Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection
Abstract
:1. Introduction
2. Basic SPR System
3. Theory of Biasing the Metal-Gr System
4. Proposed SPR Sensor Surface
4.1. Optimization of Gr, Au and Ag layer thicknesses
4.2. Optimization of Black Phosphorus Layers
4.3. Optimization of Prism Material
4.4. Sensing Medium: Cancerous Cells
Cancer Type | Cell Type | Normal Cell RI | Cancer Affected Cell RI |
---|---|---|---|
Skin | Basal | 1.360 | 1.380 |
Cervical | HeLa | 1.368 | 1.392 |
Blood | Jurkat | 1.376 | 1.390 |
Adrenal Gland | PC12 | 1.381 | 1.395 |
Breast | MDA-MB-231 | 1.385 | 1.399 |
Breast | MCF-7 | 1.387 | 1.401 |
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPR | Surface Plasmon Resonance |
Gr | Graphene |
Au | Gold |
Ag | Silver |
Black P | Black Phosphorus |
FOM | Figure of Merit |
FTIR | Fourier Transform Infrared |
FWHM | Full Width at Half Maximum |
Rmin | Reflectance Minimum value |
Sn | Sensitivity wrt n - refractive index |
Appendix A
Appendix A.1. Prism Data
Appendix A.2. FWHM Calculation
Appendix A.3. QRS Complex
Appendix A.4. FTIR
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 17 January 2023).
- Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020, 11, 3475. [Google Scholar] [CrossRef]
- Soni, G.K.; Saima; Manhas, P.; Sharma, R.K. Peptide-based optical biosensors: A promising approach for early-stage cancer detection. Biosens. Bioelectron. 2022, 12, 100259. [Google Scholar] [CrossRef]
- Ferguson, S.; Yang, K.S.; Weissleder, R. Single extracellular vesicle analysis for early cancer detection. Trends Mol. Med. 2022, 28, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, S.Y.; Kim, D.W.; Park, Y.S.; Hwang, J.H.; Cho, S.; Cho, J.Y. Serum protein profiling of lung, pancreatic, and colorectal cancers reveals alcohol consumption-mediated disruptions in early-stage cancer detection. Heliyon 2022, 8, e12359. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xie, F.; Yin, L.; Yang, Y.; Yang, H.; Wu, G.; Wang, S. Breast cancer early detection by using Fourier-transform infrared spectroscopy combined with different classification algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121715. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Huang, Y.; Zhai, J.; Liao, G.; Wang, Z.; Ning, C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord. Chem. Rev. 2022, 471, 214723. [Google Scholar] [CrossRef]
- Xiao, G.; Ge, H.; Yang, Q.; Zhang, Z.; Cheng, L.; Cao, S.; Ji, J.; Zhang, J.; Yue, Z. Light-addressable photoelectrochemical sensors for multichannel detections of GPC1, CEA and GSH and its applications in early diagnosis of pancreatic cancer. Sens. Actuators Chem. 2022, 372, 132663. [Google Scholar] [CrossRef]
- Tabatabaeian, Z.S. Developing THz metasurface with array rectangular slot with High Q-factor for early skin cancer detection. Optik 2022, 264, 169400. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, M.; Wang, H.; Sun, S. Dual-signal amplified electrochemical biosensor based on eATRP and PEI for early detection of lung cancer. Bioelectrochemistry 2022, 148, 108224. [Google Scholar] [CrossRef]
- Klein, M.; Pragman, A.A.; Wendt, C. Biomarkers and the microbiome in the detection and treatment of early-stage non-small cell lung cancer. Semin. Oncol. 2022, 49, 285–297. [Google Scholar] [CrossRef]
- Van Poppel, H.; Roobol, M.J.; Chapple, C.R.; Catto, J.W.F.; N’Dow, J.; Sønksen, J.; Stenzl, A.; Wirth, M. Prostate-specific Antigen Testing as Part of a Risk-Adapted Early Detection Strategy for Prostate Cancer: European Association of Urology Position and Recommendations for 2021. Eur. Urol. 2021, 80, 703–711. [Google Scholar] [CrossRef]
- Robinson, E.R.; Gowrishankar, G.; D’Souza, A.L.; Kheirolomoom, A.; Haywood, T.; Hori, S.S.; Chuang, H.Y.; Zeng, Y.; Tumbale, S.K.; Aalipour, A.; et al. Minicircles for a two-step blood biomarker and PET imaging early cancer detection strategy. J. Control. Release 2021, 335, 281–289. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. Early detection of cancer: Past, present, and future. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2015; pp. 57–65. [Google Scholar] [CrossRef] [Green Version]
