural Responses Sonified through Labeled Correlation Alignment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of (Audio)Stimulus-(EEG)Responses
2.2. Two-Step Labeled Correlation Alignment between Audio and EEG Features
2.2.1. Supervised CKA-Based Selection of Features
2.2.2. CCA-Based Analysis of Multimodal Features
2.3. Sonification via Vector Quantized Variational AutoEncoders
- –
- The VQ-VAE coder includes a parametric spectrum estimation based on regressive generative models fitted on latent representations [53]. Therefore, both sets of signals () must have similar spectral content, at the very least, in terms of their spectral bandwidth. That is,
- –
- In regression models, both discretized signal representations must be extracted using similar recording intervals and time windows to perform the numerical derivative routines. Furthermore, the VQ-VAE coder demands input representations of fixed dimensions. Hence, the arrangements extracted from and must be of similar dimensions.
3. Experimental Setup
3.1. Affective Music Listening Database
3.2. Preprocessing and Feature Extraction
3.2.1. Time-Windowed Representations of Brain Neural Responses
3.2.2. Time-Windowed Representations of Eliciting Audio Stimuli
4. Results
4.1. Electrode Contribution to Labeled Correlation Alignment
4.2. Correlation Estimation for Time-Windowed Bandpass Feature Sets
4.3. Generation of Affective Acoustic Envelopes
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Xu, H.; Xu, F.; Cheng, L. The algorithmic composition for music copyright protection under deep learning and blockchain. Appl. Soft Comput. 2021, 112, 107763. [Google Scholar] [CrossRef]
- Bhattacharjee, M.; Mahadeva, P.; Guha, P. Time-Frequency Audio Features for Speech-Music Classification. arXiv 2018, arXiv:1811.01222. [Google Scholar]
- Kühl, N.; Goutier, M.; Hirt, R.; Satzger, G. Machine Learning in Artificial Intelligence: Towards a Common Understanding. In Proceedings of the HICSS, Hawaii International Conference on System Sciences, Grand Wailea, Hawaii, 8–11 January 2019; pp. 1–10. [Google Scholar]
- Briot, J.; Pachet, F. Music Generation by Deep Learning—Challenges and Directions. arXiv 2017, arXiv:1712.04371. [Google Scholar] [CrossRef] [Green Version]
- Herremans, D.; Chuan, C.; Chew, E. A Functional Taxonomy of Music Generation Systems. ACM Comput. Surv. (CSUR) 2017, 50, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Subramani, K.; Rao, P. HpRNet: Incorporating Residual Noise Modeling for Violin in a Variational Parametric Synthesizer. arXiv 2020, arXiv:2008.08405. [Google Scholar]
- Donahue, C.; Mao, H.; Li, Y.; Cottrell, G.; McAuley, J. LakhNES: Improving Multi-instrumental Music Generation with Cross-domain Pre-training. In Proceedings of the ISMIR, Delft, The Netherlands, 4–8 November 2019; pp. 1–8. [Google Scholar]
- Muhamed, A.; Li, L.; Shi, X.; Yaddanapudi, S.; Chi, W.; Jackson, D.; Suresh, R.; Lipton, Z.; Smola, A. Symbolic Music Generation with Transformer-GANs. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volumr 31, pp. 408–417. [Google Scholar]
- Natsiou, A.; O’Leary, S. Audio representations for deep learning in sound synthesis: A review. arXiv 2022, arXiv:2201.02490. [Google Scholar]
- Dubus, G.; Bresin, R. A Systematic Review of Mapping Strategies for the Sonification of Physical Quantities. PLoS ONE 2013, 8, e82491. [Google Scholar] [CrossRef]
- Wilson, J.; Sterling, A.; Rewkowski, N.; Lin, M. Glass half full: Sound synthesis for fluid–structure coupling using added mass operator. Vis. Comput. 2017, 33, 1039–1048. [Google Scholar] [CrossRef]
- Yu, C.; Qin, Z.; Martin-Martinez, J.; Buehler, M. A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence. ACS Nano 2019, 13, 7471–7482. [Google Scholar] [CrossRef]
