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Abstract: Weld feature point detection is a key technology for welding trajectory planning and
tracking. Existing two-stage detection methods and conventional convolutional neural network
(CNN)-based approaches encounter performance bottlenecks under extreme welding noise conditions.
To better obtain accurate weld feature point locations in high-noise environments, we propose a
feature point detection network, YOLO-Weld, based on an improved You Only Look Once version 5
(YOLOv5). By introducing the reparameterized convolutional neural network (RepVGG) module,
the network structure is optimized, enhancing detection speed. The utilization of a normalization-
based attention module (NAM) in the network enhances the network’s perception of feature points.
A lightweight decoupled head, RD-Head, is designed to improve classification and regression
accuracy. Furthermore, a welding noise generation method is proposed, increasing the model’s
robustness in extreme noise environments. Finally, the model is tested on a custom dataset of five weld
types, demonstrating better performance than two-stage detection methods and conventional CNN
approaches. The proposed model can accurately detect feature points in high-noise environments
while meeting real-time welding requirements. In terms of the model’s performance, the average error
of detecting feature points in images is 2.100 pixels, while the average error in the world coordinate
system is 0.114 mm, sufficiently meeting the accuracy needs of various practical welding tasks.

Keywords: intelligent robotic welding; laser visual sensor; feature extraction; structured-light vision;
convolutional neural network

1. Introduction

Welding is a crucial process in modern manufacturing. Traditional manufacturing
methods rely on manual welding, which is not only inefficient but also unable to guarantee
welding quality. This method fails to meet the requirements of modern manufacturing for
high-efficiency and high-precision welding. In comparison to traditional welding, robot
welding possesses inherent advantages such as consistency in welding quality, continuous
and repetitive work, and accurate tracking of welds. Against this backdrop, with the
development of automation, welding robots with high stability, efficiency, and the ability
to work in harsh environments are gradually replacing manual welding. However, due to
the inherent nonlinearity, multivariable coupling, and uncertainty in the power system [1],
simple welding robots have become increasingly unsuitable for modern production [2].

Currently, the “Teach-Playback” mode [3] is widely used in robot welding, resulting
in a more favorable working environment; it increases welding efficiency to some extent
and ensures the consistency of welding quality. However, the “Teach-Playback” mode still
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relies on the worker’s judgment for determining the welding start point and welding mode.
In the welding process, thermal deformation of the welded parts can easily lead to the
failure of trajectory planning using linear or arc interpolation, resulting in deviation of the
welding trajectory. Therefore, many scholars have applied advanced sensor technology to
welding robots to achieve real-time correction of welding trajectories [4–6]. Among various
sensors, active optical-vision sensors are more commonly used in welding tracking due to
their ability to overcome complex environmental interference using light sources compared
to passive vision sensors that use natural light or arc light generated during welding.
The line-structured light sensor based on active optical-vision has become increasingly
popular in the automatic welding robot industry because of its noncontact nature, high
robustness, high accuracy, low cost, and other advantages [7–9]. It is worth noting that
some scholars have also explored other methods to build real-time welding automation
quality assessment systems for timely detection of potential defects and problems, such
as weld defect detection [10] and melt pool depth prediction [11]. These methods use
detection systems in different forms and employ various technical means, but they are
equally effective in helping welding robots instantly adjust welding parameters to ensure
the stability and consistency of the welding process, while also improving productivity and
reducing energy consumption. These methods can also be used in conjunction with the
vision-based weld tracking methods mentioned above to further improve weld accuracy.

The key to achieving weld seam tracking is determining how to quickly and accurately
locate the feature points of the weld seam from laser images in a noisy environment [12].
In previous studies, most scholars used traditional morphological-based image processing
methods to extract and locate the feature points of the weld seam [13–15], which can ensure
a certain accuracy in the absence of welding noise or weak welding noise, but cannot
deal with complex noise conditions [16]. For a long time, researchers have had to design
different morphological algorithms for different application scenarios, resulting in low
robustness and low production efficiency.

