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Abstract: Brain–Computer Interfaces (BCIs) have become increasingly popular in recent years due
to their potential applications in diverse fields, ranging from the medical sector (people with motor
and/or communication disabilities), cognitive training, gaming, and Augmented Reality/Virtual
Reality (AR/VR), among other areas. BCI which can decode and recognize neural signals involved in
speech and handwriting has the potential to greatly assist individuals with severe motor impairments
in their communication and interaction needs. Innovative and cutting-edge advancements in this
field have the potential to develop a highly accessible and interactive communication platform for
these people. The purpose of this review paper is to analyze the existing research on handwriting
and speech recognition from neural signals. So that the new researchers who are interested in this
field can gain thorough knowledge in this research area. The current research on neural signal-based
recognition of handwriting and speech has been categorized into two main types: invasive and
non-invasive studies. We have examined the latest papers on converting speech-activity-based neural
signals and handwriting-activity-based neural signals into text data. The methods of extracting data
from the brain have also been discussed in this review. Additionally, this review includes a brief
summary of the datasets, preprocessing techniques, and methods used in these studies, which were
published between 2014 and 2022. This review aims to provide a comprehensive summary of the
methodologies used in the current literature on neural signal-based recognition of handwriting and
speech. In essence, this article is intended to serve as a valuable resource for future researchers who
wish to investigate neural signal-based machine-learning methods in their work.

Keywords: neural signals; machine learning; speech recognition; handwriting recognition; signal
processing

1. Introduction

Acquiring and analyzing neural signals can greatly benefit individuals who have
limitations in their movement and communication. Neurological disorders, such as Parkin-
son’s disease, multiple sclerosis, infectious diseases, stroke, injuries of the central nervous
system, developmental disorders, locked-in syndrome [1], and cancer, often lead to physical
activity impairments [2]. The acquisition of neural signals, along with stimulation and/or
neuromodulation using BCIs [3], aims to alleviate some of these conditions. In addition,
neural signals have been utilized in various fields such as security and privacy, cognitive
training, imaginary or silent speech recognition [4,5], emotion recognition [6,7], mental
state recognition [8], human identification [9,10], speech communication [11], synthesized
speech communication [12] gaming [13], Internet of Things (IoT) applications [14], Brain
Machine Interface (BMI) applications [15–17], neuroscience research [18,19], speech activity
detection [20,21] and more. The first step involves collecting neural signals from patients,
which are then processed and analyzed. The processed signals are then used to operate
assistive devices, which helps patients with their movements and communication. Neural
signals can also be utilized to gauge the mental state of the general population, detect
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brain injuries or sleep disorders, and identify individual emotions [22]. Speech-based BCIs
have shown great potential in assisting patients who have experienced brainstem strokes
or amyotrophic lateral sclerosis (ALS) and are consequently diagnosed with Locked-in
Syndrome (LIS). These patients can only interact with others using restricted movements,
such as eye movements or blinking [23]. Again, BCI technology can assist in facilitating
high-performance communication with individuals who are paralyzed [24,25]. Addition-
ally, speech BCI can be beneficial for individuals suffering from aphasia, a condition that
causes pathological changes in cortical regions related to speech [26]. Researchers are
currently developing intracortical BCI to aid individuals with motor disabilities in their
communication and interaction with the environment [27]. However, this technology relies
on recordings from the primary motor cortex, which can potentially exhibit day-to-day
variability [28].

Neural signals can be collected using two primary methods: invasive and non-invasive.
Using the invasive method, signals (for example, Electrocorticogram (ECoG) [29,30]) are
collected from inside the skull, which requires surgery. On the other hand, in the non-
invasive method, signals, such as Electroencephalogram (EEG) [31,32], are collected from
the scalp, which does not require surgery. However, the amplitude of the signals that
are received using non-invasive methods is usually smaller than signals received with
invasive techniques. Nevertheless, signal acquisition using non-invasive methods is easier
and safer than invasive techniques, and because of that there is a strong research interest
in improving the signal-to-noise ratio (SNR) [33] in non-invasive methods using specific
signal processing techniques. Both invasive and non-invasive signals can be used to detect
brain patterns and help individuals recognize handwriting, speech [34], silent speech [35],
emotion, and mental states. Another widely recognized neural signal extensively employed
in the field of BCI is the steady-state visual-evoked potential (SSVEP). SSVEP refers to a
measurable, objective fluctuation of electrical brain activity triggered by a particular group
of visual stimuli. SSVEP provides a stable and consistent neural response to visual stimuli.
SSVEP can be detected using non-invasive techniques, e.g., EEG technology. SSVEP-based
systems provide high information transfer rates. Again, different visual targets or objects
provide different SSVEP responses. SSVEPs are used for implementing EEG-based BCI
spellers as well [36].

The BCI technology related to detecting handwriting and speech from neural signals
is a new research area. Individuals with severe motor impairments can greatly benefit from
this type of BCI technology as it can significantly enhance their communication and interac-
tion capabilities [37]. Consequently, there is a growing demand for research in this field.
This paper aims to provide readers with an overview of the existing research conducted on
the recognition of handwriting and speech from neural signals up to this point.

This review summarizes articles that have used both invasive and non-invasive signals
to detect handwriting as well as speech. To the best of our knowledge, this is the first
review paper that involves both of these applications with acquired neural signals. At
the same time, we try to draw important conclusions such as (1) what are the regions of
the brain that is responsible for generating the intended neural signals, and where the
electrodes should be placed to achieve larger signal-to-noise ratio; (2) apart from speech
and handwriting detection, what are the other applications that can be enabled with similar
signal acquisition and processing techniques; and (3) which machine learning models
are becoming more popular for such scenarios and why. Individuals who have lost their
speaking or movement/writing capabilities require external support, and advancements
in this field can be extremely beneficial to the society as well as researchers interested in
neural signal processing.
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2. Regions of the Brain Responsible for Handwriting and Speech Production

The production of speech involves several stages in the brain, including the translation
of thoughts into words, the construction of sentences, and the physical articulation of
sounds [38]. Three key areas of the brain are directly involved in speech production: the
primary motor cortex, Broca’s area, and Wernicke’s area [39]. Wernicke’s area is primarily
responsible for producing coherent speech that conveys meaningful information. Damage
of Wernicke’s area, also known as fluent aphasia, can affect comprehension and meaningless
sentences [40]. Broca’s area aids in generating smooth speech and constructing sentences
before speaking. Damage to one’s Broca’s area results in a condition known as Broca’s
aphasia, or non-fluent aphasia, which can cause the person to lose their ability to produce
speech sounds altogether or to only speak slowly and in short sentences [39]. Finally, the
motor cortex plays a role in planning and executing the muscle movements necessary for
speech production, including the movement of the mouth, lips, tongue, and vocal cords.
Damages to the primary motor cortex can cause paralysis of the muscles used for speaking.
However, therapy and repetition can help improve these impairments [41].