- Mashekova, A.; Zhao, Y.; Ng, E.Y.K.; Zarikas, V.; Fok, S.C.; Mukhmetov, O. Early detection of the breast cancer using infrared technology—A comprehensive review. Therm. Sci. Eng. Prog. 2022, 27, 101142. [Google Scholar] [CrossRef]
- Yasli, A. Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Plasmonics 2021, 16, 1605–1612. [Google Scholar] [CrossRef]
- Chiu, N.F.; Yang, H.T. High-Sensitivity Detection of the Lung Cancer Biomarker CYFRA21-1 in Serum Samples Using a Carboxyl-MoS2 Functional Film for SPR-Based Immunosensors. Front. Bioeng. Biotechnol. 2020, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Mostufa, S.; Akib, T.B.A.; Rana, M.M.; Islam, M.R. Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors 2022, 12, 603. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Yamamoto, M. Surface plasmon resonance (SPR) theory: Tutorial. Rev. Polarogr. 2002, 48, 209–237. [Google Scholar] [CrossRef]
- West, P.; Ishii, S.; Naik, G.; Emani, N.; Shalaev, V.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P.; Tripathi, R. Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt. Quant. Electron. 2015, 47, 3599–3611. [Google Scholar] [CrossRef]
- Prajapati, Y.K.; Pal, S.; Saini, J.P. Effect of a Metamaterial and Silicon Layers on Performance of Surface Plasmon Resonance Biosensor in Infrared Range. Silicon 2018, 10, 1451–1460. [Google Scholar] [CrossRef]
- Kumar Maharana, P.; Bharadwaj, S.; Jha, R. Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. J. Appl. Phys. 2013, 114, 014304. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, S.; Liang, Y.; Li, L.; Peng, W. Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photon. Sens. 2013, 3, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 20170056. [Google Scholar] [CrossRef]
- Nurrohman, D.T.; Wang, Y.H.; Chiu, N.F. Exploring Graphene and MoS2 Chips Based Surface Plasmon Resonance Biosensors for Diagnostic Applications. Front. Chem. 2020, 8, 728. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express 2009, 17, 16505. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Wu, G.; Wang, J.; Tian, B.; Sun, S.; Shen, H.; Lin, T.; Hu, W.; Kang, T.; et al. Graphene Dirac point tuned by ferroelectric polarization field. Nanotechnology 2018, 29, 134002. [Google Scholar] [CrossRef]
- Matthaiakakis, N.; Mizuta, H.; Charlton, M.D.B. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating. Sci. Rep. 2016, 6, 27550. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Stauber, T.; Peres, N.M.R.; Geim, A.K. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 2008, 78, 085432. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wu, L.; Dai, X.; Gao, Y.; Xiang, Y. An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J. Appl. Phys. 2016, 120, 053101. [Google Scholar] [CrossRef]
- Gollapalli, R.P. Enhanced sensitivity in graphene-based SPR biosensors using electrical bias. Opt. Lett. 2020, 45, 2862–2865. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Sharan, P. Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous. J. Opt. Soc. Am. B 2022, 39, 200–206. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Srivastava, S. A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik 2022, 258, 168885. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdullah, R.M.; Kadir, M.; Ahmed, H.M. Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim. Acta 2019, 296, 494–507. [Google Scholar] [CrossRef]
- Qin, R.; Shan, G.; Hu, M.; Huang, W. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. 2021, 21, 100527. [Google Scholar] [CrossRef]
- Cao, T.; Li, X.; Liu, L.; Zhao, J. Electric field and strain tunable electronic structures in monolayer Black Phosphorus. Comput. Mater. Sci. 2016, 112, 297–303. [Google Scholar] [CrossRef]
- Interactive Abbe Diagram for Schott Optical Glass. Available online: https://www.schott.com/en-us/interactive-abbe-diagram (accessed on 10 December 2022).