The development of machine learning has changed the landscape. Neural network
algorithms have demonstrated powerful capabilities in automatically extracting image
features, especially in the automatic welding domain where feature extraction is required
under complex noise conditions. Consequently, numerous researchers have conducted
extensive studies in this area. Du et al. [17] addressed atypical weld seams in high-noise en-
vironments, initially employing binarization and region scanning for image segmentation,
and then using a trained CNN model to extract candidate regions, finally extracting weld
seam features through searching. Xiao et al. [18] utilized a Faster R-CNN model to obtain
weld seam types and ROI regions, and then applied targeted morphological methods to
detect different types of weld seams. Dong et al. [19] used a lightweight deep learning
network, MobileNet-SSD, to extract ROI regions on an edge GPU device to maintain high
processing speed, and used morphological methods such as region growth and centerline
repair to gradually obtain strip centerlines and key point locations. However, this method
suffers from the problem of low detection accuracy. Zou et al. [20] designed a two-stage
detector that utilized a convolutional filter tracker and a VGG neural network for coarse
and fine localization of weld seam feature points, effectively resolving the issue of drift
during weld seam tracking and achieving high precision. Zhao et al. [21] constructed a
semantic segmentation model based on an improved VGG Net to extract laser stripe edge
features, and then acquired feature point positions using morphological methods such
as the gray level centroid method, least squares method, and B-spline method, enabling
the model to function well in environments with strong arc interference. Zou et al. [22],
to cope with high-noise environments, proposed a welding image inpainting method
based on conditional generative adversarial networks (CGAN), mapping noisy images to
noiseless images and integrating them into a tracker for weld seam detection and tracking.
Yang et al. [23] then used the deep encoder–decoder network framework and designed a
welding image denoising method to achieve automatic laser stripe extraction from welding
images. The method has a strong denoising performance under strong noise such as arc
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light, smoke, and spatter. Lu et al. [24] also employed a semantic segmentation strategy
combined with morphology, selecting BiseNet V2 as the network architecture and using
OHEM to improve segmentation performance. Compared to other segmentation methods,
the arc line segmentation effect was slightly inferior, but the segmentation performance in
difficult-to-segment areas was significantly improved.

Most of the aforementioned methods are based on a two-stage detection approach,
where the first stage utilizes neural networks for preliminary image processing and infor-
mation extraction, while the second stage typically employs morphological methods or
constructs new neural networks to complete feature point detection. The former approach
requires the design of different recognition and localization algorithms for various types
of weld seams, increasing the design complexity. The latter approach often involves ex-
tracting similar and generic low-level features from different stages of the network models,
leading to a waste of time due to redundancy. Moreover, most existing research is based
on traditional CNNs, which do not achieve very good results when dealing with highly
imbalanced positive and negative samples in welding process images.

In recent years, the CNN’s characterization ability has been further improved with the
introduction of new neural network techniques such as attention mechanism. The YOLO
series of neural networks is one of the representatives in target detection and has been
widely applied in various target detection fields, including pavement crack detection [25],
fruit detection [26], welding quality detection [27], and more, due to its powerful feature
extraction ability, lightweight network structure, and efficient detection speed. This net-
work series has undergone several iterations and has received continuous attention and
improvement. Among these versions, YOLOv5 is one of the most mature and stable, with a
stable structure, easy deployment, and ease of expansion, making it highly sought-after
by researchers. Additionally, the model is continuously updated and its performance is
constantly improving. Based on YOLOv5, researchers have made numerous improvements
and engineering practices that have yielded significant results [28,29].