When writing is initiated, our ideas are first organized in our mind, and the physical
act of writing is facilitated by our brain, which controls the movements of our hands, arms,
and fingers [42]. This process is initiated by the cingulate cortex of the brain. The visual
cortex then creates an internal picture of what the writing will look like. Next, the left
angular gyrus [43] converts the visual cortex signal into a comprehension of words, and
this process involves Wernicke’s area also. Finally, the parietal lobe and the primary motor
cortex work together to coordinate all of these signals and produce motor signals that
control the movements of the hand, arm, and finger required for writing [42]. In a study,
Willett et al. [44] proposed a discrete BCI, which is capable of accurately decoding limb
movements, including those of all four limbs, from the hand knob [45,46]. Figure 1 shows
the regions of the brain that are primarily responsible for speech production and motor
movements for handwriting.

Primary motor
cortex

Broca’s area

Wernicke’s area

Cingulate cortex

Visual cortex

Parietal lobe

Regions involved in speech production

Regions involved in handwriting generation

Regions involved in both speech production and
handwriting generation

Figure 1. Key regions of the brain that are fundamentally responsible for speech production and
initiating motor movements for generating handwriting. Wernicke’s area is responsible for speech
production. The parietal lobe, Visual cortex, and Cingulate cortex are responsible for handwriting
generation. The primary motor cortex and Broca’s area are responsible for both speech production
and handwriting generation.
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3. Methods of Collecting Data from Brain

The primary objective of many BCIs is to capture neural signals in a manner that allows
external computer software or devices to interpret them with ease. Neural signals can be
obtained from the brain through various methods such as EEG sensors, Microelectrode
arrays, or ECoG arrays. As shown in Figure 2, EEG signals can be extracted non-invasively
from the scalp. because of which they typically have lower magnitudes compared to
other neural signals. On the other hand, ECoG arrays can produce signals of higher
magnitude since they are implanted invasively in the brain. However, because of their
physical dimensions, the spatial resolution is still limited. Finally, microelectrode arrays
can acquire high-frequency spikes with much improved spatial resolution [47]. In all of
these methods, the signals must be processed in a way that enables the BCI software or
devices to effectively decipher them [48].

EEG sensors (Non–invasive) 
Amplitude: 5–300 µV 
Frequency: <100 Hz

Microelectrode arrays (Invasive)
Amplitude: 5–500 µV 
Frequency: 0.1-7 kHz

ECoG arrays (Invasive)
Amplitude: 0.01–5 mV 
Frequency: <200 Hz

Figure 2. Existing technologies like EEG Sensors, ECoG Arrays, and Microelectrode Arrays that
are used to acquire neural signals with their acquired signal characteristics including amplitude
and frequency bands [47]. The amplitudes of neural signals acquired from ECoG arrays and the
frequency of neural signals acquired from microelectrode arrays are typically higher than other
existing technologies.

3.1. Invasive Methods

The neural signals are directly collected using invasive electrodes, placed inside the
skull. Here, brain surgery is needed for implanting the electrodes into the grey matter of the
brain. As the signals are coming directly from the grey matter of the brain this technique
always provides high-quality signals [49], with better SNR. However, as it requires surgery
for implanting the electrodes inside the skull, the invasive methods carry a high risk of
brain infection. Additionally, in invasive methods, the brain reacts with a process called
gliosis that creates scar tissue around the foreign object (electrode), and thus the electrodes
can hardly collect neural signals [50] over time. Most of the papers included in this review
that utilizes invasive methods, have extracted the signals from the primary motor cortex
area of the brain [51].
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Invasive methods of collecting neural signals are mostly used in medical applications
in a hospital setting. As the signals are more accurate, they can be used to help paralyzed
patients with certain functionalities to move or provide commands through computers.
Since there is direct contact with neurons at the time of collecting signals they provide more
information even if the signals are coming from only a few neurons. These signals can be
used to control artificial arms [52], speech decoding [53], TV, lights, Brain to Text imple-
mentation [54], speech recognition [55,56] and other software applications [57]. Figure 3a
shows the invasive process of collecting the invasive signals from the brain.

Microelectrode 

array

Data 

Storage

Data 
Collection

Pros Cons

Accurate results Requires surgery

Higher SNR High Cost

More effective 

analysis

Risk of brain 

infection

(a)

Data 

Storage

Data 

Collection

Pros Cons

No surgery Required Less accurate results

Low cost Lower SNR

Does not have risk of 

brain infection

Less effective

analysis

(b)

Figure 3. Existing methods of collecting neural signals from brain. (a) Data processing flow diagram,
advantages, and disadvantages of invasive process of collecting neural signals from the brain. Though
invasive process requires surgery and high cost, neural signals that are extracted from invasive
process provide accurate results and higher SNR. (b) Data processing flow diagram, advantages, and
disadvantages of non-invasive process of collecting neural signals from the brain. The non-invasive
process requires no surgery and low cost, but the neural signals acquired from the non-invasive
process provide less accurate results and lower SNR.
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3.2. Non-Invasive Methods

In the non-invasive way of collecting neural signals, the electrodes are placed on the
scalp/skin to measure and collect neural signals. This technique has been used widely
because it’s easier to use, and does not require surgery as the neural signals are acquired
using external sensors or electrodes. Hence, it is cheaper and provides more comfort to the
person and it is also less risky.

