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Abstract: Soil dust generated by explosions can lead to the absorption and scattering of lasers,
resulting in low detection and recognition accuracy for laser-based devices. Field tests to assess
laser transmission characteristics in soil explosion dust are dangerous and involve uncontrollable
environmental conditions. Instead, we propose using high-speed cameras and an indoor explosion
chamber to assess the backscattering echo intensity characteristics of lasers in dust generated by
small-scale explosive blasts in soil. We analyzed the influence of the mass of the explosive, depth
of burial, and soil moisture content on crater features and temporal and spatial distributions of soil
explosion dust. We also measured the backscattering echo intensity of a 905 nm laser at different
heights. The results showed that the concentration of soil explosion dust was highest in the first
500 ms. The minimum normalized peak echo voltage ranged from 0.318 to 0.658. The backscattering
echo intensity of the laser was found to be strongly correlated with the mean gray value of the
monochrome image of soil explosion dust. This study provides experimental data and a theoretical
basis for the accurate detection and recognition of lasers in soil explosion dust environments.

Keywords: backscattering echo intensity; laser; soil explosion dust; soil moisture content; mean
gray value

1. Introduction

Lasers are useful for high-precision, long-distance measurements; they can accurately
detect and recognize targets and have strong anti-electromagnetic interference ability [1–3].
In a military context, the role of lasers in fuzes and lidars is increasingly important in
the land battlefield environment. The laser fuze especially is widely used in ammunition
systems, such as anti-tank missiles, bombs, and projectiles [4–6]. However, laser beams
can easily be reflected or scattered. On a battlefield, aerosol particles such as smoke [7,8],
fog [9–11], and dust [12–16] are common and may interfere with the laser, reducing its
detection and recognition performance. In particular, soil dust [17] kicked up by vehicles
or scattered by the explosion of shallowly buried ammunition can absorb and scatter laser
radiation, potentially leading to lidar detection failure or early detonation of a laser fuze.
However, research on backscattering characteristics of laser beams propagating through
soil explosion dust is still in the early stage.

To understand the temporal and spatial distribution of dust from the detonation of
explosives buried in soil, some researchers have conducted field tests to study the craters
formed by the detonation of explosives buried in soil, and have measured the particle size
distribution and concentration of soil explosion dust at a specific position [18–21]. Because
of the limitations of existing equipment, dust particles with diameters above 150 µm cannot
be monitored; the measurement accuracy is not high; and conditions in the field, such
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as temperature, wind speed, and humidity, are uncontrollable. Moreover, such testing
is dangerous, costly, and has poor repeatability. Another historical approach involves
studying cratering and soil ejection in the early stages of explosions based on numerical
simulation methods such as smoothed particle hydrodynamics (SPH), the Euler method,
the Lagrange method, or other algorithms [22–24]. Studies taking this approach have paid
little attention to the temporal and spatial distribution characteristics of soil explosion
dust in the diffusion and settling phases. To examine the backscattering echo intensity
characteristics of laser in a dust concentration field at different times and positions, most
researchers have adopted numerical methods based on the optical geometric scattering,
Mie scattering, Monte Carlo method, or T-matrix method and limited to a single and
uniform dust concentration field [25–28]. The validity of such simulations is difficult to
verify. Experimental research related to the real-time monitoring of the backscattering echo
intensity characteristics of laser in soil explosion dust remains scarce.

To study the temporal and spatial distribution of soil explosion dust and measure the
backscattering echo intensity characteristics of lasers in soil explosion dust, in the present
study, we use high-speed cameras to assess the backscattering echo intensity characteristics
of lasers in dust generated by the small-scale explosives blasted in soil in an explosion
chamber. This method could measure the sizes of craters and capture the temporal and
spatial distribution images of the formation, diffusion, and setting process of soil explosion
dust, as well as measuring the backscattering echo voltages when laser-detecting targets in
the dust without interference from external environmental conditions. Additionally, we
analyzed the backscattering echo intensity characteristics of a 905 nm laser at different times
and the corresponding positions of the soil explosion dust generated under different masses
of explosives, depths of burial (DOBs), and soil moisture contents. We also studied the
relationship between the laser backscattering echo intensity and the image gray value of soil
explosion dust. This study should be extremely useful for improving the anti-interference
ability of laser fuzes and lidars and for realizing the accurate detection and recognition
of targets.