However, in the welding field, there is still a lack of research applying the YOLO [30]
series model to weld seam tracking. Therefore, this study proposes a feature point detection
network based on YOLOv5 [31], called YOLO-weld. It classifies weld seam feature points
into 16 categories based on their dissimilarity, with the center coordinates of the target
detection boxes in each category representing the weld seam feature point coordinates,
transforming the weld seam feature point recognition problem into a target detection
and classification problem. A welding noise generation algorithm is also proposed for
data augmentation of training samples to enhance the adaptability of the model to ex-
treme weld noise. Experiments demonstrate that YOLO-weld outperforms common CNN
models in terms of detection and localization accuracy for weld seam feature points and
exhibits excellent generalization capabilities, operating stably under varying intensities of
welding noise.

2. Experiment System

The hardware experimental platform of the optical vision intelligent welding system
built in this study is shown in Figure 1. It is mainly composed of a robot system, a vision
system, and a welding machine system. The robot system consists of the robot body, robot
controller, and demonstrator. Industrial robots, while offering outstanding advantages in
terms of cost and rigidity of the system, do not have anticollision mechanisms. For safety
reasons, the robot used in this study is the AUBO i10 collaborative robot, which has compa-
rable system compatibility with industrial robots and is capable of driving a 10 kg load,
which meets the needs of this study. The detailed experimental hardware configuration
is shown in Table 1. The visual sensor component employs a self-developed sensor, as il-
lustrated in Figure 2a, which includes an HIK board-level industrial camera, a 660 nm
narrowband filter, a laser projector emitting a 660 nm single-line laser, and a circuit for
controlling the laser brightness.
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Figure 1. The hardware experimental platform of the optical vision intelligent welding system.

Table 1. Experiment equipment.

Equipment Model Equipment Model

Robot AUBO I10 Vision sensor Self-developed
Welding machine AOTAI MIG-500RP Welding material Q235
Welding feeder AOTAI CS-501-500 Shielding gas Ar

The visual sensor, welding machine, and robot controller are connected to an enterprise-
grade switch via a gigabit Ethernet network. The supervisory system (SS) distributes control
commands for the welding process through the switch while also connecting to a remote
process server via the internet to obtain process data. The network topology of the hard-
ware system is shown in Figure 2b. In practical operation, the visual sensor acquires seam
type and feature point information, transmitting it to SS. Subsequently, SS retrieves process
information from the remote welding process library to direct the welding machine and
welding robot in performing their tasks.

Figure 2. Sensor architecture and network topology diagram. (a) Sensor architecture. (b) Network
topology diagram.
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3. Methodology
3.1. Data Processing
3.1.1. Setting of the Detection Targets

To enable the welding robots to be applied in a wider range of welding scenarios,
improve their ability to cope with more comprehensive and diverse weld detection tasks,
and verify our model’s performance in complex and diverse welding tasks, we selected five
types of welds as our detection targets: lap joint, butt joint, fillet joint, Y-shape, and V-shape.
For different types of welds, different numbers of feature points were selected, and based
on the dissimilarity and relative position of these feature points in the grayscale image, we
further differentiated them and set each feature point as a category. Finally, all types of
welds were divided into 16 feature points in total, as shown in Figure 3.

Figure 3. Illustration of the position of the feature points of the different weld types. (a) Fillet joint.
(b) Lap joint. (c) Butt joint. (d) Y-shape. (e) V-shape.

3.1.2. Data Collection

First, we conducted welding on various types of weldments through manual teaching.
During the welding process, we utilized our self-developed laser sensor to collect grayscale
images (Figure 4). Subsequently, we performed a mean filtering operation on the original
images in order to minimize the effect of imaging noise on the training results. In addition
to this, since the image input accepted by the neural network is generally square, a central
cropping of the original image is also performed to fit the network input. The final dataset
consists of 4171 images, including 752 lap joint welds, 790 fillet joint welds, 914 butt joint
welds, 761 Y-shape welds, and 954 V-shape welds. We manually labeled the dataset while
randomly dividing it into a training set and a validation set in a ratio of 8:2 without a
distinct test set. Finally, we manually annotated these images.