However, as the signals are collected at a larger distance from the actual neurons, it
provides noisy data and worse signal resolution. Thus, this method is less effective than the
invasive methods in terms of the SNR. Most of the non-invasive ways focus on collecting
EEG signals as it is easier and cheaper. However, the EEG signals can vary from person to
person, and even within the subject from time to time [58]. Therefore, it is very difficult to
deal with the real-time experiment that the model has trained with the past EEG signals
dataset [59].

In the non-invasive techniques, the neural signals can also be sent back into the
brain using transcranial magnetic stimulation (TMS) which has already been used by
medics [49]. EEG signals are also used to recognize unspoken [60] and imagined speech
from individuals [61,62]. Examples of non-invasive techniques are EEG [63], magneto-
encephalography (MEG) [64], functional magnetic resonance imaging (fMRI) [65], and
near-infrared spectroscopy (NIRS) [66]. Figure 3b shows the non-invasive process of
collecting EEG data from the brain.

4. Articles Related to Handwriting and Speech Recognition Using Neural Signals
4.1. Speech Recognition Using Non-Invasive Neural Datasets

In 2017, Kumar et al. [67] proposed a Random Forest (RF) based silent speech recogni-
tion system utilizing EEG signals. They introduced a coarse-to-fine-level envisioned speech
recognition model using EEG signals, where the coarse level predicts the category of the
envisioned speech, and the finer-level classification predicts the actual class of the expected
category. The model performed three types of classification: digits, characters, and images.
The EEG dataset comprised 30 text and non-text class objects that were imagined by multi-
ple users. After performing the coarse-level classification, a fine-level classification accuracy
of 57.11% was achieved using the Random Forest classifier. The study also examined the
impact of aging and the time elapsed since the EEG signal was recorded.

In 2017, Rosinová et al. [68] proposed a voice command recognition system using EEG
signals. EEG data were collected from 20 participants aged 18 to 28 years, consisting of
13 females and 7 males. The EEG data of 50 voice commands were recorded 5 times during
the training phase. The proposed model was tested on a 23-year-old participant, whose
EEG signal data was collected when speaking the 50 voice commands 30 times. The hidden
Markov model (HMM) and Gaussian Mixture model (GMM) were used to train and test the
proposed model. The authors claim that the highest classification accuracy was achieved
on alpha, beta, and theta frequencies. However, the recording data were insufficient and
the accuracy was very low.

In 2019, Krishna et al. [69] presented a method for automatic speech recognition
from an EEG signal based on Gated Recurrent Units (GRU). Their proposed method was
trained on only four English words—“yes”, “no”, “left”, and “right”—spoken by four
different individuals. The proposed method can effectively detect speech in the presence of
background noise, with a 60 dB noise level used in the research. The paper reported a high
recognition accuracy of 99.38% even in the presence of background noise.

In 2020, Kapur et al. [35] proposed a silent speech recognition system based on Convo-
lutional Neural Network (CNN) utilizing neuromuscular signals. This research marks the
first non-invasive real-time silent speech recognition system. The dataset used comprised
10 trials of 15 sentences from three multiple sclerosis (MS) patients. The research obtained
81% accuracy, and an information transfer rate of 203.73 bits per minute was recorded.
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In 2021, Vorontsova et al. [2] proposed a silent speech recognition system based on
Residual Networks (ResNet)18 and GRU models that use EEG signals. The researchers
collected EEG data from 268 healthy participants who varied in age, gender, education, and
occupation. The study focused on the classification of nine Russian words as silent speech.
The dataset consists of a 40-channel EEG signal recorded at a 500 Hz frequency. The results
showed an 85% accuracy rate for the classification of the nine words. Interestingly, the
authors found that a smaller dataset collected from a single participant can provide higher
accuracy compared to a larger dataset collected from a group of people. However, the
out-of-sample accuracy is relatively low in this study.

4.2. Speech Recognition Using Invasive Neural Datasets

In 2014, Mugler et al. [70] published the first research article about decoding the
entire set of phonemes from American English. In linguistics, a phoneme refers to the
smallest distinctive unit of sound in a language, which can be used to differentiate one
word from another [71]. The authors used ECoG signals from four individuals. In this
study, a high-density (1–2 mm) electrode array with 4 cm of speech motor cortex was used
to decode speech. The researchers achieved 36% accuracy in classifying phonemes using
ECoG signals with Linear Discriminant Analysis (LDA). However, the accuracy in word
identification from phonemic analysis alone was only 18.8%, which falls short of the mark.

In 2019, Anumanchipalli et al. [72] proposed a speech restoration technique that
converts brain impulses into understandable synthesized speech at the rate of a fluent
speaker. Bidirectional long short-term memory (BLSTM) was used to decode kinematic
representations of articulation from high-density ECoG signals collected from 5 individuals.

In 2019, Moses et al. [73] proposed a real-time question-and-answer decoding method
using ECoG recordings. The authors used the Viterbi decoding algorithm which is the
most commonly used decoding algorithm for HMM. The real-time high gamma activity of
the ECoG signals has been collected from the brain. The authors received 61% decoding
accuracy for producing utterances and 76% decoding accuracy for perceiving utterances.

In 2020, Makin et al. [74] published an article on machine translation of cortical
activity to text using ECoG signals. The authors trained a Recurrent Neural Network
(RNN) to encode each sentence-length sequence of neural activity. The encoder-decoder
framework was employed for machine translation. The authors decoded cortical activity
to text based on words, as they are more distinguishable than phonemes. For training
purposes, 30–50 sentences of data were used.

In 2022, Metzger et al. [75] proposed an Artificial Neural Network (ANN) based model
for recognizing attempts at silent speech mainly built on GRU layers. ECoG activity from the
neural signal, along with a speech detection model, was used for spelling sentences. Only
code words from the North Atlantic Treaty Organization (NATO) phonetic alphabet [76]
were used during spelling to improve the neural discriminability from one word to another.
In online mode, an 1152-word vocabulary model was used, with a 6.13% character error
rate and 29.4 characters per minute. The beam search technique was used to spell the
most accurate sentences. However, only one participant was involved in this training and
spelling process.

