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Abstract: Sound synthesis refers to the creation of original acoustic signals with broad applications
in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning
architectures face numerous challenges when learning musical structures from arbitrary corpora.
This issue involves adapting patterns borrowed from other contexts to a concrete composition
objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural
responses to affective music-listening data, identifying the brain features that are most congruent
with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability,
a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The
proposed two-step LCA approach embraces a separate coupling stage of input features to a set of
emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation
analysis to select multimodal representations with higher relationships. LCA enables physiological
explanation by adding a backward transformation to estimate the matching contribution of each
extracted brain neural feature set. Correlation estimates and partition quality represent performance
measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic
envelope from the tested Affective Music-Listening database. Validation results demonstrate the
ability of the developed LCA approach to generate low-level music based on neural activity elicited
by emotions while maintaining the ability to distinguish between the acoustic outputs.

Keywords: music-EEG creation; canonical correlation analysis; centered kernel alignment; functional
connectivity

1. Introduction

Sound synthesis refers to the creation of original audio signals by combining proce-
dures that use embedded representations to extract information properties from complex
data of different natures. Generated acoustic data have broad applications ranging from
artistic innovation to creating adaptive, copyright-free music for games and videos [1],
among others. Acoustic representations of music generation are often derived directly from
other audio data sources [2]. However, music perception may involve segregating more
complex composition structures such as melody, harmony, rhythm, and timbre. Due to the
enhanced perception capabilities [3], sound generation has shown considerable potential
with Machine Learning (ML) models fed by raw time-domain data, for which architectures
are designed to be tightly coupled to the audio representations [4]. However, learning
musical styles from arbitrary corpora implies adapting ideas and patterns borrowed from
other contexts to a concrete objective. Style learning poses several challenges to ML ar-
chitectures. Namely, the following issues are reported [5]: capturing/generating music
with short- and long-term structures; performing low-level analysis (onset/offset detection,

Sensors 2023, 23, 5574. https://doi.org/10.3390/s23125574 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125574
https://doi.org/10.3390/s23125574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0308-9576
https://orcid.org/0000-0001-9758-4038
https://orcid.org/0000-0002-0138-5489
https://doi.org/10.3390/s23125574
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125574?type=check_update&version=1


Sensors 2023, 23, 5574 2 of 18

rhythm estimation, harmonic analysis) and high-level analysis (instrument detection, struc-
tural segmentation, genre, and mood classification); creating models that possess inherent
reasoning to reduce training data requirements; and promoting transparent and objective
evaluation methodologies, among others.

The creation of sounds often relies on statistical distributions deduced from training
acoustic data or from supplementary media information sources. Reports include the
speaker’s voice [6], multimodal audio–visual processing, and multi-instrumental setting [7],
text and symbolic transcriptions [8]. Specifically, supplementary data are provided for
applying conditioning to deep learning architectures while training [9]. The most common
method is adding additional audio data to the input set, taking advantage of vast online
music resources. Nevertheless, conditioning strategies for low-level music synthesis may
include non-acoustic data used to create audible sounds (also known as sonification [10]),
such as speech, images, text, and videos. Moreover, sonification can be used for more
unique sources, such as non-empty objects containing fluids [11], mode vibrations of
protein and amino acid building blocks [12], and the silent nature of flames [13]. Other
sources are biosignals captured from the human body, including electromyography [14]
and electrocardiographic data [15]. Even so, electroencephalography (EEG) signals reflect
emotions more accurately in real-time than other peripheral neurophysiological data. It also
offers more reliable data acquisition hardware with increasing affordability. As an example,
EEG-based affective brain–computer interfaces have attracted interest in developing music
creation systems [16]. However, the estimation accuracy of induced affective states using
EEG signals might be insufficient for applying conditioning to ML architectures [17]. Often,
modeling of emotions lacks consistency and is strongly context-dependent [18], not to
mention that the brain processes involved in the induction and mediation of affective states
by emotionally evocative stimuli are poorly understood due to the difficulty of carefully
controlling these types of studies [19].

Several characteristic sets inspired by the human auditory system and physiological
findings are used for feature extraction from auditory data. These characteristics offer a
broad set of possibilities for automatic descriptions of music signals [20], leveraging the
ability to extract acoustic descriptors across a wide dynamic range. Along with acous-
tic features, spectrograms [21], embeddings and symbolic representations are employed
for ML in sound synthesis [22]. In terms of obtaining EEG parameters, there are several
limitations. Firstly, the mechanisms evoking emotions are not only related to sound per-
ception and are especially subjective (information focus, cultural impact, musical structure
orientation) [23,24]. Next, EEG measures the brain’s electrical activity captured from the
scalp, which often contains significant artifacts unrelated to the presented stimulus and
caused by other cognitive tasks or reference noises [25]. Due to this, there are no standard
methods for extracting features from EEG data within the ML frameworks that have been
dedicated to EEG sonification in recent years [26].