2. Test Method
2.1. Test Platform and Theory

We used a high-speed camera subsystem to record the formation, diffusion, and
setting process of soil explosion dust and used a laser to detect targets and obtain echo
voltages in this soil explosion dust. To avoid the influence of external conditions such as
temperature, wind speed, and humidity, the test was conducted indoors in an explosion
chamber. The test platform (Figure 1) included an explosion chamber, a thermohygrometer,
a high-speed camera subsystem, two laser echo characteristic test subsystems, an explosion
subsystem, and a trigger device. The explosion chamber (Figure 2) had an inner and
outer double-layer structure. The cylindrical side wall of the inner explosion chamber had
multiple transparent windows made of explosion-proof glass that acted as windows for
testers, high-speed cameras, and other equipment placed in the outer explosion chamber.
All personnel were required to evacuate to the outer explosion chamber, and the steel
explosion door was closed before the explosive was ignited. This double-layer structure
ensured the safety of the test personnel and equipment. A thermohygrometer was used to
monitor the temperature and humidity of the inner explosion chamber; the environmental
conditions in the inner explosion chamber were kept constant during reduplicative and
comparative testing to avoid changes in temperature and humidity that might influence
the backscattering echo intensity characteristics of the laser.

The explosion subsystem (Figure 3) generated different amounts of soil explosion dust,
depending on the specific mass of explosive, DOB, and soil moisture content. It contained
a steel drum with internal dimensions of Φ 50 × 50 cm and wall thickness of 3 mm. Plastic
cloth was placed underneath the steel drum to collect the soil particles scattered by the
explosion. The explosive was detonated using an electric detonator. The burial methods
for the explosive and electric detonator were those described in [29].
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Figure 1. Schematic diagram of the test platform developed for assessing the backscattering echo
intensity characteristics of a laser in soil explosion dust. HSC, WBC, and LECTS refer to the high-speed
camera, white background cloth, and laser echo characteristic test subsystem, respectively.
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Figure 2. Structure of the explosion chamber.
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Figure 3. Explosion subsystem: (a) internal geometry; (b) photograph.

The high-speed camera subsystem comprised a monochrome high-speed camera A,
a color high-speed camera B, a 4 × 3 m white background cloth A, a 3 × 2.4 m white
background cloth B, two fill lights, and a computer. The two high-speed cameras were
vertically distributed to record the formation, diffusion, and settling of the soil explosion
dust. To show the size of the soil explosion dust, the white background cloths A and B were
marked with horizontal and vertical scale lines at 25 cm intervals along their respective
vertical and intersecting edges. They were the targets of laser detection and provided a
single background for each high-speed camera, which was convenient for the subsequent
image processing and analysis of the soil explosion dust. The fill lights were the light
sources for the high-speed cameras, and the computer was used to set the working mode
and recording parameters of the high-speed cameras.

The laser echo characteristic test subsystem collected and stored the echo voltages
when the laser detected the white background cloth in soil explosion dust. This subsystem
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emitted a laser beam with a specific repetition frequency and pulse width. After the
attenuation of soil explosion dust or targets, the received laser was converted into electrical
signals, processed, and stored as voltages. The trigger mode, trigger time, and turn-off delay
time of the laser were controlled using an intelligent switch; this allowed the collection of
echo data in a particular period, effectively shortening the time for reading the data.

The trigger device was connected with the electric detonator, computer, and intelligent
switch, simultaneously triggering the explosion subsystem, high-speed camera subsystem,
and laser echo characteristic test subsystem, and maintaining the consistency of their time
sequences. The flowchart for the test method is shown in Figure 4.
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Figure 4. Flowchart of the proposed test method for assessing the backscattering echo intensity
characteristics of a laser in soil explosion dust.

2.2. Soil Preparation

The tests were conducted using loamy sand, as defined in the United States Depart-
ment of Agriculture (USDA, Washington, DC, USA) soil textural triangle [30]; this soil is
widely distributed in China. Figure 5a shows the surface morphology of this loamy sand,
examined using a SU5000 scanning electron microscope (Hitachi, Japan). The particle size
distribution of this loamy sand was assessed using a Horiba LA-950V2 Laser Scattering
Particle Size Distribution Analyzer with a measuring particle size range of 10 nm~3 mm
(Figure 5b). It is generally believed that the physical properties, such as bulk density, parti-
cle size distribution, and soil moisture content, of the soil surrounding a buried explosive
have a great impact on crater shape and size, dust volume, and dust diffusion. For this
reason, we prepared four kinds of loamy sand that differed only in moisture content: 12.5%,
10.3%, 8.7%, and 3.5% (Figure 6).
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2.3. Test Plan