4.3. Handwritten Character Recognition Using Non-Invasive Neural Datasets

In September 2015, Chen et al. [77] proposed a BCI speller using EEG. The study imple-
mented a Joint Frequency Phrase Modulation (JFPM) based SSVEP speller to achieve high-
speed spelling. Eighteen participants took part in the study, and six blocks of 40 characters
were used for training with 40 trials on each block in random order. The study found a
spelling rate of up to 60 characters per minute and an information transfer rate of up to
5.32 bits per second.
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Saini et al. [78] presented a method for identifying and verifying individuals using
their signature and EEG signals in 2017. The study involved collecting signatures and
EEG signals from 70 individuals between the ages of 15 and 55. Each participant provided
10 signature samples, and EEG signals were captured using an Emotiv Epoc+ neuro headset.
The researchers used 1400 samples of signature and EEG signals for user identification,
and an equal number of samples for user verification. They evaluated the performance
of the method using three types of tests: using only signatures, using only EEG signals,
and using signature-EEG fusion. The results showed that the signature-EEG fusion data
achieved the highest accuracy of 98.24% for person identification. For user verification, the
EEG-based model performed better than the signature-based model and the signature-EEG
fusion data. The authors also found that individuals between the ages of 15 and 25 had
higher identification accuracy than others, and males had higher identification accuracy
than females.

In 2019, Kumar et al. [79] proposed a novel user authentication system that utilizes
both dynamic signatures and EEG signals. The study involved collecting signatures and
EEG signals from 58 individuals who signed on their mobile phones simultaneously. A total
of 1980 samples of dynamic signatures and EEG signals were collected, with EEG signals
being recorded using an Emotiv EPOC+ device and signatures being written on the mobile
screen. To train the system, a BLSTM neural network-based classifier was utilized for both
dynamic signatures and EEG signals. The results showed that the signature-EEG fusion
data using the Borda count fusion technique achieved an accuracy of 98.78%. The Borda
count decision fusion verification model was used for user verification, which resulted in a
false acceptance rate of 3.75%.

In 2021, Pei et al. [80] proposed a method for mapping scalp-recorded brain activities
to handwritten character recognition using EEG signals. In the study, five participants
provided their neural signal data while writing the phrase “HELLO, WORLD!” CNN
based classifiers were employed for the analysis. The accuracy of handwritten character
recognition varied among participants, ranging from 76.8% to 97%. The accuracy of cross-
participant recognition ranged from 11.1% to 60%.

4.4. Handwritten Character Recognition Using Invasive Neural Datasets

In 2021, Willett et al. [81] proposed a brain-to-text communication method using
neural signals from the motor cortex. The authors employed a RNN for decoding the text
from the neural activity. The proposed model decoded 90 characters per minute with 94.1%
raw accuracy in real-time and greater than 99% accuracy offline using a language model.
Sentence labeling was performed using a HMM, and the Viterbi search technique was
employed for offline language modeling. The authors also demonstrated that handwriting
letters with neural activity is easier to distinguish than point-to-point movements.

Figure 4 shows the overall summary for the speech and handwritten character
recognition-based articles with invasive and non-invasive neural signal acquisition.
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Speech

Handwriting

Invasive
Non-

Invasive

i. Metzger et al., Nature - November 2022

i. GRU (ECoG array)

ii. NATO code words for 26 English alphabetic 

letters

ii. Makin et al., Nature - April 2020

1. RNN (ECoG array)

2. 30-50 sentences

iii. Anumanchipalli et al., Nature - April 2019

1. BLSTM (ECoG array)

2. Around 460 - 750 sentences from the MOCHA-

TIMIT database

iv. Mugler et al., Nature - June 2014

1. LDA (ECoG array)

2. Entire set of phonemes in the American accent

v. Moses et al., Nature – July 2019

1. Viterbi (ECoG array)

2. 9 questions and 24 possible answers

i. Willett et al., Nature - April 2021

▪ RNN (Microelectrode array)

▪ 1,000 sentences of 43501 

characters

i. Pei et al., J. Neural Eng - May 2021

▪ CNN (EEG electrode)

▪ 300 "HELLO, WORLD!" Sentences from 5 

participants

ii. Kumar et al., MDPI – October 2019

▪ BLSTM-NN (Emotiv Epoc+ EEG electrode)

▪ 1980 samples of dynamic signature and EEG 

signals from 58 people

iii. Saini et al., Information Sciences– November 2017

▪ HMM (Emotiv Epoc+ EEG electrode)

▪ 1400 samples of signature and EEG signals 

from 70 persons

iv. Chen et al., PNAS – September 2015

▪ JFPM with decoding algorithm (SSVEPs -

Synamps2 EEG electrode)

▪ 6 to 12 blocks of 40 characters have been 

used with 40 trials of random order

i. Vorontsova et al., MDPI – October 2021

▪ ResNet18 + GRU (EEG electrode)

▪ 9 Russian words

ii. Kapur et al., J Mach Learn Res– 2020

▪ CNN (Ag/AgCl surface electrodes)

▪ 15 sentences

iii. Krishna et al., ICASSP - May 2019

▪ GRU (EEG electrode)

▪ Five English vowels and four English words 

’yes’, ’no’ , ’left’, ’right’ of 5 minutes each

iv. Kumar et al., Springer - September 2017

▪ Random Forest (Emotiv Epoc+ EEG electrode)

▪ 30 text and non-text class objects

v. Rosinová et al., ELMAR – September 2017

▪ HMM and GMM (EEG  cap electrode)

▪ 50 voice commands

Figure 4. Summary of the existing articles on speech and handwritten character recognition with inva-
sive and non-invasive neural signal acquisition including methods, datasets, electrodes specification
and publication details of the individual articles [2,35,67–70,72–75,77–81].