Figure 4. Images acquired by the sensor. (a) Fillet joint. (b) Lap joint. (c) Butt joint. (d) Y-shape.
(e) V-shape.
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3.1.3. Data Augmentation

To improve the generalization ability of the model, we applied various data aug-
mentation techniques during the training process, including rotation, translation, scaling,
vertical flipping, affine transformation, and brightness adjustment. In addition, during ac-
tual welding processes, noise such as metal spatter, smoke, and arc light often appear
concentrated and continuous over time. Traditional feature point detection models have
weaker recognition capabilities for strong noise images and often fail in such environments,
resulting in deviations in weld trajectory.

To address the strong noise environment mentioned above, this study proposes a
welding noise generation method (WNGM). This method simulates noise generated during
welding processes, such as metal spatter and arc light, to enhance images and improve
the model’s resistance to welding noise interference. The algorithm workflow is shown in
Algorithm 1. The process of adding noise in WNGM is as follows. First, welding spatter
is simulated on the input image by generating straight line segments of varying lengths,
thicknesses, and densities on a new layer, followed by truncation and blurring before being
added to the original image. Second, salt-and-pepper noise is added with varying degrees
of aggregation to simulate smoke and dust noise. Third, to simulate image blur caused by
camera focus variation, Gaussian blur is applied to the entire image. Finally, we integrate
these modules to construct a welding noise generation module that can automatically
adjust the random parameter generation ranges for each module with given parameters,
achieving the purpose of easily controlling noise intensity.

Algorithm 1 Welding noise generation method (WNGM)

1: procedure WNGM(src_image)
2: process_img← zeros of the same size as src_image
3: process_img← ARCLIGHTSPATTER(process_img)
4: Add smoke noise
5: Apply Gaussian blur to the image
6: src_image← src_image + process_img
7: return src_image
8: end procedure
9: function ARCLIGHTSPATTER(image)

10: Generate random linear light streaks
11: Rotate and truncate the light streaks
12: Apply Gaussian blur to the streaks
13: return image
14: end function

After a series of image enhancements, the final noise effects of the training images are
shown in Figure 5. It can be seen that the addition of the WNGM on top of the basic data
augmentation methods generates a large amount of noise, effectively simulating extreme
noise conditions in the welding environment.

3.2. YOLOv5 Network Architecture

YOLOv5 mainly consists of three parts: backbone, neck, and head. The architecture
of the YOLOv5s network is shown in Figure 6. The backbone is responsible for extracting
feature information from images. The first layer of the network utilizes a convolution
module with a 6 × 6 large convolution kernel to compress the width and height informa-
tion of the image into channel information, reducing the number of network layers and
parameters while expanding the base-level receptive field and maintaining the extraction of
feature accuracy as much as possible. The C3 module is the most critical feature extraction
module in this network, which essentially serves as a residual module. It divides the input
information into two parts; one part passes through the bottleneck module to extract deep
features, while the other part passes through only a single convolution module. Finally,
the two parts are fused to complete the feature extraction. The SPPF module acquires
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local features at different scales through multistage max-pooling and concatenates them
to increase the receptive field without changing the feature map size. The neck section
adopts the PANet structure, which, through top-down and bottom-up pathways, fuses
the high-level semantic features and low-level localization features extracted from the
backbone network, enhancing the detection effect of different-sized objects and integrating
them into different-scale heads. The head is responsible for information output. Different-
scale heads have different sizes of feature maps corresponding to different-sized objects.
Each grid of the feature map outputs a preselected piece of information, including the
predicted category, object confidence, and bounding box center coordinates along with its
width and height. Finally, the predicted objects are obtained by filtering these preselected
boxes using the nonmaximum suppression (NMS) method based on their confidence and
position information.

Figure 5. Image data augmentation. (a) Original image. (b) Rotation. (c) Translation. (d) Scaling.
(e) Vertical flipping. (f) Affine transformation. (g) Brightness adjustment. (h) WNGM.