Nine test series were conducted at the State Key Laboratory of Explosion Science and
Technology in the Beijing Institute of Technology, Beijing, China. All the test equipment
was laid out according to the schematic diagram of the test platform shown in Figure 1. The
cylindrical explosives were made of TNT with masses of 2, 1, and 0.58 g. These explosives
were detonated with a #8 electric detonator (Figure 7a). FASTCAM SA-Z (Figure 7b)
monochrome and FASTCAM SA4 (Figure 7c) color high-speed cameras (Photron, USA)
were used in this study. The lens axes of the monochrome high-speed camera A and
color high-speed camera B were perpendicular to the white background cloths A and B,
respectively, and passed through the axis of the explosion subsystem. The lenses of these
high-speed cameras were 3.8 m from the axis of the explosion subsystem, 6 m from the
white background cloth, and 1.6 m from the ground. The laser echo characteristic test
subsystems A and B were both equipped with 905D1S 905 nm pulsed laser diodes (Laser
Components, Germany), which could emit laser beams with a pulse repetition frequency of
1 Hz~10 kHz, pulse width of 20~100 ns, and sampling frequency of 250 MHz (Figure 7d).
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CAM SA4 color high-speed camera B. (d) Laser echo characteristic test subsystem: (i) photograph;
(ii) internal components.

The test plan comprised four parametric studies, each of which contained several
individual test series. The details of the nine test series that were conducted are summarized
in Table 1.
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Table 1. Summary of the experimental test plan.

Series
Soil Type Explosive

Moisture Content
w/%

Bulk Density
ρ/(g/cm3)

Mass
m/g DOB/cm

A 12.5 1.80 2 3
B 12.5 1.80 1 3
C 12.5 1.80 0.58 3
D 12.5 1.80 1 3
E 12.5 1.80 1 0
F 12.5 1.80 1 8
G 10.3 1.76 1 3
H 8.7 1.74 1 3
I 3.5 1.66 1 3

(1) Influence of mass of explosive: Series A~C

A: The recording frame rates of FASTCAM SA-Z monochrome and FASTCAM SA4
color high-speed cameras were 5000 and 500 fps, respectively. The axis of the laser beam of
the laser echo characteristic test subsystem A was perpendicular to the white background
cloth A and passed through the axis of the explosion subsystem. The laser was 3.3 m from
the axis of the explosion subsystem, 5.5 m from the white background cloth, and 70 cm
from the top surface of the explosion subsystem. The mass of the explosive m was 2 g. The
laser echo characteristic test subsystem B was not used.

B: Same setup as A, except that m = 1 g.
C: Same setup as A, except that m = 0.58 g.

(2) Influence of DOB: Series D~F

D: Same setup as B, except that the laser was 65 cm from the top surface of the
explosion subsystem. The laser echo characteristic test subsystems B and A were set up
in the same way, except that the height to the top surface of the explosion subsystem was
80 cm. The DOB of the explosive was 3 cm.

E: Same setup as D, except that DOB = 0 cm.
F: Same setup as D, except that DOB = 8 cm.

(3) Influence of soil moisture content: Series D, G~I

D: Soil moisture content w was 12.5%.
G: Same setup as D, except that w = 10.3%.
H: Same setup as D, except that w = 8.7%.
I: Same setup as D, except that w = 3.5%.

(4) Influence of laser irradiation position: Series B & D

B: The height of the axis of the laser beam emitted by the laser echo characteristic test
subsystem A above the top surface of the explosion subsystem was 70 cm.

D: The heights of the axes of the laser beams emitted by the laser echo characteristic
test subsystems A and B above the top surface of the explosion subsystem were 65 and
80 cm, respectively.

3. Results and Discussion
3.1. Crater

An explosion causes the displacement and ejection of soil from the ground; if the
explosion is close to the surface, a crater is formed by the complex interaction of gravity,
soil strength, and transient load conditions [31]. As shown in Figure 8, a crater is divided
into two categories: the apparent crater and the actual crater [32]. The apparent crater is
visible on the surface. The actual crater is filled with loose and almost discrete materials
from the explosion. In the rupture zone, the materials below the actual crater are crushed
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and cracked but have no significant displacements. In the plastic zone, particles exhibit
slight permanent displacements that are very small in the vicinity of the elastic zone.
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Figure 8. Schematic diagram of crater.