5. General Principle of Using Machine Learning Methods for Neural Signals

The research conducted on neural signals typically follows a standardized flowchart.
It begins with the acquisition of neural signals and concludes with the identification of
these signals using the most efficient methods. In this context, we will focus on research
conducted using machine learning and classical techniques.

Figure 5 depicts a step-by-step diagram commonly utilized in existing research articles
that work with neural signals. To begin, invasive or non-invasive processes are used to
collect, digitize and store neural signals. These signals then undergo a series of preprocess-
ing techniques to enhance their quality. Next, meaningful features are extracted from the
processed signals. Finally, machine learning methods are employed to accurately decode
the signals. The various steps involved in the research articles have been summarized in
the following subsections.
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Collection 
of brain 
signals

Preprocessing
Feature 

extraction

Machine learning 
methods 

used for decoding

Figure 5. Diagram of data processing and machine learning methods used for decoding neural
signals (each block corresponds to one step of the whole process).

5.1. Prepossessing Techniques and Feature Extraction Methods

Most of the papers used independent component analysis and principle component
analysis in their preprocessing stages. For extracting meaningful features from the raw
data the authors used Mel Frequency Cepstrum Coefficients (MFCCs) in most of the
papers for recognizing speech or silent speech. In [81], the authors labeled the sentences
using a hidden Markov model. They provided a neural representation of the attempted
handwriting using principal component analysis and time-warping of the neural activity.
Additionally, they showed a 2D visualization of the neural activity using t-distributed
stochastic neighbor embedding. In [80], the EEG signals were first downsampled to 250 Hz
and bandpass filtered between 1 and 45 Hz. Additionally, silent parts of the signals were
removed. Next, Independent Component Analysis (ICA) was applied to extract meaningful
features. In [78], the raw EEG signals are smoothed using the Moving Average (MA) filter
and then Discrete Wavelet Transform (DWT) analysis has been applied for decomposing
the signals. Furthermore, features from the gamma frequency band were measured from
the EEG signals. In a separate article [79], DFT features were extracted from EEG signals
for use in user authentication. In the case of dynamic signatures, the feature generation
process involved combining the signature trajectory and writing direction, which were
both measured. In [73], Several preprocessing techniques like amplification, quantization,
noise removal, and sampling have been performed on the raw ECoG data. The PCA-LDA
model have been also used here for extracting principle components.

In [75], the neural signals were first digitized using a percutaneous pedestal connector.
Next, noise cancellation and anti-aliasing filters were applied to the signals, which were
streamed at 1 kHz. In [72], Dynamic Time Warping (DTW) was used in conjunction with
Mel Frequency Cepstral Coefficients to extract important features from silent speech. In [70],
the ECoG signals were marked according to the onset of phoneme time, and Fast Fourier
Transform (FFT) was performed on the ECoG signal. This was done to convert the signals
into meaningful features by combining FFT coefficients to form each frequency band of
interest. In [69], the first and most important 13 MFCC features were extracted, and first
and second-order differentials were computed. This resulted in a total of 39 MFCC features,
which were sampled at 100 Hz and mainly used for training purposes. The raw EEG signals
are first processed using a moving average filter to remove various types of noise, trends,
and artifacts in [67]. Next, the Standard Deviation, Root Mean Square, Sum of Values,
and Energy of the signals are computed to extract features. In [35], heartbeat artifacts and
high-frequency noise were removed from the Surface Electromyography (sEMG) signals,
which were then sampled at 1 kHz. In [68], the raw EEG signals were first normalized,
and then a 2nd-order Butterworth band-stop, low-pass, and high-pass filter was used to
remove muscular artifacts and random noise.

5.2. Features of the Brain Signals Used in Existing Research

For detecting handwriting and speech from neural signals different types of features
have been used in the existing research. Neural features are highly classified by the way
of extracting neural signals from the brain, i.e., invasively, or non-invasively. The most
used frequency bands and their approximate spectral boundaries of EEG signals are delta
(1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz) [82]. For
ECoG signals the commonly used frequency bands and their most approximate spectral
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boundaries are gamma (30–70 Hz) and high-gamma (>80 Hz) [83]. Table 1 shows the
summary table for features used in the existing research.

Table 1. Summary Table for features of brain signals.

Types of
Neural
Signal

Regions from
Which
Signals Are
Acquired

Features Used in the Existing Reseach

EEG
Non-
invasively
from the scalp

Standard Deviation, Root Mean Square, Sum of values, and Energy of
neural signals acquired at 128 Hz using Emotiv EPOC+ headset [2,67].
Fast Fourier transform and noise filtered signal extracted at 62.5–125 Hz
using 40 channels EEG headset [2]. The energy of each frame neural
signal was acquired at 250 Hz using EEG head cap [68]. EEG-acoustic
features [69]. Feature descriptors such as Pyramid histogram of
orientation gradients extracted at 128 Hz using Emotiv EPOC+ headset
[78]. Discrete Fourier Transform and dynamic signature features
extracted at 128 Hz using Emotiv EPOC+ headset [79]. Independent
component analysis result of neural signals acquired at 250 Hz using
32 channel EEG electrode [80].

ECoG

Invasively
from inside
the skull.
Generally
from the
primary
motor cortex
area of the
brain [51]

High gamma activity (70–150 Hz) from the auditory and sensorimotor
cortex [73]. High-frequency components (70–150 Hz) are recorded from
the peri-Sylvian cortices [74]. Articulatory kinematic features from
neural activity such as high gamma activity (70–200 Hz) and
Low-frequency signal (1–30 Hz) features are recorded from ventral
sensorimotor cortex [72,75]. High gamma frequency (65–250 Hz), mu
frequency (7–13 Hz) and beta (15–30 Hz) frequency are recorded from
cortex, frontal and temporal areas of brain [70]. Spatiotempral feature by
time warping the acquired neural signal from premotor cortex [81].

5.3. Machine Learning Methods Used for Training Neural Signals

The machine learning methods used for training neural signals have been divided into
2 parts namely classical classification methods and deep learning methods. We summarized
the methods used in the existing research that worked with neural signals. The Figure 6
shows our methods division strategy for better understanding.