- Milazzo, M.; Buehler, B. Designing and fabricating materials from fire using sonification and deep learning. iScience 2021, 24, 102873. [Google Scholar] [CrossRef]
- Mishra, S.; Asif, M.; Tiwary, U. Dataset on Emotions using Naturalistic Stimuli (DENS). bioRxiv 2021, 1–13. [Google Scholar] [CrossRef]
- Ramírez, A.; Hornero, G.; Royo, D.; Aguilar, A.; Casas, O. Assessment of Emotional States Through Physiological Signals and Its Application in Music Therapy for Disabled People. IEEE Access 2020, 8, 127659–127671. [Google Scholar] [CrossRef]
- Loui, P. Neuroscience of Musical Improvisation. In Handbook of Artificial Intelligence for Music; Springer: Plymouth, UK, 2021; pp. 97–115. [Google Scholar]
- Soroush, M.; Maghooli, K.; Setarehdan, S.; Nasrabadi, A. A review on EEG signals based emotion recognition. Int. Clin. Neurosci. J. 2017, 4, 118. [Google Scholar] [CrossRef]
- Weineck, K.; Wen, O.X.; Henry, M.J. Neural entrainment is strongest to the spectral flux of slow music and depends on familiarity and beat salience. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ehrlich, S.; Agres, K.; Guan, C.; Cheng, G. A closed-loop, music-based brain–computer interface for emotion mediation. PLoS ONE 2019, 14, e0213516. [Google Scholar] [CrossRef] [Green Version]
- Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.; Sainath, T. Deep learning for audio signal processing. IEEE J. Sel. Top. Signal Process. 2019, 13, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Pousson, J.; Voicikas, A.; Bernhofs, V.; Pipinis, E.; Burmistrova, L.; Lin, Y.; Griškova-Bulanova, I. Spectral Characteristics of EEG during Active Emotional Musical Performance. Sensors 2021, 21, 7466. [Google Scholar] [CrossRef]
- Liebman, E.; Stone, P. Artificial Musical Intelligence: A Survey. arXiv 2020, arXiv:2006.10553. [Google Scholar]
- Juslin, P.; Vastfjll, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Hildt, E. Affective Brain-Computer Music Interfaces –Drivers and Implications. Front. Hum. Neurosci. 2021, 15, 711407. [Google Scholar] [CrossRef]
- Wu, D. Hearing the Sound in the Brain: Influences of Different EEG References. Front. Neurosci. 2018, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Kong, W.; Jin, X.; Shang, J.; Yang, C. Visualizing Emotional States: A Method Based on Human Brain Activity. In Communications in Computer and Information Science, Proceedings of the Human Brain and Artificial Intelligence, Macao, China, 12 August 2019; Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X., Eds., Eds.; Springer: Singapore; pp. 248–258.
- Di-Liberto, G.; Marion, G.; Shamma, S. The Music of Silence: Part II: Music Listening Induces Imagery Responses. J. Neurosci. 2021, 41, 7449–7460. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 2020, 59, 103–126. [Google Scholar] [CrossRef]
- Pandey, P.; Ahmad, N.; Miyapuram, K.; Lomas, D. Predicting Dominant Beat Frequency from Brain Responses While Listening to Music. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, Houston, TX, USA, 9–12 December 2021; pp. 3058–3064. [Google Scholar]
- de Cheveigné, A.; Wong, D.; Di Liberto, G.; Hjortkjaer, J.; Slaney, M.; Lalor, E. Decoding the auditory brain with canonical component analysis. NeuroImage 2018, 172, 206–216. [Google Scholar] [CrossRef]
- Zhuang, Y.; Lin, L.; Tong, R.; Liu, J.; Iwamot, Y.; Chen, Y. G-gcsn: Global graph convolution shrinkage network for emotion perception from gait. In Proceedings of the Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November–4 December 2020. [Google Scholar]
- Podobnik, B.; Stanley, H. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyal, S.; Nag, S.; Banerjee, A.; Sengupta, R.; Ghosh, D. Music of brain and music on brain: A novel EEG sonification approach. Cogn. Neurodynamics 2019, 13, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1247–1255. [Google Scholar]