Another issue is integrating data from multiple heterogeneous sensors into a low-
dimensional representation, learning the joint temporally modulated dependencies from
both modalities (audio and EEG) that are assumed to be mutually correlated [27]. Feature
reduction and selection are conducted as a first step to handle the large dimensionality
of the extracted characteristics and increase their interpretability [28]. As regards the
relationship between music stimuli and evoked neural responses, two distinct assessments
are reported for music generation: (a) Regression-based approach that directly predicts
a real-valued correlation between the coupled sets. (b) Recognition-based approach for
coupling the feature modalities through a standard set of categorical labels. The relationship
is assessed indirectly by the contribution learned by each training feature assemblage to
classifier performance [29]. To date, several multivariate correlation-based methods have
been reported to shed light on EEG-based music analysis, including Canonical Correlation
Analysis (CCA) that linearly transforms two sets to a domain maximizing their pairwise
correlation estimate [30], improved CCA-variant techniques [31], Multifractal Detrended
Cross-Correlation Analysis [32], and coupled Nonnegative Tensor Decomposition [33].
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Several ML approaches have recently been developed, such as deep CCA that infers the
optimum feature mapping [34], and architectures using Convolutional neural networks to
compute the similarity between spaces [35], among others. Nonetheless, the performance of
these feature alignment strategies described above is adversely affected if the training data
is noisy and/or has high variability [36]. Thus, the signal-to-noise ratio of EEG recordings
is poor because weak signals are overlaid by intrinsic noise with a much larger amplitude
than that generated by biological sources and cause intra-subject and intersubject variability.
As a result, feature extraction and feature alignment strategies require multiple repetitions
across many runs and trials. However, in stimulus-response paradigms, auditory datasets
hold very few trials per individual since participants tend to tire easily or have listening
fatigue. Consequently, improving feature alignment strategies to measure the similarity
between elicited audio stimuli and evoked EEG responses is still challenging [37].

This work proposes an approach to sonifying neural responses to affective music
listening data using the introduced Labeled Correlation Alignment (LCA), which identifies
the EEG features that are maximally congruent with the simultaneously extracted auditory
features. The proposed two-step LCA approach embraces a separate stage that matches both
input features with a set of emotion label sets using Centered Kernel Alignment (CKA).
Afterward, Canonical Correlation Analysis (CCA) selects multimodal representations
with higher relationships. LCA enables physiological explanation by adding a backward
transformation to estimate the matching contribution of each extracted EEG feature set.
CCA correlation estimates and partition quality are used as performance measures. To deal
with inter/intra-subject variability, we evaluate three feature extraction strategies using
Functional Connectivity (FC): the widely used Phase Locking Value, Gaussian Functional
Connectivity, and combining both FC measures. The task of discriminating and paying
attention to a specific sound source in an auditory environment is complex due to the
variability of both the stimuli and the subjects, presenting changes in response in the test
subjects and generating challenges in identifying a pattern of activation. In this analysis
of neuronal activation in the presence of auditory stimuli, there are studies of auditory
attention [38], as well as exploring the relationship between EEG and audio, such as
Canonical Correlation Analysis (CCA) [39], for determining the correlation between the
spaces. It also finds Neural Networks (NN) [40] to improve the correlation, although
still limited since it optimizes the discrimination to represent instead of the final CCA
projection [41], in addition to optimizing CCA in pre-training, but not while training the
task [42]. In addition to improving the correlation between auditory attention and EEG and
discovering the relationship between stimulus-response and BCI, the LCA approach also
finds patterns in BCI to generate applications, such as in education and music [43].

Consequently, we identify the EEG features most congruent with evoked auditory data
according to each label and present the results accordingly. In order to improve sonification
discrimination abilities, we focus on the main aspects. Aspects such as channels, time-
windowed dynamics, and bandpass filtering are addressed specifically. Additionally,
concrete results of generated discriminative acoustic signals are examined.

The agenda is as follows: Section 2 describes the feature extraction methods, Labeled
Correlation Alignment, and the variational autoencoders employed for sonification. Further,
Section 3 explains the validated affective music listening database, including the prepro-
cessing procedure and tuning of key parameters for feature extraction. Then, Section 4
summarizes the results in terms of spatial relationship and the effect of time-windowed
feature extraction on the LCA performance. Lastly, Section 5 gives critical insights into their
supplied performance and addresses some limitations and possibilities of the presented
approach.

2. Materials and Methods
2.1. Extraction of (Audio)Stimulus-(EEG)Responses

A piecewise stationary analysis accounts for the non-stationarity behavior inherent
to training data when characterizing the eliciting acoustic stimuli (Y∈R) and brain neural
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responses (X∈R). Thus, both feature sets (X∈X , Y∈Y) are extracted from Mτ overlapping
segments framed by a smooth-time weighting window lasting τm≤T, with m∈Mτ , where
T∈R is the recording length.

Specifically, a set of time-windowed neural response features, X→X, is extracted from
the EEG electrode montage using two functional connectivity metrics (FC), Phase Lock-
ing Value (PLV) and Gaussian FC (GFC), estimated on a trial-by-trial basis, respectively,
as [44]:

∆φV(xc
m, xc′

m) = E
{
| exp(j(φc

m(t)− φc′
m(t)))|:∀t∈τm

}
(1a)

∆φG(xc
m, xc′

m; σφ) = exp

(
−‖xc

m − xc′
m‖2

2
2σ2

φ

)
(1b)

where xc
m and xc′

m are the real-valued EEG vectors captured at instant m ∈ Mτ from the corre-
sponding electrodes c, c′∈NC; φc

m(t) and φc′
m(t) are the corresponding instantaneous phases φc

m(t)
and φc′

m(t), with c 6=c′, NC is the number of testing montage channels {xc
m∈[xc

m:m∈M]}∈X , and
σφ∈R+ a length scale hyperparameter. Notations ‖ · ‖2 and E{:∀ν} stand for `2-norm and
expectation operator computed across a variable ν, respectively.