The mass of the explosive, DOB, and soil moisture content are the most critical pa-
rameters affecting the shape and size of the crater. The diameter d of the craters in our
study increased with the increasing mass of the explosive (Figure 9a). However, the ap-
parent depth did not significantly change whether the mass of the explosive was 2, 1, or
0.58 g. When the DOB increased, larger amounts of subsoil were expelled by the explosion,
leading to an increase in the crater diameter and apparent depth (Figure 9b). There was
a significant negative correlation between the soil moisture content and crater diameter,
while the apparent depth first increased and then decreased with decreasing soil moisture
content (Figure 9c).
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Figure 9. Sizes of apparent craters under different (a) masses of explosive, (b) depths of burial (DOBs),
and (c) soil moisture contents.
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Assessing craters is an appropriate tool for studying blast phenomena and the destruc-
tive power of different explosives. The crater volume is closely related to the mass of soil
explosion dust [31]. If the crater is approximated as a cone, its volume, V, is given as [33]:

V = πd2hc/12, (1)

where d is the actual crater diameter and hc is the apparent depth of the explosion. The
crater volume V was positively correlated with the mass of the explosive and DOB; it
increased with increasing soil moisture content until a certain threshold value, above which
it decreased (Figure 10).
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Figure 10. Crater volumes under different (a) masses of explosive, (b) DOBs, and (c) soil moisture contents.

The above results showed that as the DOB and the mass of the explosive increased,
more soil was moved by the explosion. As the soil moisture content was reduced, the soil
cohesion among the particles became smaller, and the soil resistance decreased. Under
the influence of the generated shock wave, more soil around the explosive was thrown
out, increasing the apparent depth. However, when the soil moisture content fell below a
certain threshold, the soil cohesion was no longer enough to drive the movement of nearby
particles. When the explosion occurred, only the soil around and under the explosive
was thrown out. Meanwhile, the soil around the explosion crater collapsed, and the
lower part of the blasting crater was buried because of the detonation. Therefore, the
apparent depth became smaller. Similarly, the surface layer over the soil on the top of the
explosive was air, and the air resistance on the soil was minimal. When the soil cohesion
between the soil particles was reduced, the soil on the top of the explosive was more
likely to be thrown out by the shock wave; thus, the diameter of the crater became larger.
Correspondingly, the crater volume first increased and then decreased with the decrease in
the soil moisture content.

3.2. Temporal and Spatial Distribution of Soil Explosion Dust

The physical process that occurs following the detonation of an explosive buried in
soil has four phases:

(1) Phase 1: explosion and early interaction with the soil;
(2) Phase 2: gas expansion;
(3) Phase 3: generation of smoke and soil ejecta;
(4) Phase 4: diffusion and settling of soil explosion dust.

Under the action of detonation, the first two stages occur very rapidly (in ms). From
phase 3, the soil explosion dust forms and diffuses; then, it is fully dispersed and finally,
settles to the ground under the influence of gravity. In phase 3, it may contain considerable
smoke; however, it is composed mostly of soil particles in phase 4.

The diffusion speed of soil explosion dust was very fast in the first 3 s, and the
concentration of dust was the highest in the first 500 ms (Figure 11). Most soil explosion dust
settled within 5 s, but some tiny particles still floated in the air. The distribution of the soil
explosion dust was approximately symmetrical around the axis of the explosion subsystem.
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Figure 11. Temporal and spatial distribution characteristics of soil explosion dust under different
(a) masses of explosive, (b) DOBs, and (c) soil moisture contents.

The smoke produced by the explosion mainly appeared in phase 3 and had almost
disappeared before 100 ms (Figure 11). The concentration and diffusion domain of the
visible smoke increased with the mass of the explosive but decreased with DOB. This was
not only because larger masses of explosive generated more smoke but also because more
visible smoke was released into the air when the DOB was shallower. Additionally, when
the soil was dry enough, less smoke was produced by the explosion, and the soil explosion
dust was more diffuse and had a stronger shielding effect on the smoke. Therefore, the
smoke was barely visible when the soil moisture content was 8.7% or 3.5%.