Figure 6. YOLOv5 network structure, with the network structure in red boxes and the specific
implementation of the modules in the network in green boxes.

YOLOv5 has three components to the loss function: box loss, object loss, and class loss,
where object loss and class loss are computed using binary cross-entropy loss, and box loss
is computed using complete IoU (CIoU) loss [32].
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YOLOv5 is divided into several models according to the depth and width of the
network, ranging from the model with the smallest to the largest number of parameters:
YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. We chose YOLOv5s as the
base model after comparing the speed and accuracy of different models. The relevant
parameters of YOLOv5s used in this study are shown in Table 2.

Table 2. Relevant parameters of YOLOv5s used in this study.

Parameters Values Parameters Values

Input size 640 × 640 Versions v6.1
Model depth multiple 0.33 Params 7.05 M

Layer channel multiple 0.50 FLOPs 16.1 GFLOPs

3.3. YOLO-Weld

The YOLO-weld proposed in this study is a single-stage feature point detection
network based on YOLOv5, as shown in Figure 7. To better adapt to welding tasks,
enhance real-time feature point detection, and improve localization accuracy, we made
several targeted improvements. First, the network integrates the reparameterized VGG
network, RepVGG [33], leading to the replacement of the C3 module and 3 × 3 Conv
modules, originally part of YOLOv5, in the backbone network with RepVGG Block (the
basic module in RepVGG). Experimental results show that this adaptation better suits
GPU inference and improves inference speed with almost no loss in performance. Next,
we introduced a lightweight attention module (NAM [34]) into the network, which helps
highlight essential features and enhances the network model’s detection capabilities in
noisy environments without introducing additional parameters. At the same time, we
designed a lightweight decoupled head based on the RepVGG Block, named RD-Head,
which significantly improved the model’s convergence speed and the regression effect of
the predicted boxes. In the final output section, we used the center points of the predicted
boxes output by the model as the weld feature points and filtered the center points using the
bounding box information to obtain the final prediction results. Except for some network
structure improvements, other settings, such as the loss function used by YOLO-weld
remain the same as in YOLOv5s.

Figure 7. YOLO-weld network architecture.
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3.3.1. RepVGG

The process of making models lightweight is a prevalent task in industrial applications.
While the original YOLOv5 network uses the C3 module, which, based on CSPNet [35]
design implementation and boasts powerful feature extraction capabilities, also introduces
a large number of multibranch designs and model parameters, increasing the computa-
tional complexity of the network and leaving room for speed improvement. To address
these issues, many researchers have replaced it with lightweight networks such as Shuf-
fleNetV2 [36] and MobileNetV3 [37] in the backbone. Although these networks reduce
floating point operations (FLOPs) to some extent, they also significantly increase the cost of
GPU memory access, making it impossible to achieve speeds on the GPU that match the
reduced FLOPs.

In contrast to the methods mentioned above, we introduce RepVGG, which utilizes a
VGG-like architecture combined with structure reparameterization technology. During the
training phase, a multibranch architecture comprising a 3 × 3 Conv, an identity branch,
a 1 × 1 conv, and batch normalization (BN) layers is utilized, augmenting the network’s
feature extraction capabilities while circumventing the issue of vanishing gradients. In the
inference phase, structure reparameterization technology seamlessly transforms the afore-
mentioned module into a 3 × 3 Conv. The rectified linear unit (ReLU) activation function,
in conjunction with the subsequent layer, constitutes the entire inference phase of the
RepVGG Block. This single-path architecture enhances parallelism and diminishes memory
requirements on GPUs, resulting in accelerated inference speeds.