In parallel, a set of time-windowed acoustic features, Y→Y, is extracted under the
music assessment and music listening paradigms [45]: Zero-Crossing Rate, Zero-Crossing
Rate, High/Low Energy Ratio, Spectral Entropy, Spectral Spread, Spectral Roll-off, Spectral
Flatness, Roughness, RMS energy, Broadband Spectral Flux, and Spectral flux for ten
octave-wide sub-bands. The extracted acoustic features’ descriptions are detailed in [46,47].
Furthermore, the feature set is completed by the short-time auditory envelopes extracted
as in [48].

2.2. Two-Step Labeled Correlation Alignment between Audio and EEG Features

The proposed feature alignment procedure between eliciting audio-stimuli and aroused
EEG responses consists of two steps: Firstly, the similarity of each feature space to the label
set is assessed using Centered Kernel Alignment. This space allows selecting the extracted
representations that match the closest. After selecting the labeled CKA representations,
Canonical Correlation Analysis is performed to identify audio and EEG features that are
maximally congruent in terms of estimated correlation coefficients.

2.2.1. Supervised CKA-Based Selection of Features

Sonification feature sets must be selected to create music following brain patterns but
according to distinct emotional conditions. Hence, the alignment is performed separately
between each feature set, Ξ={X∈RNR×P, Y∈RNR×Q} being P and Q the number of EEG
and Audio features (NR is the number of trials), to the provided labels, noted as Λ∈Z,
employing the CKA algorithm that includes an additional transformation to estimate the
contribution of every input representation. To be specific, we use the supervised empirical
estimate of CKA derived in [49], as follows:

wΞ
∗ = arg max

WΞ

〈K̄Ξ(WΞ), K̄Λ〉F
||K̄Ξ(WΞ)||F||K̄Λ||F

; (2)

where notation || · ||F stands for Frobenius norm, K̄ ∈ RNR×NR is the centered kernel matrix
estimated as K̄= ĨK Ĩ, K ∈ RNR×NR is the kernel matrix, Ĩ=I − 1>1/NR is the empirical
centering matrix computed across the trial set that holds NR, and I∈RNR×NR is the identity
matrix, 1∈RNR is the all-ones vector; and KΞ∈RNR×NR and KΛ∈RNR×NR are the kernel
matrices that match each extracted feature set to the labels, respectively.
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The kernel matrix elements, ξ, ξ ′∈Ξ, are computed on a trial-by-trial basis, respectively,
as follows:

κΞ

(
ξ, ξ ′; Wξ

)
= exp

(
−
(
(ξ − ξ ′)>W>

ξ Wξ(ξ − ξ ′)
)
/2
)

, (3a)

κΛ

(
λ, λ′

)
= δ

(
λ, λ′

)
, λ, λ′ ∈ Λ (3b)

where Wξ is the matrix linearly transforming the selected ξ̃ and input ξ sets in the form
ξ̃=ξWξ , with ξ̃∈{X̃ ∈ RNR×P, Ỹ ∈ RNR×Q}, being WξW>

ξ the corresponding inverse
covariance matrix of the multivariate Gaussian function as in Equation (3a).

A Gaussian function is used as the first kernel κΞ(, )∈R+ in Equation (3a), to assess the
pairwise similarity between aligned features due to its universal approximation properties
and tractability [50]. The second kernel includes the delta operator δ(·, ·) in Equation (3b)
suitable for dealing with categorical label values.

2.2.2. CCA-Based Analysis of Multimodal Features

This unsupervised statistical technique aims to assess the pairwise linear relationship
between the multivariate projected feature sets Ξ̃={X̃, Ỹ} obtained by supervised CKA-
based selection and described in different coordinate systems (EEG and Audio). To this end,
both representation sets are mapped into a common latent subspace to become maximally
congruent. Namely, the correlation between the EEG and auditory features is maximized
across all NR trials within a quadratic framework constrained to a single-dimensionality
latent subspace, as below [51]:

α̂X̃ , α̂Ỹ=arg max
αX̃ ,αỸ

α>X̃ ΣX̃ỸαỸ (4a)

s.t.: α>X̃ ΣX̃X̃αX̃=1, αX̃ ∈ RP (4b)

α>Ỹ ΣỸỸαỸ=1, αỸ ∈ RQ (4c)

where ΣX̃X̃ ∈ RP×P, ΣỸỸ ∈ RQ×Q, and ΣX̃Ỹ=X̃>Ỹ ∈ RP×Q.

2.3. Sonification via Vector Quantized Variational AutoEncoders

The feed-forward encoder and decoder network converts an input time-series ξ=[ξt:∀t],
with ξ∈Ξ, into a coded form of a discrete finite set (or tokens), z∈{zs:∀s∈S}, having each
element of size K. To this end, a latent representation hs=θE(ξξξ) (with H∈{hs}) is encoded
to be further element-wise quantized according to the vector-quantized codebook {ek :∀k}.
The VQ-VAE model noted as µ(ξ) is then trained using the minimizing framework, as
below [52]:

µ(ξ) : minE
{
‖ξt − θD(ez,t)‖2

2 : ∀t
}

+E
{
‖θSG(hs)− ez,s‖2

2 : ∀k
}
+ βE

{
‖hs − θSG(ez,s)‖2

2 : ∀k
}

(5)

where the first term is the reconstruction loss that penalizes for the distance between input
ξξξ and decoded output ξ̃ξξ=θD(·), the second term penalizes for the distance between each
encoding value of H and their nearest neighbors ez in the codebook, and the third term
prevents the encoding from strong fluctuations, ruling the weight β∈R[0, 1]. In addition,
notation θSG(·) stands for the stop-gradient operation, which passes zero gradients during
backpropagation.