In phase 4, the soil explosion dust first spread upwards and outwards under the action
of the shock wave, then fell back under the action of gravity. The concentration of soil
explosion dust decreased from bottom to top, and its mass was positively correlated with
the crater volume (Figure 11). For the diffusion phase of soil explosion dust in phase 4,
at a given time, the concentration of soil explosion dust was positively correlated with
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the mass of the explosive; increasing this mass caused the explosion to generate more
energy to drive more soil to spread out (Figure 11a). Furthermore, within a certain range of
DOB, shallower DOB implied that less soil was ejected and more energy was imparted to
each dust particle, resulting in a smaller dust concentration and larger diffusion domain
(Figure 11b). Additionally, as the crater volume first increased and then decreased with
increasing soil moisture content, the diffusion speed of soil explosion dust first decreased
and then increased under the same detonation energy. Therefore, the diffusion domain
first decreased and then increased with the increasing soil moisture content, and the
concentration of soil explosion dust did the opposite (Figure 11c). However, the time
required for the diffusion and settling of soil explosion dust was inversely proportional to
soil moisture content. In short, the distribution characteristics of the soil explosion dust in
the formation and early diffusion phase are similar to those in [24]; the variation of dust
concentration in the diffusion phase is similar to that of crater volume.

3.3. Laser Backscattering Echo Intensity Characteristics

To study the backscattering echo intensity characteristics of lasers in soil explosion
dust, we measured the echo voltages as the 905 nm laser detected the target of white
background cloth in varying dust concentration fields. To some extent, this measurement
method is similar to the approach described in [34]. Since the backscattering echo intensity
from the white background cloth was greater than that from the soil explosion dust, the
peak echo voltage of the laser was the largest at the beginning of the detonation and
was inversely related to the dust concentration. The normalized peak echo voltage, the
ratio of the backscattering echo voltage with interference from soil explosion dust to that
without such interference, was used to analyze the influence of the mass of the explosive,
DOB, soil moisture content, and laser irradiation position on the backscattering echo
intensity characteristics. Smaller normalized peak echo voltages indicated more significant
interference effects from the dust.

The height h of the laser irradiation position is the height of the axis of the laser beam
emitted by the laser echo characteristic test subsystem A or B above the top surface of
the explosion subsystem. The peak echo voltage at the laser irradiation position changed
sharply in the first 3 s (Figure 12). In the early phase of the detonation, the concentration of
soil explosion dust surged to the maximum value, and the interference effect on the laser
was strongest: the peak echo voltage decreased sharply from its maximum value of 1 to its
minimum value. In the diffusion phase, the dust concentration decreased in fluctuations at
the same position, leading to an oscillating increase in the peak echo voltage. In the later
phase of dust diffusion, the dust was fully dispersed, and the increasing rate of the peak
echo voltage was gradually reduced. However, in the early phase of dust settling under the
action of gravity, the concentration at the laser detection position increased slightly, then
decreased gradually, and finally, arrived at a stable value. Correspondingly, the peak echo
voltage first decreased slightly and then increased, finally stabilizing and approaching a
value of 1. For the same mass of explosive, DOB, and soil moisture content, higher laser
irradiation positions corresponded to greater fluctuations in the dust concentration; corre-
spondingly, the oscillation in the peak echo voltage of the laser became more pronounced.
The minimum normalized peak echo voltage ranged from 0.318 to 0.658 under different
test conditions (Figure 12), indicating that the interference effect of soil explosion dust
on the laser cannot be ignored. Assuming that the laser can accurately detect the white
background cloth target in this soil explosion dust environment, the normalized peak echo
voltage corresponding to the target determination threshold of the laser should be less than
the minimum normalized peak echo voltage. Hence, it is essential to further analyze the
relationships among the minimum normalized peak echo voltage, mass of explosive, DOB,
soil moisture content, and height of the laser irradiation position.