- Rosenblatt, G.; Simkhovich, B.; Bartal, G.; Orenstein, M. Nonmodal Plasmonics: Controlling the Forced Optical Response of Nanostructures. Phys. Rev. X 2020, 10, 011071. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Gu, H.; Zhu, S.; Jiang, H.; Chen, X.; Zhang, C.; Liu, S. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 2018, 439, 1079–1087. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Liang, X.; Liu, A.; Zhang, X.; Yap, P.; Ayi, T.; Yoon, H. Determination of refractive index for single living cell using integrated biochip. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Republic of Korea, 5–9 June 2005; Volume 2, pp. 1712–1715. [Google Scholar] [CrossRef]
- Yaroslavsky, A.N.; Patel, R.; Salomatina, E.; Li, C.; Lin, C.; Al-Arashi, M.; Neel, V. High-contrast mapping of basal cell carcinomas. Opt. Lett. 2012, 37, 644–646. [Google Scholar] [CrossRef]
- Kalogianni, D.P. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021, 8, 13. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; Kumar, A.; Armenise, M.N.; Ciminelli, C. Highly Sensitive Refractive Index Sensor Based on Polymer Bragg Grating: A Case Study on Extracellular Vesicles Detection. Biosensors 2022, 12, 415. [Google Scholar] [CrossRef]
- Hossain, M.B.; Kabir, M.A.; Hossain, M.S.; Islam, K.Z.; Hossain, M.S.; Pathan, M.I.; Mondol, N.; Abdulrazak, L.F.; Hossain, M.A.; Rana, M.M. Numerical modeling of MoS2–graphene bilayer-based high-performance surface plasmon resonance sensor: Structure optimization for DNA hybridization. Opt. Eng. 2020, 59, 105105. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rana, M.M.; Rahman, M.S.; Anower, M.S.; Mollah, M.A.; Paul, A.K. Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt. Mater. 2020, 107, 110123. [Google Scholar] [CrossRef]
- Jia, Y.; Liao, Y.; Cai, H. Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. Electronics 2022, 11, 332. [Google Scholar] [CrossRef]
- Yanowitz, F. ECG Learning Center—An Introduction to Clinical Electrocardiography. Available online: https://ecg.utah.edu/ (accessed on 10 December 2022).
- Thermo Fisher Scientific. FTIR Spectroscopy Basics—US. Available online: https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fourier-transform-infrared-spectroscopy/resources/ftir-spectroscopy-academy.html (accessed on 10 December 2022).