Generally speaking, the coding model trained by one auditory signal set ξξξ∈Ξ can be
applied to the generation of acoustic data when feeding to the encoder signals of different
nature, ξξξ ′∈Ξ, provided their homogeneity is assumed. This model is referred to as µ(ξ|ξ′).
In light of this, we suggest that the following conditions be met:
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– The VQ-VAE coder includes a parametric spectrum estimation based on regressive
generative models fitted on latent representations [53]. Therefore, both sets of signals
(ξ, ξ′) must have similar spectral content, at the very least, in terms of their spectral
bandwidth. That is,

∆Fξ ' ∆Fξ′ (6)

– In regression models, both discretized signal representations must be extracted using
similar recording intervals and time windows to perform the numerical derivative
routines. Furthermore, the VQ-VAE coder demands input representations of fixed
dimensions. Hence, the arrangements extracted from ξ and ξ′ must be of similar
dimensions.

3. Experimental Setup

We propose a method for sonifying neural responses to labeled affective music lis-
tening using auditory and electroencephalographic features that are maximally congruent
with the label set. The method is evaluated to create music within the stimulus-response
paradigm using a scheme that encompasses the following stages (see Figure 1):

(i) Preprocessing and extracting time-windowed representations: Estimating acoustic
features from music data modulating emotions, and Functional Connectivity measures
from evoked EEG neural responses. Three strategies for FC extraction are considered:
Phase Locking Value, Gaussian Functional Connectivity, and their combination. Different
time windows are evaluated for feature extraction from neural brain responses as the
conditioning content is devoted to low-level music generation.

(ii) Labeled Correlation Alignment to identify the EEG features that are maximally con-
gruent with the stimulating auditory data by each emotion. To preserve the interpretability
of selected arrangements, this stage is performed in a two-step procedure: separate CKA
matching between audio and EEG data with the labels, followed by CCA analysis of the
selected feature sets.

The contribution of electrodes and bandpass-filtered, time-windowed dynamics to
Labeled Correlation Alignment is examined. The subject’s influence on overall performance
is also considered.

(iii) Labeled audio conditioning content was generated using selected brain neural
responses to feed a Vector Quantized Variational AutoEncoder.
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Figure 1. Proposed model architecture. The inputs are the neural activity (X ) and auditory (Y) data
acquired under the Stimulus-Response Paradigm, and the output is the set of acoustic envelopes for
creating labeled low-level music content.

We assess the relationship between the neural responses captured and the auditory
data in terms of their correlation estimated by CCA as a performance measure. Namely, the
higher the r-squared coefficient, the more related the brain responses to auditory stimuli.

Figure 1. Proposed model architecture. The inputs are the neural activity (X ) and auditory (Y) data
acquired under the Stimulus-Response Paradigm, and the output is the set of acoustic envelopes for
creating labeled low-level music content.

We assess the relationship between the neural responses captured and the auditory
data in terms of their correlation estimated by CCA as a performance measure. Namely, the
higher the r-squared coefficient, the more related the brain responses to auditory stimuli.
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The leave-one-out cross-validation strategy is applied (more precisely, leave-one-subject-
out) to compute the confidence of CCA correlation estimates, as carried out in [54]. The
discrimination ability of the labeled correlation alignment is also evaluated through the
clustering coefficient, γ∈R+, that is the partition quality of the CCA correlation values,
computed as:

γ =

(
ξ1 − ξ0

maxi ξi
+E

{
(ξn − ξ̄)2:∀n ∈ NR

})
, ξi ∈ Ξ

where ξ0 is the mean distance between a sample and all other points in the same group,
ξ1 is the mean distance between a sample and all other points in the closest group, ξn is
the number of samples within the data set, ξ̄ is the center of a group, where the squared
distance of each sample to the center of each group is calculated [55]. This clustering
measure calculates a trade-off between inter-class (first term) and intra-class variability
(second term). Consequently, the larger the value of γ, the more different the labeled
partitions of the extracted features will be.

3.1. Affective Music Listening Database

The data (publicly available at https://openneuro.org/datasets/ds002721/versions/
1.0.2) (accessed on 1 April 2023) were collected by a total of NS = 31 individuals. The test
paradigm consisted of six runs, capturing brain neural responses divided into two parts:
baseline resting recordings were measured while the participants were sitting still and look-
ing at the screen for 300 s (first and last run); four intervening runs (that is, NR = 40 trials
per subject), each with ten individual trials. During a single trial, a fixation cross was
presented until 15 [s] had passed. A randomly selected musical clip was played for T = 12 s
after the fixation cross appeared. The participants were given a short break after listening
to musical stimuli, followed by eight questions in random order to rate the music on a
scale (1–9) of induced pleasantness, energy, tension, anger, fear, happiness, sadness, and
sadness tenderness. Each participant had 2–4 s between answering the last question and
the subsequent fixation cross in the inter-trial intervals.

For each subject, the signal set was recorded from 19 channels according to
10–20 electrode placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, and O2), and each recording lasting 15 s was sampled at a rate of 1000 Hz,
submitted in Figure 2. The music stimuli examined how music modulates emotions and
contained 110 excerpts from scores covering a wide range of emotional responses, as
detailed in [56]. It is worth noting that the auditory data are labeled according to the
two-dimensional arousal-valence plane since affective states may be characterized as a
consciously accessible condition that combines arousal (activated-deactivated) and valence
(pleasure-displeasure), resulting in the following four labeled partitions (NL = 4) [57]:
High Arousal Positive Valence states (HAPV), High Arousal Negative Valence (HANV),
Low Arousal Negative Valence (LANV), and Low Arousal Positive Valence (LAPV).
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110 excerpts from scores covering a wide range of emotional responses, as detailed in [56].
It is worth noting that the auditory data are labeled according to the two-dimensional
arousal-valence plane since affective states may be characterized as a consciously accessible
condition that combines arousal (activated-deactivated) and valence (pleasure-displeasure),
resulting in the following four labeled partitions (NL=4) [57]: High Arousal Positive
Valence states (HAPV), High Arousal Negative Valence (HANV), Low Arousal Negative
Valence (LANV), and Low Arousal Positive Valence (LAPV).
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Figure 2. The experimental paradigm used by affective music listening-database.