- Ciccarelli, G.; Nolan, M.; Perricone, J.; Calamia, P.; Haro, S.; O’Sullivan, J.; Mesgarani, N.; Quatieri, T.; Smalt, C. Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods. Sci. Rep. 2019, 9, 11538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, K.; Ganaa, E.; Zhan, Y.; Shen, X. Robust deflated canonical correlation analysis via feature factoring for multi-view image classification. Multimed. Tools Appl. 2021, 80, 24843–24865. [Google Scholar] [CrossRef]
- Ning, X.; Tian, W.; He, F.; Bai, X.; Sun, L.; Li, W. Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognit. 2023, 136, 109216. [Google Scholar] [CrossRef]
- Miran, S.; Akram, S.; Sheikhattar, A.; Simon, J.; Zhang, T.; Babadi, B. Real-time tracking of selective auditory attention from M/EEG: A bayesian filtering approach. Front. Neurosci. 2018, 12, 262. [Google Scholar] [CrossRef]
- Sawata, R.; Ogawa, T.; Haseyama, M. The extraction of individual music preference based on deep time-series CCA. In Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), IEEE, Osaka, Japan, 15–18 October 2019; pp. 15–16. [Google Scholar]
- Hajinoroozi, M.; Mao, Z.; Jung, T.; Lin, C.; Huang, Y. EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 2016, 47, 549–555. [Google Scholar] [CrossRef]
- Dorfer, M.; Widmer, G. Towards deep and discriminative canonical correlation analysis. In Proceedings of the ICML 2016 Workshop on Multi-View Representation Learning, New York, NY, USA, 19–24 June 2016; pp. 1–5. [Google Scholar]
- Dorfer, M.; Schlüter, J.; Vall, A.; Korzeniowski, F.; Widmer, G. End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss. Int. J. Multimed. Inf. Retr. 2018, 7, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Belo, J.; Clerc, M.; Schön, D. EEG-based auditory attention detection and its possible future applications for passive BCI. Front. Comput. Sci. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Garcia-Murillo, D.; Alvarez-Meza, A.; Castellanos-Dominguez, G. Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks. Sensors 2021, 21, 2750. [Google Scholar] [CrossRef] [PubMed]
- Mori, K. Decoding peak emotional responses to music from computational acoustic and lyrical features. Cognition 2022, 222, 105010. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, D.; Burunat, I.; Toiviainen, P.; Alluri, V. Influence of musical expertise on the processing of musical features in a naturalistic setting. In Proceedings of the Conference on Cognitive Computational Neuroscience, Berlin, Germany, 13–16 September 2019; pp. 655–658. [Google Scholar]
- Koctúrová, M.; Juhár, J. A Novel approach to EEG Speech activity detection with visual stimuli and mobile BCI. Appl. Sci. 2021, 11, 674. [Google Scholar] [CrossRef]
- Katthi, J.; Ganapathy, S. Deep Correlation Analysis for Audio-EEG Decoding. IEEE Trans. Neural Syst. Rehabil Eng. 2021, 29, 2742–2753. [Google Scholar] [CrossRef]
- Alvarez-Meza, A.; Orozco-Gutierrez, A.; Castellanos-Dominguez, G. Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Front. Neurosci. 2017, 11, 550. [Google Scholar] [CrossRef]
- Wang, J.; Xue, F.; Li, H. Simultaneous channel and feature selection of fused EEG features based on sparse group lasso. BioMed Res. Int. 2015, 2015, 703768. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, W.; Liu, W.; Tao, D. A survey on canonical correlation analysis. IEEE Trans. Knowl. Data Eng. 2019, 33, 2349–2368. [Google Scholar] [CrossRef]
- Dhariwal, P.; Jun, H.; Payne, C.; Kim, J.; Radford, A.; Sutskever, I. Jukebox: A generative model for music. arXiv 2020, arXiv:2005.00341. [Google Scholar]
- Kingma, D.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. [Google Scholar] [CrossRef] [Green Version]