Machine Learning methods

Classical Classification methods Deep Learning methods

CNN RNN GRU LSTMLDA RF HMM GMMSVM

Figure 6. In this review, the machine learning methods that have been used in the existing research
are divided into Classical Classification methods and Deep Learning methods to illustrate the existing
research more clearly. SVM, LDA, RF, HMM, and GMM fall under classical classification methods,
and CNN, RNN, GRU, and LSTM fall under deep learning methods.
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5.3.1. Classical Classification Methods

Several studies have utilized classical models to train neural signals for recognizing
both speech and handwriting activities. The majority of these studies have employed HMM
and GMM to train brain activities. One article [68] used HMM and GMM to train and test
EEG signals obtained from the brain. In another study, authors in [78] employed sequential
HMM for evaluating three types of testing, including testing with only signatures, testing
with only EEG signals, and testing with signature EEG fusion. In [73], the authors used the
Viterbi decoding algorithm which is one of the most useful and commonly used decoding
algorithms for HMM.

In addition to HMM, LDA was used in [70] to train the entire set of American English
phonemes from the ECoG signal. Lastly, JFPM along with a decoding algorithm has been
used which utilized SSVEPs [36,77] to implement an EEG-based BCI speller.

In [67], the authors have proposed a classifier based on RF that operates at both a
coarse and fine level. To identify three distinct levels of classes, three RF classifiers were
run in parallel. The authors stated that the RF classifier is superior to SVM and ANN-based
classifiers because it employs bagging ensemble and bootstrap aggregation techniques to
create multiple models that are combined to yield greater accuracy.

Figure 7a shows the overall accuracy of classical classification methods used till now
for working with neural signals.
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Figure 7. Pie charts of deep learning and classical methods used in existing research for speech and
handwriting detection from neural signals. (a) Pie chart of deep learning methods used. This pie
chart visualizes that GRU is dominating than CNN, RNN, and LSTM in this research field. (b) Pie
chart of classical classification methods used. This pie chart visualizes that HMM is dominating in
this research field as a classical classification method.

Figure 7. Pie charts of deep learning and classical methods used in existing research for speech and
handwriting detection from neural signals. (a) Pie chart of deep learning methods used. This pie
chart visualizes that GRU is dominating than CNN, RNN, and LSTM in this research field. (b) Pie
chart of classical classification methods used. This pie chart visualizes that HMM is dominating in
this research field as a classical classification method.
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5.3.2. Deep Learning Methods

Most recent articles have employed machine learning techniques to decode EEG
signals from the brain [84]. Again, machine learning methods have been used in the
training phase of most of the papers. Here the neural data have been trained and tested
using various machine learning models. Most of the researchers use RNN for developing
the model because of the ability of RNNs to process time-series data better. However, in
certain scenarios, CNN is used at the time of training the model with the neural dataset.

In [81], RNNs were used to convert the neural activity into probabilities that describe
the likelihood of characters that will be written. The probabilities are then thresholded to
identify the actual character. Again for decoding sentences to words from ECoG signals.
In [74], an encoder RNN was used to encode each sentence span of neural signal into a
conceptual expression. Then, a decoder RNN was used to decode this expression into
words and English sentences.

The GRU is also commonly used in most silent speech recognition tasks that involve
non-invasive neural signals. In [69], a GRU-based deep learning model was trained using
three different feature sets, including only EEG features, only acoustic features, and the
concatenation of acoustic and EEG features. In [2], the authors achieved the best results
using a ResNet18 + 2GRU neural network. They did not use any dropout, and the Adam
optimizer was employed with a 16-mini batch size and a 0.01 learning rate.

BLSTM neural network-based models have also been utilized for a variety of tasks,
including speech and handwriting recognition from neural signals. In the article previously
discussed [79], a BLSTM neural network-based classifier was employed for both dynamic
signatures and EEG signals, both individually and in combination. Here [85], a deep Long
Short Term Memory (LSTM) has been used to recognize imaginary speech from EEG data.
In another article [72], BLSTM was utilized for decoding kinematic representations of
articulation from ECoG signals.

CNN models were also used in the training process. In [35], a CNN model with 5-fold
repeated stratified cross-validation was trained using the Adam optimizer and a batch size
of 50 to minimize the cross-entropy loss of the spoken dataset. To recognize imaginary
speech from EEG data CNN has been used with cross-validation [4]. In [80], the 2D ERP,
pattern segments are processed and identified as images, which are then trained on a CNN
model to achieve higher accuracy. In [86], a densely connected 3D CNN has been used for
speech synthesis from ECOG signals.

The authors in [75] have developed an artificial neural network for speech detection
and letter classification. The neural network includes a 1D CNN input layer, followed by
two layers of bidirectional GRU. This configuration was chosen to optimize accuracy in
these tasks. The authors in [72], employed BLSTM to convert recorded cortical activity
into articulatory movement representations, and then converted those representations into
speech acoustics during the training process. This approach was utilized to decode cortical
activity and improve the accuracy of speech representation. In a study, Hinton et al. [87]
proposed a deep neural network-based speech recognition system that outperforms GMMs
on a variety of speech recognition benchmarks. Figure 7b shows the distribution of the
deep learning methods used in speech and handwritten recognition from neural signals.

6. Chronological Analysis of Methods Used for Training Neural Signals

Figure 8 presents a chronological overview of the methods used to process the neural
signals. Earlier in 2014, researchers employed classical methods such as LDA, SSVEPS, and
HMMs to train neural signals. However, over time, machine learning classifier algorithms
such as random forests and CNN became more popular for classifying neural signals. In
recent years, with the rapid development of ANN, researchers have discovered that ad-
vanced RNN architectures, such as LSTM, RNN, and GRU can work better with time-series
data such as neural signals. As a result, they have increasingly utilized such networks to
train with neural signals from 2020 to the present day. Compared to previous methods used
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with neural datasets, researchers have achieved higher accuracy working with advanced
RNN architectures.