3.2. Preprocessing and Feature Extraction
3.2.1. Time-Windowed Representations of Brain Neural Responses

Preprocessing EEG data consists of the following procedures:
(i) High-pass filtering of the raw EEG channel set was performed with a relatively high

cutoff frequency to remove linear trends in all NC electrodes. To this end, a zero-phase 3rd-

https://openneuro.org/datasets/ds002721/versions/1.0.2
https://openneuro.org/datasets/ds002721/versions/1.0.2
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order Butterworth filter was employed to bandpass the raw signal within [1–45] Hz. Further,
the FC feature sets were extracted within a bandwidth f∈NB, with NB = bFs/2c, where
Fs∈R+ represents the EEG sampling frequency. The bandwidths were selected to cover
physiological rhythms, which are influential in music appraisal within EEG paradigms, as
reported in previous studies [58]. Namely:

θ [4–8] Hz, α [8–12] Hz, and β [12–30] Hz; (ii) Artifact removal was achieved for the
occipital electrodes (associated with motor control) that may be highly active because
of the visual perception of sound stimuli after target presentation [59]. Another factor
contributing to poor occipital signals might be insufficient electrode contact [60]. In this
regard, the impedance had outlier values of (>100 kΩ) in three subjects. Therefore, both
channels (O1, O2) were ignored in the following. (iii) Re-reference to the common-average
electrical activity measured across all scalp channels. (iv) Resampling of EEG responses,
partitioned by trials, using the onset of each music stimulus as a fiducial mark, and further
downsampling at the sampling rate of 80 Hz. (v) Lastly, the piecewise stationary analysis
of EEG and auditory data was carried out over a set of the time segments (having testing
values [12, 6, 3, 1.5, 0.75, and 0.375] s), windowed by a smooth-time weighting function
(namely, Hann window) with 50% overlap.

Further, the FC features are extracted according to Equations (1a) and (1b), where the
kernel bandwidth parameter of GFC is optimized to reduce the probability density function
variability of the observed data p(X|σφ), that is, as detailed in [61]:

σ̃φ = arg max var{p(X|σφ)}

As a result, we extract one real-valued FC matrix sizing Nφ×Nφ, in a single trail-basis
at instant τ, for each evaluated FC measure and subject.

The FC matrix is vectorized to have a vector dimension NFC = Nφ(Nφ − 1)/2. Ac-
cordingly, the feature vector derived from individuals, NS, across all trials, NR, includes
dimension Nλ

X̃ = NFC×Nτ×NT×NS×NL, extracted from each emotion label λ for pur-
poses of validating the supervised feature alignment. Note that the extracted EEG feature
arrangement doubles in size when both FC measures are concatenated.

3.2.2. Time-Windowed Representations of Eliciting Audio Stimuli

Regarding auditory stimuli, all recordings were sampled at 44, 100 Hz and then seg-
mented into Nτ sliding windows with 50% overlap. Moreover, the sampled data are smooth
by squaring and applying a convolution with a square window. As a way to fulfill the
condition in Equation (6), stimuli data are further downsampled to 64 Hz with cubic root
compression. In order to match the dimension of the EEG training set, the acoustic set is also
fixed to a similar size, that is, dim(Ỹ)∼dim(X̃). Therefore, within each τ, we extract the
first PCA component from each of the 20 acoustic features described above [62]. The array
is completed with Nφ − 1 samples of the acoustic envelope. So, we extract Nτ(20 + Nφ − 1)
acoustic features within each T to be fed into the next alignment procedure.

4. Results

Here, we present the results by selecting the EEG features most congruent with the
evoked auditory data according to each label. We focus on the main aspects to improve
the sonification process’s discrimination abilities. Specifically, we address the influence of
channels, time-windowed dynamics, and bandpass filtering on neural responses. Concrete
outcomes of generated discriminative acoustic signals are also analyzed.

4.1. Electrode Contribution to Labeled Correlation Alignment

In the beginning, we consider the spatial relevance of each electrode in the scalp EEG
montage in terms of the relationship reached by LCA between the features extracted from
neural responses and acoustic stimuli. Figure 3 shows the r-squared values assessed by
CCA after applying CKA matching (middle column), which are displayed at each validated
set of window intervals, Nτ . The correlation estimates are averaged across the label set for a
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generalized interpretation. As can be seen from the plotted heatmaps, the correlation range
varies and spreads differently over the scalp electrodes depending on the evaluated feature
extraction method. This fact can be seen in the top heatmap revealing that PLV obtains
the lowest estimates between [0.05–0.59], with very few electrodes having a detectable
contribution. In contrast, GFC extends the correlation interval to [0.05–0.73] (middle plot).
At the same time, combining both measures results in correlation values [0.10–0.74] (bottom
plot), suggesting that either strategy of improved FC extraction leads to apparent brain
regions being coupled to the acoustic stimuli.
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Figure 4. Topoplots reconstructed from LCA according to the estimated electrode relationship with
the evoking auditory data. The channels affected by artifacts in gray are removed from the coupling
analysis.
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their combination (Bottom row). Notations E{17} stands for all EEG channel signals (i.e., NC = 17)
excluding O1,O2 while E{14} denotes without frontoparietal (Fp1, Fp2) and Midline Parietal (Pz)
electrodes (NC = 14), respectively. The horizontal axis stands for each electrode according to the
standard 10–20 system. In the right column, the horizontal axis denotes each considered time-
windowed set, NC.