As shown in Figure 8, the reparameterization process consists of two main steps. First,
the Conv and BN layers of the same branch are fused. Their equations are expressed
separately as

Conv(x) = W ∗ x + b (1)

BN(x) = (x− µ)
γ

σ
+ β (2)

Replacing the parameter x in BN(x) with Conv(x) yields the following equation:

BN(Conv(x)) = (Wx + b− µ)
γ

σ
+ β

=
γ

σ
Wx +

(b− µ)γ

σ
+ β

(3)

Then, the formula for the fused convolutional layer can be expressed as
W ′ =

γ

σ
∗W

b′ =
(b− µ) ∗ γ

σ
+ β

BN(Conv(x)) = W ′ ∗ x + b′

(4)

where µ and δ denote the cumulative mean and standard deviation in the BN layer, respec-
tively, and γ and β are the trainable scale factor and bias. In the above equation, W and b
are used to denote the convolution kernel and bias of the original convolution, and W

′
and

b
′

denote the convolution kernel and bias of the convolution after fusing the BN layers.
Another aspect is the fusion of multibranch convolutional modules, as illustrated in

Figure 9. To fuse the convolutions of three branches, we first need to convert each branch’s
convolution into a 3 × 3 kernel, where identity can be regarded as a 1 × 1 convolution with
a unit matrix kernel, and a 1 × 1 convolution can be transformed into a 3 × 3 convolution by
padding zeros around it. After completing this conversion, we add the convolution kernels
and biases of the three branches together to obtain the final convolution kernel and bias.
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Figure 8. RepVGG reparameterization process, divided into two steps. Step (a) is the fusion of the
Conv layer with the BN layers. Step (b) is the fusion of Conv layers from different branches.

Figure 9. The fusion process of the different tributary Conv layers, from top to bottom, represents the
transformation process of 1 × 1 Conv, 3 × 3 Conv, and identity before summation.

In the network proposed by this study, RepVGG Block is divided into two categories:
one is the standard feature extraction module with a stride of 1 (RepBlockA), which contains
three branches during training, as shown in Figure 8. The other is the downsampling
module with a stride of 2 (RepBlockB), which omits the identity branch during training
and is composed of 1 × 1 and 3 × 3 convolutions.

As the RepVGG Block only comprises a 3 × 3 Conv layer followed by an ReLU layer
during inference, it bears a high similarity to the downsampling module in YOLOv5’s
backbone. We performed a efficient replacement of the latter with the former. Considering
that the C3 module occupies the largest number of parameters in the network and has a
crucial impact on the speed and accuracy of the network, we replaced the C3 module with
two layers of RepVGG Block to better adapt to GPU inference, improving the inference
speed while maintaining the feature extraction capability of the network model as much
as possible.

3.3.2. NAM

In practical welding tasks, weld images often contain a large amount of noise inter-
ference. This noise sometimes exhibits features similar to laser stripes, leading to false
detections. To address this issue, we need to suppress the weights of these similar but
unimportant features.

The normalization-based attention module (NAM) used in this study is a lightweight
and efficient attention module. It draws on the modular thinking of CBAM [38] and designs
separate channel attention and spatial attention modules. As shown in Figure 10, unlike
CBAM’s module design, NAM does not introduce additional convolutional layers. Rather,
it employs batch normalization (BN) operations directly, adjusts the weights’ standard
deviation using scaling factors to emphasize their significance, and uses this as a benchmark
to reweight the network. This design allows the NAM module to fine-tune the weights
without introducing almost any additional parameters, making it well suited for the
network’s lightweight task.
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Figure 10. The network structure of the NAM, where, (a) for each input successively via the channel
attention module and the hole attention module, (b) is the channel attention module structure and
(c) is the spatial attention module structure.

The structure of the channel attention module is shown in Figure 10b, where the
weights are calculated as follows:

cwi =
γi

∑ γi
(5)

where cwi denotes the weight and γi denotes the scale factor for each channel. The spatial
attention module uses a similar treatment to the channel attention module, applying BN
to the spatial dimension, called pixel normalization. Its structure is shown in Figure 10c,
and the corresponding weights are calculated as follows:

swi =
λi

∑ λi
(6)

where swi denotes the weight and λi denotes the scale factor of the spatial dimension.
For each submodule, assuming that x denotes the input and W the corresponding weight,
the output M can be expressed as

M = sigmoid(W(BN(x))) (7)

In our network, the NAM module was added before the SPPF layer in backbone, adapting
the feature extraction of the network backbone to better find feature points location.