2014 2017 2020 2022

LDA JFPM HMM, GMM GRURNNCNNLSTMRandom Forest, HMM

Figure 8. Chronological analysis of techniques used in neural data processing from 2014 to 2022.
Classical classification methods were used to dominate in the early stages of this research area but
nowadays deep learning methods are dominating in this research field.

7. Discussion

Previous studies have shown that neural signals can assist individuals with disabilities
in their communication and movement. Moreover, neural signals have been applied
in a variety of fields such as security and privacy, emotion recognition, mental state
recognition [88], user verification, gaming, IoT applications, and others. As a result, the
research on neural signals is steadily increasing. Although classical methods were once
widely used, machine-learning techniques have yielded promising results in recent years.

When working with neural signals, collecting and processing them can be one of the
most challenging tasks. As a result, much of the research in this field has been conducted
using non-invasive neural signals, which are easier to collect and process. However,
some research has also been done on invasive neural signals. Table 2 summarizes the
existing research by presenting the dataset, methods, and other important features of each
corresponding study. In [89], Nieto et al. also proposed an EEG-based dataset for inner
speech recognition. The use of neural signals to recognize a person’s handwriting and
speech has received significant attention in recent times. According to a study conducted
by authors in [81], identifying letters through neural activity is more practical than point-to-
point movements. Inner speech recognition through neural signals is also becoming more
popular in research [89].

Table 2. Summary for articles that focus on speech and handwritten recognition using neural signals.

Article Feature Extraction, Methods and
Results

Dataset Description
(Invasive/Non-Invasive Limitations

Kumar et al. [67]

Standard Deviation, Root Mean
Square, Sum of values, Energy.
Fine-level classification accuracy of
57.11% was achieved using the RF
classifier

30 text and non-text class
objects. 23 participants aged
between 15 and 40 years.
(Non-Invasive)

Fine level classification
accuracy is not up to
the mark

Rosinová et al. [68]
Feature vectors consisting of each
frame’s energy. Very low accuracy
using the HMM and GMM

50 voice commands from
20 participants
(Non-Invasive)

Limited recording data and
low accuracy

Krishna et al. [69]

EEG features, acoustic features and
combination of EEG-acoustic
features. A high recognition
accuracy of 99.38% in the presence
of background noise using GRU

Four English words—“yes”,
“no”, “left”, and “right”
spoken by 4 different people
(Non-Invasive)

Limited variations in
the dataset

Kapur et al. [35]

24-bit analog to digital converter
sampled at 250 Hz. 81% accuracy,
and information transfer rate of
203.73 bits per minute using CNN

10 trials of 15 sentences from
three multiple sclerosis
patients (Non-Invasive)

Limited variations in
the dataset

Voront-sova et al. [2]
EEG features. 85% accuracy rate for
the classification using ResNet18
and GRU

Nine Russian words as silent
speech from 268 healthy
participants (Non-Invasive)

Out-of-sample accuracy is
relatively low in this study
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Table 2. Cont.

Article Feature Extraction, Methods and
Results

Dataset Description
(Invasive/Non-Invasive Limitations

Mugler et al. [70]
Spatiotemporal features. 36%
accuracy in classifying phonemes
with LDA

Entire set of phonemes from
American English from
4 people (Invasive)

Only 18.8% accuracy in
word identification from
phonemic analysis

Anuman-chipalli
et al. [72]

Acoustic features, articulatory
kinematic features, spectral features.
BLSTM has been used for decoding
kinematic representations
of articulation

High-density ECoG signals
collected from
5 individuals (Invasive)

Experimental results are not
discussed briefly

Moses et al. [73]

High gamma activity. Viterbi
decoding was used with 61%
decoding accuracy for producing
utterances and 76% decoding
accuracy for perceiving utterances.

ECoG recordings of
9 questions and 24 possible
answers collected from
3 individuals (Invasive)

Limited variations in dataset

Makin et al. [74] High frequency components. RNN
used for training

30–50 sentences of data.
4 participants (Invasive) Limited variations in dataset

Metzger et al. [75]

High gamma activity and Low
frequency signal features. 6.13%
character error rate and
29.4 characters per minute
with GRU

NATO phonetic alphabet
was used during spelling.
1 participant. (Invasive)

Only one participant was
involved for training process

Chen et al. [77]

Filter bank analysis method.
Spelling rate of up to 60 characters
per minute with JFPM and
decoding algorithm

Six blocks of 40 characters by
18 people (Non-Invasive) Limited character sets

Saini et al. [78]

Pyramid histogram of orientation
gradients features. 98.24%-person
identification accuracy has been
obtained using HMM classifiers

1400 samples of signatures
and EEG signals.
70 participants.
(Non-Invasive)

User verification results have
not discussed briefly

Kumar et al. [79]

Dynamic signature features. 98.78%
accuracy has been obtained by
signature-EEG fusion data using
BLSTM-NN classifiers

1980 samples of dynamic
signatures and EEG signals
from 58 users (Non-Invasive)

No. of samples for actual
users are limited

Pei et al. [80]

Kinematic features. The accuracy of
handwritten character recognition
varied among participants, from
76.8% to 97% and cross-participant
from 11.1% to 60% using CNN
based classifiers

HELLO, WORLD! phrase by
5 participants
(Non-Invasive)

Dataset is small and cross
participant’s accuracy is low

Willett et al. [81]

Spatiotemporal features.
90 characters per minute decoding
rate with 94.1% raw accuracy in
real-time and greater than 99%
accuracy offline using RNN

1000 handwriting sentences
of 43,501 characters.
1 participant. (Invasive)