Afterward, we evaluate the influence of each channel by averaging its correlation
performance across all tested window intervals, as displayed in the matrix row for the
whole EEG montage (noted as E{17}). It is worth noting that several electrodes tend to
zero-value their contribution regardless of the extraction method employed. A particular
focus is placed on electrodes that have been reported to be susceptible to artifacts during
data acquisition of music listening paradigms, specifically, the ones associated with brain
neural activity in the frontal cortex [63]. Thus, the bottom row (noted as E{14}) presents
the averaged r-squared values and shows that the correlation may increase when removing
Fp1, Fp2, and Pz electrodes.

The next aspect of consideration is evaluating the discrimination ability of the selected
features using the clustering coefficient γ. As displayed in the right column of Figure 3,
the partition separability of features extracted by PLV (see top plot) is modest due to the
low assessed r-squared values. In the case of GFC, the partitions between extracted EEG
features differ more pronouncedly. At the same time, the combination of GFC and PLV
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provides the most accurate separable clustering performance across the tested values of
the time window τ. Observed behavior remains for each electrode arrangement evaluated:
NC = 17 (blue line) or NC = 14 (orange line). For comparison, we assess the discrimination
ability of each feature selection procedure after conducting just a single CCA step that
achieves a significantly lower correlation (see left column) than the values attained by
incorporating the supervised CKA step previously (middle column). A comparison of
the heatmaps shows that a single CCA step results in lower values of γ (dashed lines)
regardless of the extraction method used, indicating the increased association between
neural responses and acoustic stimuli achieved through LCA.

Lastly, for purposes of physiological interpretability, Figure 4 displays the topoplots
reconstructed from the FC feature sets according to the correlation with the evoking au-
ditory data performed by LCA. As seen in the left column, PLV delivers weak values of
r-squared that are evenly distributed over the scalp. On the other hand, GFC increases both
lobes’ contribution (see central column). This influence is further accentuated by combining
GFC with PLV, giving rise to electrodes with powerful relevance (right column) and thus
increasing their relevance in the following sonification stages. Note that correlation assess-
ments focus more on the frontal and central lobes (painted yellow) when artifact-affected
electrodes are removed.
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4.2. Correlation Estimation for Time-Windowed Bandpass Feature Sets

Here, we investigate the effect of applying time-windowed feature extraction on LCA
performance and, in particular, how distinct the EEG responses remain over time since
changing dynamics can play a significant role in music creation. To illustrate this aspect, the
upper plot of Figure 5 unfolds the time-varying clustering coefficient at different windows
performed by each extraction method in the previous section (see Figure 3). The pictured
scatter plots indicate that the labeled EEG feature partitions become distinguishable when
fixed to a window narrower than τ≤ 3 s, meaning that the captured affective neural
responses can be more separable regardless of the FC metric used. From this length
value down, the narrower the overlapping time segment of feature extraction, the more
apparent the neural dynamics become. Note that the labeled partitions of the extracted
EEG dynamics differ and are more pronounced in GFC (middle row of the top plot) than in
PLV (upper row). However, combining GFC and PLV provides the best group separation
(lower row).
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Figure 5. Effect of time-windowed dynamics on the estimated values of r-squared. (a) Quality of
clustering between labeled affective neural responses depending on the time window length τm

measured in s. Outcomes are presented just for the removal channel configuration NC=14 since it
enhances the γ values. (b) Dynamic resolution of neural responses encoded by the extracted feature
sets. The influence of both channel removal configurations is evaluated. Of note, only the method
combining PLV+GFC is evaluated, and clustering is performed over the reduced set of EEG features
using Principal Component Analysis separately for each affective label.

Figure 5. Effect of time-windowed dynamics on the estimated values of r-squared. (a) Quality of
clustering between labeled affective neural responses depending on the time window length τm

measured in s. Outcomes are presented just for the removal channel configuration NC=14 since it
enhances the γ values. (b) Dynamic resolution of neural responses encoded by the extracted feature
sets. The influence of both channel removal configurations is evaluated. Of note, only the method
combining PLV+GFC is evaluated, and clustering is performed over the reduced set of EEG features
using Principal Component Analysis separately for each affective label.

Next, we analyze the time evolution of LCA to determine the dynamic resolution
of neural responses encoded by the extracted feature sets over time, but only for the
best strategy of FC representation (that is, the combination of PLV plus GFC). The lower
plot in Figure 5 presents the obtained r-squared values and reveals that the dynamics
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extracted at short lengths of τ are weak because of very wide τ≥ 3 s, resulting in intervals
with almost zero-valued correlation. Comparatively, extracted features at τ≤ 3 s become
stronger and has fluctuations over time (left plot of bottom row). Note that implementing
the channel removal strategy (middle plot) improves this behavior. Further, the right plot
shows the mean estimate of changes in the time-varying dynamic resolution computed as
the difference between neighboring correlation values, revealing that the separability of
affective labels tends to decrease as τ shortens. This effect may however be reduced with a
proper channel selection, as mentioned previously.