- Bagherzadeh, S.; Maghooli, K.; Shalbaf, A.; Maghsoudi, A. Recognition of emotional states using frequency effective connectivity maps through transfer learning approach from electroencephalogram signals. Biomed. Signal Process. Control. 2022, 75, 103544. [Google Scholar] [CrossRef]
- Collazos-Huertas, D.; Alvarez-Meza, A.; Castellanos-Dominguez, G. Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Appl. Sci. 2022, 12, 1695. [Google Scholar] [CrossRef]
- Daly, I.; Nicolaou, N.; Williams, D.; Hwang, F.; Kirke, A.; Miranda, E.; Nasuto, S. Neural and physiological data from participants listening to affective music. Sci. Data 2020, 7, 177. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Sarkar, A.; Hossain, A.; Hossain, S.; Islam, R.; Hossain, B.; Quinn, J.; Moni, M. Recognition of human emotions using EEG signals: A review. Comput. Biol. Med. 2021, 136, 104696. [Google Scholar] [CrossRef]
- Leipold, S.; Greber, M.; Sele, S.o.; Jäncke, L. Neural patterns reveal single-trial information on absolute pitch and relative pitch perception. NeuroImage 2019, 200, 132–141. [Google Scholar] [CrossRef]
- Das, P.; Gupta, S.; Neogi, B. Measurement of effect of music on human brain and consequent impact on attentiveness and concentration during reading. Procedia Comput. Sci. 2020, 172, 1033–1038. [Google Scholar] [CrossRef]
- Orlandi, S.; House, S.; Karlsson, P.; Saab, R.; Chau, T. Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: A Systematic Review. Front. Hum. Neurosci. 2021, 15, 643294. [Google Scholar] [CrossRef]
- Alvarez-Meza, A.; Cardenas-Pena, D.; Castellanos-Dominguez, G. Unsupervised kernel function building using maximization of information potential variability. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Puerto Vallarta, Mexico, 2–5 November 2014; pp. 335–342. [Google Scholar]
- Zhu, J.; Wei, Y.; Feng, Y.; Zhao, X.; Gao, Y. Physiological Signals-based Emotion Recognition via High-order Correlation Learning. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K.; Tanaka, H.; Nakamura, S. Emotion Estimation from EEG Signals and Expected Subjective Evaluation. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), IEEE, Gangwon, Republic of Korea, 22–24 February 2021; pp. 1–6. [Google Scholar]
- Shamsi, F.; Haddad, A.; Najafizadeh, L. Early classification of motor tasks using dynamic functional connectivity graphs from EEG. J. Neural Eng. 2021, 18, 016015. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, B.; Zhang, S.; Liu, Y.; Song, R.; Cheng, J.; Chen, X. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism. Comput. Biol. Med. 2022, 143, 105303. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Meza, A.M.; Torres-Cardona, H.F.; Orozco-Alzate, M.; Pérez-Nastar, H.D.; Castellanos-Dominguez, G. Affective Neural Responses Sonified through Labeled Correlation Alignment. Sensors 2023, 23, 5574. https://doi.org/10.3390/s23125574
Álvarez-Meza AM, Torres-Cardona HF, Orozco-Alzate M, Pérez-Nastar HD, Castellanos-Dominguez G. Affective Neural Responses Sonified through Labeled Correlation Alignment. Sensors. 2023; 23(12):5574. https://doi.org/10.3390/s23125574
Chicago/Turabian StyleÁlvarez-Meza, Andrés Marino, Héctor Fabio Torres-Cardona, Mauricio Orozco-Alzate, Hernán Darío Pérez-Nastar, and German Castellanos-Dominguez. 2023. "Affective Neural Responses Sonified through Labeled Correlation Alignment" Sensors 23, no. 12: 5574. https://doi.org/10.3390/s23125574
APA StyleÁlvarez-Meza, A. M., Torres-Cardona, H. F., Orozco-Alzate, M., Pérez-Nastar, H. D., & Castellanos-Dominguez, G. (2023). Affective Neural Responses Sonified through Labeled Correlation Alignment. Sensors, 23(12), 5574. https://doi.org/10.3390/s23125574