Figure 13 shows that the time required to reach the minimum normalized peak echo
voltage is less than 500 ms, and it is inversely related to the mass of the explosive and
the soil moisture content, but positively proportional to the height of the laser irradiation
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position and the DOB of the explosive. The minimum normalized peak echo voltage was
inversely related to the mass of the explosive but positively related to the height of the
laser irradiation position. The minimum normalized peak echo voltage first decreased and
then increased with the increase in the soil moisture content, while the DOB showed the
opposite behavior. The large quantity of visible smoke produced by the explosion when
the DOB was close to zero significantly affected the laser, resulting in a smaller minimum
normalized peak echo voltage.
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Figure 12. Normalized peak echo voltages under different masses of explosive, DOBs, soil moisture
contents, and heights of the laser irradiation positions.
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3.4. Relationship between Echo Intensity and Image Gray Value

The above analysis revealed that the variation law of the peak echo voltage of the
laser was similar to that of the image of the soil explosion dust. We used the gray value of
the monochrome image of soil explosion dust to characterize its concentration, extracted
the mean gray value of the monochrome image (with 50 px corresponding to the laser
irradiation position), and then compared the mean gray value at each moment with that
at the initial moment (when only the white background cloth was captured) to obtain a
normalized mean gray value. We carried out a Spearman rank correlation analysis between
the normalized mean gray value of the monochrome image and the normalized peak echo
voltage of the laser. The Spearman rank correlation describes the monotonic relationship
between two variables. It is useful for nonnormally distributed continuous data and ordinal
data and is relatively robust to outliers [35]. The Spearman rank correlation coefficient
(SRCC) rs can be given as [36]:

rs =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

, (2)

where xi and yi are the ranks of the ith data of the random variables X and Y, respectively.
We calculated the SRCC values of the nine test series A~I (Figure 14a). We found that

the normalized peak echo voltage U of the laser had a very strong positive correlation with
the normalized mean gray value g of the monochrome image of soil explosion dust at the
significant level 0.01. Further, ten pairs of equally time-spaced data were selected from each
test series A~I to obtain 90 pairs of data to estimate the relationship between U and g by
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fitting the model equations via linear regression with 99% confidence intervals. Figure 14b
shows that F = 373.87 and p < 0.01. Therefore, the null hypothesis that the regression
coefficient is 0 is rejected at level 0.01, and the model equation U = 1.1641g − 0.2281 meets
the requirements. In addition, the regression coefficient was significant at level 0.01.
The coefficient of determination R2 suggested that about 81.13% of the variability of the
normalized peak echo voltage of the laser could be explained by the relationship with the
normalized mean gray value of the monochrome image of soil explosion dust.
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4. Conclusions

In the present study, we propose a test method utilizing high-speed cameras and an
explosion chamber to assess the backscattering echo intensity of lasers in dust generated by
small-scale explosive blasts in soil. With this approach, we measured the backscattering
echo voltages of a 905 nm laser while detecting a white background cloth in soil explosion
dust. The conducted tests considered the influence of the mass of explosive (0.58 g, 1 g, 2 g),
DOB (0 cm, 3 cm, 8 cm), soil moisture content (3.5%, 8.7%, 10.3%, 12.5%), and height of laser
irradiation position (65 cm, 70 cm, 80 cm). The main conclusions are summarized as follows.
The concentration of soil explosion dust was found to be highest in the first 500 ms; most soil
explosion dust settled within 5 s. Moreover, the backscattering echo intensity was inversely
proportional to the dust concentration, and the minimum normalized peak echo voltage
ranged from 0.318 to 0.658, indicating that soil explosion dust interfered significantly with
detecting the white background cloth target. Furthermore, the minimum normalized peak
echo voltage was inversely related to the mass of the explosive but positively related to
the height of the laser irradiation position, and it first decreased and then increased with
the increase in the soil moisture content; DOB had the opposite effect from soil moisture
content. Additionally, the mean gray value of the monochrome image of soil explosion
dust had an extremely strong positive correlation with the backscattering echo intensity of
the laser; it can therefore be used to study the laser’s detection performance.

This test method has the strengths of simultaneously recording the temporal and
spatial distribution of soil explosion dust and measuring the backscattering echo voltages of
the laser without interference from the external environment such as temperature, humidity,
and wind speed. However, the explosion chamber only allows the detonation of small-scale
explosives, so this approach is not suitable for the test involving an explosive with a mass
exceeding 100 g. This work provides experimental data for verifying simulations of the
backscatter echo intensity of lasers in soil explosion dust and setting reasonable thresholds
for laser detection and target recognition. It is thus of great significance for improving
the detection accuracy and anti-interference ability of lasers. However, due to constraints
such as limited resources and experimental costs, only nine test series were conducted
in our study; we will adopt a combined approach of simulation and experimentation to



Sensors 2023, 23, 5638 14 of 15

comprehensively assess the backscattering echo intensity characteristics of lasers in soil
explosion dust in the future.
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