3.3.3. RD-Head

In the method proposed in this study, the weld seam type identification and feature
point localization tasks are transformed into the classification and bounding box regression
tasks for feature points in object detection. The prediction information is output in the head
section of the network model. The original YOLOv5 head module uses a coupled head
design, which simply performs a convolution operation on the input features to obtain
the prediction results. This operation causes the classification and regression tasks, which
are different, to use similar amounts of parameters in the prediction, leading to spatial
misalignment and reduction of the model’s accuracy [39]. YOLOX [40] solves this problem
by decoupling the detection head and demonstrates, through comparative experiments,
that this strategy improves the network’s convergence speed and prediction accuracy.
However, the decoupled head used in YOLOX introduces a large number of parameters,
significantly affecting the network’s inference speed, and is not suitable for our tasks.

We aimed to strike a balance between the model’s inference speed and accuracy by
constructing a novel decoupled head based on RepBlock, referred to as RD-Head, as il-
lustrated in Figure 11. Given the features input from the neck, a 1 × 1 Conv is initially
employed to adjust the feature channel count, and is subsequently directed to two parallel
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RepVGG modules with a stride of one for regression and classification tasks, respectively.
Ultimately, a 1 × 1 Conv layer is applied to each branch to acquire the corresponding pre-
dictions and concatenate them, yielding an output shape identical to the original detection
head. The classification branch produces categorical information, whereas the regression
branch provides bounding box dimensions, center point positions, and object confidence.
Subsequent experiments demonstrate that the proposed RD-Head significantly enhances
network performance.

Figure 11. RD-Head structure diagram.

4. Experiment and Analysis
4.1. Training of the Model

The model proposed in this study was designed based on the deep learning framework
Pytorch. The operating system used in this study is Ubuntu 18.04 with 43 GB RAM, the CPU
is Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz, and the GPU is RTX 2080 Ti. The above
platform was used to train and test the models in this study and the comparison models.

In the model training, the input image was resized to 640 × 640 and data enhanced,
after which it was used as the network input. We used the stochastic gradient descent
(SGD) optimizer in the Pytorch framework, with the initial learning rate set to 1× 10−2,
and used a weight decay strategy to gradually decay the learning rate during training until
it was reduced to 1× 10−2 times the initial value. The default value of loss gain was chosen,
the batch size was set to 8, and the number of training rounds was set to 500.

4.2. Training Results and Evaluation

To better evaluate the performance of the model, we employed the trained model
for inference on the test set. As shown in Figure 12, our model is capable of effectively
extracting the class and location information of feature points for different types of weld
seams under various noise conditions. Even when the feature point locations in the images
are partially obscured by extreme welding noise, the model can still infer the locations of
the feature points through analysis of global features, enabling the model to maintain high
accuracy and robustness in strong noise environments.

To further quantify the model’s performance, we used the frames per Second (FPS) met-
ric to assess the model’s real-time capabilities, while employing precision, recall, and mAP
(mean average precision) metrics to evaluate detection accuracy [27]. Precision is used
to evaluate the accuracy of the object predictions, and recall is used to assess whether all
objects have been detected. Their calculation formulas are as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

mAP =
1
N ∑N

c=1 APc (10)
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Figure 12. Results of the prediction of feature points of weld images using YOLO-weld. (a) Fillet joint.
(b) Lap joint. (c) Butt joint. (d) Y-shape. (e) V-shape.