Ignored capital letters and
text deletion and editing is
not allowed

Most studies on speech-based Brain–Computer Interfaces (BCIs) have used acute or
short-term ECoG recordings, but in the future, the potential of long-term ECoG recordings
and their applications could be explored further [23]. Currently, the development of high-
speed BCI spellers is one of the most popular research directions. Ongoing innovations aim
to increase electrode counts by at least an order of magnitude to improve the accuracy of
extracting neural signals. Multimodal approaches using simultaneous EEG or ECoG signals
to identify individuals have also gained considerable attention in recent years [79]. The
performance of BCI communication can be enhanced by applying modern machine learning
models to a large, accurate, and user-friendly dataset. In the future, more robust features
may be extracted from EEG or ECoG signals to improve system recognition performance.
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EEG used to monitor the electrical activity of the brain, is an invaluable tool for
investigating disease pathologies. It involves analyzing the numerical distribution of
data and establishing connections between brain signals (EEG) and other biomedical
signals. These include the electrical activity of the heart measured by electrocardiogram
(ECG), heart rate monitoring using a photoplethysmography (PPG), and the electrical
activity generated by muscles recorded through electromyography (EMG) [90–92]. The
integration of neural signals with other biomedical signals has led to diverse applications,
such as emotion detection through eye tracking [93], video gaming and game research [94],
epilepsy detection [95], and motion classification utilizing sEMG-EEG signals [96,97],
among others [98,99].

One other extremely important consideration is the ability to detect and analyze the
neural signals in real-time for the production of speech and handwriting. To develop
real-time BCI applications, several issues and challenges have to be addressed. The neural
data collection methods need to become faster as well as more accurate. The pre-processing
techniques for the neural signals should also be improved in terms of their latency and
efficiency. At the same time, the decoding and classification methods used on these
processed data should also work with good accuracy and low latency. Moreover, for
developing real-time BCI, certain features of the neural signals should be extracted from
the processed data within a short time. Intraoperative mapping using high-resolution
ECoG can be used to produce results within minutes but still, more work need to be done
to perform this in real time [100]. The amplitude of the neural signals should remain
high, and the latency should remain low. For developing real-time speech detection from
ECoG signals the high gamma activity feature has been used in [73]. Again, kinematic
features have been used in [81] from ECoG data as well as from EEG [80]. The real-time
functional cortical mapping may be used for detecting handwriting and speech from
ECoG recording in real time [101]. A Pyramid Histogram of Orientation Gradient features
extracted from signature images can be used for fast signature detection from EEG data.
Event-related desynchronization/synchronization features from the EEG data may be used
for handwriting detection when an individual thinks about writing a character, as shown
in [102].

As these technologies target providing access to the signals generated by the brain,
ethical issues have emerged regarding the use of BCIs to detect speech and handwriting
from neural signals. It is important to consider individuals’ freedom of thought in BCI com-
munication, as modern BCI communication techniques raise concerns about the potential
for private thoughts to be read [5]. Key concerns involve the invasion of privacy and the risk
of unauthorized access to one’s thoughts. To address these concerns, solutions may include
the implementation of regulations, acquiring informed consent, and implementing strong
data protection measures. Furthermore, advancements in encryption and anonymization
techniques play a crucial role in ensuring the privacy and confidentiality of individuals.
Ongoing research endeavors focus on enhancing BCI accuracy and dependability through
the development of signal processing algorithms and machine learning models [103,104].

The future of BCI research in detecting handwriting and speech from neural signals
shows immense potential. It offers the possibility of improving the lives of individu-
als with speech or motor impairments by providing alternative communication options.
However, there are challenges that need to be overcome, including improving the accu-
racy and reliability of BCI systems, developing effective algorithms for decoding neural
signals, and addressing ethical concerns such as privacy protection. Moving forward,
efforts need to be focused by the new researchers in this field on refining signal process-
ing techniques, exploring novel approaches to recording neural activity and advancing
machine learning algorithms [105,106]. One other direction that the current research is
focused on is the collection of signals using distributed implants [107–111], which can
provide simultaneous recording from multiple sites scattered throughout the brain. Such
technologies hold immense promise in terms of providing more information from various
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regions which potentially produces correlated neural activity during the generation of
speech and handwriting.

8. Conclusions

The future of research in BCIs focusing on the detection of handwriting and speech
from neural signals holds significant promise. Innovative advancements in this field have
the potential to create a user-friendly and interactive platform that facilitates commu-
nication for individuals who experience disabilities related to their mobility, speech, or
ability to communicate effectively. In this review paper, we have investigated how the
brain signals are generated at the time of speech and the generation of handwriting and
the signal collection strategies from the brain. We tried to gather the existing machine
learning methods and decoding techniques that work with detecting speech and handwrit-
ing from neural signals. We have also investigated which features of the neural signals
are very important for recognition purposes. However, to enhance the accuracy of this
field, researchers should strive to identify effective signal processing techniques, employ
appropriate data collection methods, and select precise machine learning and decoding
algorithms suitable for analyzing neural signals.

As non-invasive BCI carries less risk than invasive BCI, research on non-invasive BCI
is growing day by day. However, the signals received from non-invasive BCI are weak and
prone to interference. Additionally, measuring neural signals is a challenging task. The
BCI system is generally much more complicated than other systems. Collecting neural
signals is entirely dependent on the individuals, hence users must be very active during
signal collection [105]. Nevertheless, there are now more studies focusing on neural signal
processing to help paralyzed patients. Silent speech and handwriting recognition with the
help of neural signals can be very useful for individuals with limitations in their speech
and handwriting. Furthermore, these neural signals have the potential to pave the way for
the development of advanced AR/VR applications in the near future. This review can be a
great help to those interested in speech and handwriting recognition using neural signals.
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
BCI Brain–Computer Interface
EEG Electroencephalogram
ECoG Electrocorticogram
LFP Local Field Potential
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory
HMM Hidden Markov Model
GMM Gaussian Mixture Model
RF Random Forest
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LDA Linear Discriminant Analysis
SSVEPs Steady State Visual Evoked Potentials
GRU Gated Recurrent Unit
BLSTM Bidirectional Long Short Term Memory
ResNet Residual Networks
EMG Electromyography
sEMG Surface Electromyography
IoT Internet of Things
MFCC Mel-frequency cepstral coefficient
BCI Brain–Computer Interface
NATO North Atlantic Treaty Organization
AR Augmented Reality
SNR Signal to Noise ratio
ANN Artificial Neural Network
BMI Brain Machine Interface
VR Virtual Reality
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