Another thing we discuss is the bandpass filtered feature extraction following brain
oscillations as a valuable musical property. Figure 6 presents the values of r-squared and γ
calculated by combining PLV plus GFC and extracted at different time windows for three
brain oscillations evaluated (i.e., θ, α, β). Filtering the lowest band (θ waveform painted in
blue line) causes more smoothing changes in the obtained time-varying dynamic resolution
than the baseline signal holding all waveforms (black line). In contrast, extraction of the
higher frequency rhythms (α - orange, β - green) speeds up the time-varying changes in
estimated correlation values (bottom row). However, rapid changes in r-squared imply
that discriminability between affective neural responses fluctuates over time (top row).

Sensors 2023, 1, 0 12 of 19

Here, we investigate the effect of applying time-windowed feature extraction on LCA
performance and, in particular, how distinct the EEG responses remain over time since
changing dynamics can play a significant role in music creation. To illustrate this aspect, the
upper plot of Figure 5 unfolds the time-varying clustering coefficient at different windows
performed by each extraction method in the previous section (see Figure 3). The pictured
scatter plots indicate that the labeled EEG feature partitions become distinguishable when
fixed to a window narrower than τ≤3 s, meaning that the captured affective neural re-
sponses can be more separable regardless of the FC metric used. From this length value
down, the narrower the overlapping time segment of feature extraction, the more apparent
neural dynamics will be. Note that the labeled partitions of the extracted EEG dynamics
differ and are more pronounced in GFC (middle row of the top plot) than in PLV (upper
row). However, combining GFC and PLV provides the best group separation (lower row).

τ=1.5 τ=0.75 τ=0.375

γ
r2

Figure 6. Performance variability over time conditioned by the wavebands θ, α and β. Clustering
coefficient (top row) and correlation (bottom row) are estimated at short lengths of window τ using
the FC extraction combining PLV+GFC.

Next, we analyze the time evolution of LCA to determine the dynamic resolution of
neural responses encoded by the extracted feature sets over time, but only for the best
strategy of FC representation (that is, the combination of PLV plus GFC). The lower plot
in Figure 5 presents the obtained r-squared values and reveals that the dynamics extracted
at short lengths of τ are weak because of very wide τ≥3 s, resulting in intervals with
almost zero-valued correlation. Comparatively, extracted features at τ≤3 s become stronger
and has fluctuations over time (left plot of bottom row). Note that implementing the
channel removal strategy (middle plot) improves this behavior. Further, the right plot
shows the mean estimate of changes in the time-varying dynamic resolution computed as
the difference between neighboring correlation values, revealing that the separability of
affective labels tends to decrease as τ shortens. This effect may however be reduced with a
proper channel selection, as mentioned previously.

Another thing we discuss is the bandpass filtered feature extraction following brain
oscillations as a valuable musical property. Figure 6 presents the values of r-squared and γ
calculated by combining PLV plus GFC and extracted at different time windows for three
brain oscillations evaluated (i.e., θ, α, β). Filtering the lowest band (θ waveform painted in
blue line) causes more smoothing changes in the obtained time-varying dynamic resolution
than the baseline signal holding all waveforms (black line). In contrast, extraction of the
higher frequency rhythms (α - orange, β - green) speeds up the time-varying changes in
estimated correlation values (bottom row). However, rapid changes in r-squared imply
that discriminability between affective neural responses fluctuates over time (top row).
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the FC extraction combining PLV+GFC.

To check for uniformity of the group of test subjects, we present in Figure 7 (top plot)
the performance of LCA implementation, achieved individually across the channel set
and at the considered time windows, which was used for feature extraction based on the
combination of PLV plus GFC. In the case of r-squared estimation (green line), there is an
appreciable discrepancy in mean and variance values among subjects. Furthermore, a few
individuals with a high standard deviation may indicate that their elicited neural responses
are far from typical in the subject set. In light of the discrimination ability that motivates the
LCA algorithm, we compute the classification of affective feature sets using a GraphCNN
framework, similar to the approach presented in [64]. The blue line depicts the calculated
classifier accuracy values (mean and standard deviation). In order to provide a better
understanding, all subjects are ranked in decreasing order of their achieved mean value,
showing a large gap between the best and lowest performers. To illustrate this point, we
compute the heatmap of electrode contribution from the r-squared assessments carried out
by both subjects along with the corresponding reconstructed neural activity topoplots. As
can be seen in the bottom plot, the best-performing subject (labeled as # 1) reaches a robust
relationship between auditory and EEG responses with marked brain zones of activation.
Moreover, enhanced performance occurs even within the broadest time window. On the
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contrary, the worst-performing subject (labeled as # 27) achieves a very scarce correlation
heatmap, suggesting a poor contribution from the central brain zone, which is assumed to
be important in the Affective Music Listening paradigm.
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4.3. Generation of Affective Acoustic Envelopes

In the last part of the evaluation, we investigate the ability to create music conditioning
content using brain neural activity selected by LAC. Specifically, the VQ-VAE framework
in Equation (5) is trained with affective music stimuli, Ỹ, and then applied to create
auditory data by feeding the autoencoder with the most similar representation of aroused
brain neural responses, X̃, i.e., using the model µΛ(Ỹ|X̃). Due to the highly complex
music structure encoded, additional settings are required. Only the acoustic envelope is
provided to the encoder as auditory training feature data, without any weighting filter
(That is, WỸ = 1), omitting the remaining acoustic features and smoothed to decrease
abrupt changes. When providing EEG data to feed the encoder input, the feature sets have
an additional dimension to represent neural activity’s spatial contribution. We map the



Sensors 2023, 23, 5574 14 of 18

EEG feature matrix into a vector representation by adding one convolutional layer to the
VQ-VAE input to reduce dimension.