Basal Normal Cell, n = 1.360 | Basal Cancerous Cell, n = 1.380 | HeLa Normal Cell, n = 1.368 | HeLa Cancerous Cell, n = 1.392 | |||||
---|---|---|---|---|---|---|---|---|
(eV) ↓ | (deg) | (deg) | wrt 1.360 (deg/RIU) | FOM wrt 1.360 | (deg) | (deg) | wrt 1.368 (deg/RIU) | FOM wrt 1.368 |
0.001 | 77.15 | 81.90 | 237.6 | 38.60 | 78.84 | 85.07 | 259.50 | 38.55 |
1.000 | 77.47 | 82.69 | 277.2 | 68.14 | 79.27 | 87.01 | 340.50 | 67.08 |
1.500 | 78.01 | 83.84 | 334.8 | 84.55 | 79.99 | 86.65 | 325.50 | 8.74 |
2.000 | 77.00 | 82.04 | 244.8 | 73.12 | 78.77 | 86.90 | 336.00 | 71.79 |
2.500 | 76.61 | 81.40 | 212.4 | 68.60 | 78.30 | 86.04 | 300.00 | 67.20 |
3.000 | 76.28 | 80.93 | 189.0 | 64.81 | 77.94 | 85.28 | 268.50 | 65.42 |
3.500 | 76.03 | 80.53 | 169.2 | 61.04 | 77.65 | 84.67 | 243.00 | 63.68 |
4.000 | 75.82 | 80.24 | 154.8 | 58.90 | 77.40 | 84.17 | 222.00 | 62.29 |
4.500 | 75.64 | 79.92 | 138.6 | 55.00 | 77.18 | 83.70 | 202.50 | 60.48 |
5.000 | 75.46 | 79.67 | 126.0 | 52.24 | 76.97 | 83.30 | 186.00 | 58.71 |
5.500 | 75.28 | 79.42 | 113.4 | 49.22 | 76.79 | 82.94 | 171.00 | 57.23 |
6.000 | 75.10 | 79.20 | 102.6 | 45.97 | 76.61 | 82.62 | 157.50 | 55.38 |
6.500 | 74.95 | 78.98 | 91.8 | 43.22 | 76.43 | 82.30 | 144.00 | 52.63 |
7.000 | 74.81 | 78.77 | 81.0 | 38.79 | 76.25 | 82.04 | 133.50 | 51.50 |
7.500 | 74.66 | 78.59 | 72.0 | 36.36 | 76.10 | 81.76 | 121.50 | 48.91 |
8.000 | 74.52 | 78.41 | 63.0 | 32.41 | 75.96 | 81.50 | 111.00 | 46.02 |
8.500 | 74.41 | 78.23 | 54.0 | 28.85 | 75.82 | 81.29 | 102.00 | 44.27 |
9.000 | 74.27 | 78.08 | 46.8 | 26.00 | 75.67 | 81.07 | 93.00 | 42.35 |
9.500 | 74.16 | 77.90 | 37.8 | 21.88 | 75.56 | 80.86 | 84.00 | 39.55 |
10.000 | 74.05 | 77.76 | 30.6 | 18.09 | 75.42 | 80.64 | 75.00 | 36.55 |
Cancer Cell Type | RI Change | SPR Angle Shift | Max. SPR Angle Shift Due to Applied Bias with Optimal FOM | Sensitivity | Increased Sensitivity Due to Applied Bias | FOM | Additional FOM Due to Applied Bias | Total FOM |
---|---|---|---|---|---|---|---|---|
Basal | 0.020 | 4.17 | 6.69 | 334.8 | 97.2 | 38.6 | 45.9 | 84.50 |
HeLa | 0.024 | 6.23 | 8.06 | 336.0 | 76.5 | 38.5 | 33.2 | 71.74 |
Jurkat | 0.014 | 3.85 | 6.16 | 329.1 | 54.0 | 40.8 | 48.9 | 89.81 |
PC12 | 0.014 | 3.17 | 4.93 | 388.2 | 162.0 | 33.7 | 42.6 | 76.45 |
MDA-MB-231 | 0.014 | 1.98 | 3.85 | 275.1 | 133.7 | 21.3 | 40.7 | 62.13 |
MCF-7 | 0.014 | 1.22 | 27.14 | 87.4 | 1851.4 | 2.2 | 61.5 | 63.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gollapalli, R.; Phillips, J.; Paul, P. Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection. Sensors 2023, 23, 5590. https://doi.org/10.3390/s23125590
Gollapalli R, Phillips J, Paul P. Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection. Sensors. 2023; 23(12):5590. https://doi.org/10.3390/s23125590
Chicago/Turabian StyleGollapalli, Ravi, Jonathan Phillips, and Puneet Paul. 2023. "Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection" Sensors 23, no. 12: 5590. https://doi.org/10.3390/s23125590
APA StyleGollapalli, R., Phillips, J., & Paul, P. (2023). Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection. Sensors, 23(12), 5590. https://doi.org/10.3390/s23125590