In the top row, the left plot of Figure 8 illustrates an example of a multichannel
EEG response, followed by the extracted FC arrangement (middle plot) and applied to
the Labeled Correlation Alignment, estimating the correlation assessments for feeding
to the encoder. An example of the generated acoustic envelope in the output is then
presented (right plot), reconstructed using VQ-VAE. The right plot illustrates how the
envelope resulting from the training model µΛ(Ỹ|X̃α̂X̃) is smooth enough (orange line).
As a comparison, we show the acoustic output produced when encoding the raw EEG set
directly (i.e., µΛ(Ỹ|X̃) ), showing more increased variability and abrupt changes (blue line),
which tend to degrade the overall quality of the created music. In the middle row, we show
the clustering results obtained by the sets employed for training: input EEG envelopes (left
plot), input FC features (center plot), and generated acoustic envelopes under the model
µΛ(Ỹ|X̃α̂X̃) (right plot), which show a low discriminant between affective labeled sets. On
the other hand, the Labeled Correlation Alignment makes the compared input training
sets distinctive.
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Figure 8. Sonification via VQ-VAE based on the features extracted by LAC. (a) Time representation
of training sets: Input EEG recordings (left plot), extracted FC measures (central plot), and output
acoustic envelopes (right plot); (b) Clustering before LAC implementation; (c) Clustering performed
after LAC implementation. The illustration is given for the arisen EEG responses (left column), FC
measures (central column), and created acoustic envelopes (right column).
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5. Discussion and Concluding Remarks

This work proposes an approach to sonifying neural responses to affective music
listening data. Based on a set of emotions provided, the Labeled Correlation Alignment
identifies EEG features most compatible with auditory data. To this end, LCA embraces
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two steps: Supervised CKA-based feature selection followed by CCA-based analysis. The
validated results from the tested real-world data set demonstrate the developed LCA
approach’s ability to create low-level music content based on neural activity elicited by
the considered emotions, maintaining the ability to discriminate between the produced
acoustic envelopes.

Still, after the evaluation stage, the following points are worth noting:
Feature extraction. Gaussian Functional Connectivity, characterizing the elicited brain

activity, enhances the relationship assessment compared to the widely used Phase Lock-
ing Value alone. However, both FC measures’ combinations better associate the neural
responses triggered by coupled acoustic stimuli. This result suggests that the correlation
may benefit from including kernel-based FC to deal with inter-/intra-subject variability.
Nevertheless, the validation shows that the electrodes mostly affected by artifacts must be
adequately removed to improve the EEG feature extraction step. This aspect raises the need
to consider including other connectivity measures such as Phase-Amplitude Coupling and
entropy-based FC representations, also used in music appraisal paradigms.

Regarding auditory representations, the validation results demonstrate that short-time
acoustic envelopes can complete the widely used methods of acoustic feature extraction.
Moreover, to properly estimate the intrinsic latent stochastic models, these envelopes, cod-
ing relationships between neighboring samples, are only fed into the variational encoder
network that generates low-level music synthesis. Despite this, more elaborate represen-
tations, such as the Musical Instrument Digital Interface format, may be required when
encoding music structures of higher complexity.

Labeled Correlation Alignment. We introduce the two-step procedure to associate mul-
timodal features aligned with the label set, motivated by the fact that a single step of
Canonical Correlation Analysis tends to result in cases of a weak association between
coupled representation spaces. Additionally, this method for exploring relationships does
not benefit from label set information, resulting in poor discrimination between affective
responses. Hence, before Canonical Correlation Analysis identifies highly congruent mul-
timodal features, Centered Kernel Alignment is performed to select the most relevant
representations based on the affective labels.

Further physiological explanation of LCA results is possible by adding a backward
transformation within CKA to estimate the contribution of each extracted feature set.
In particular, the proposed LCA between the elicited audio-stimuli and aroused EEG
responses enables interpretation of the following aspects: (a) Electrode contribution shows
the correlation estimates focus more on the frontal and central lobes, increasing their
relevance in the sonification stage. (b) The contribution, obtained by short-time dynamics,
indicates that for narrow windows (τ≤ 3 s) LCA can deliver affective neural responses that
are still separable. Furthermore, the bandpass-filtered feature extraction based on brain
oscillations may smooth or speed up EEG dynamics. However, discriminability between
affective neural responses can reduce. (c) Influence of participants. A noticeable difference
exists between the subject performing best and the one with the lowest accuracy in the
assessed correlation.

From the information above, several aspects can be considered for enhancing the
association between multimodal features, such as group-level analysis to search for joint
contributions across individuals and correlation methods that search for optimized projec-
tions, for instance, using deepCCA [65].

Generation of low-level music content. Another finding is that the employed variational
autoencoder can generate distinctive acoustic envelopes from EEG representations se-
lected by LCA. However, the encoder network uses a discrete latent representation paired
with an autoregressive decoder specially designed for high-quality videos, music, and
speech. Hence, more efforts are needed to approach discrete neural representation with the
predictive VQ-VAE model.

In the future, the authors intend to develop a framework based on variational encoder
networks, for which brain neural data can directly affect the latent stochastic representations



Sensors 2023, 23, 5574 16 of 18

and regression models involved, according to the estimated relationship between the cou-
pled spaces. More databases, built according to paradigms other than stimulus–response,
will also be validated to deal with information shortages.
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