In Equations (8) and (9), samples with annotation boxes near the predicted boxes
and an IoU value greater than the set IoU threshold are considered correctly predicted
samples. TP represents the number of samples that should be classified as positive and
are correctly classified as positive, FP represents the number of samples that should be
classified as negative but are incorrectly classified as positive, and FN represents the number
of samples that should be classified as positive but are incorrectly classified as negative.
In Equation (10), N denotes the number of categories, and average precision (AP) represents
the area enclosed by the precision–recall (P–R) curve and represents the AP value of class
c. The mean average precision (mAP) measures the accuracy of the model in detecting
N categories, where mAP 0.5 represents the mAP value when the IoU threshold is 0.5,
and mAP 0.5:0.95 represents the average mAP value when the IoU threshold increases from
0.5 to 0.95. The mAP comprehensively reflects the precision and recall of object detection.
Correspondingly, in the feature point detection task studied in this study, the higher the
mAP, the lower the missed and false detection rates of the graphics, which to some extent
reflects higher detection accuracy.

The curves in Figure 13 depict the variations in loss, precision, recall, and mAP
parameters on the validation set as the number of training iterations progresses. The model
converges swiftly during the initial training stages, as evidenced by the rapid decrease in
box loss, object loss, and class loss, as well as the rapid increase in mAP and other metrics.
This occurs as the model fine-tunes the weights obtained from pretraining on a large-scale
dataset, adapting to the data distribution present in welding process images. Beyond
190 epochs, the model loss approaches convergence, and the learning rate diminishes to
a lower level, initiating fine-grained learning for weld seam noise images. Ultimately,
at epoch 402, the model attains its peak mAP, and the weights from this epoch are chosen
as the final weights for the model.

Utilizing these weights to evaluate the test set, the assessment results of the aforemen-
tioned metrics are presented in Table 3. The model’s precision and recall achieve 0.990
and 0.983, respectively, signifying the proposed model’s ability to effectively extract image
features and accurately detect and classify feature points. With an mAP 0.5:0.95 of 0.751,
the model exhibits superior prediction outcomes under various detection standards, further
emphasizing the model’s detection performance in highly noisy conditions. The difficulty
to further enhance the model’s precision, recall, and mAP during training and testing arises
from some images in the actual test set being affected by extreme noise, as illustrated in
Figure 14. The figure reveals that intense arc light and spatter noise occupy a significant
portion of the image, entirely concealing the feature points and surrounding areas, resulting
in a considerably low signal-to-noise ratio (SNR) in the image. Despite the model’s robust
local and global perception capabilities, it cannot make confident inferences. This observa-
tion underscores the difficulty of improving accuracy and robustness against weld feature
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points in the inspection process. Nevertheless, such images constitute a minimal fraction of
all images; hence, the model can effectively detect weld seam feature points in highly noisy
conditions. Moreover, the model’s inference speed is a mere 9.57 ms, with an FPS as high
as 104.46 Hz, satisfying the real-time demands of actual industrial production processes.
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Figure 13. Variation curves of the validation set metrics with the number of training epochs. (a) Loss.
(b) Precision. (c) Recall. (d) mAP.

Table 3. Performance parameters for YOLO-weld target detection.

Precision Recall mAP 0.5 mAP 0.5:0.95 Time FPS
(%) (%) (%) (%) (ms) (Hz)

99.0 98.3 99.1 75.1 9.57 104.5

Figure 14. Images where feature point detection cannot be effectively performed.

To provide a more intuitive reflection of the model’s accuracy in predicting feature
points, we project the output coordinate information onto the original size image and
calculate the deviation between the predicted and labeled coordinates on the original size
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image. For different types of weld seams, the Euclidean distance between the predicted
and labeled positions is shown in Figure 15. Our model’s prediction deviation for most
images is within 3 pixels, corresponding to an actual deviation of less than 0.15 mm. For a
very small number of strong noise images (such as the bottom row in Figure 12), the feature
points may be obscured, resulting in a relatively larger inference deviation for the model.
Overall, the model achieves excellent performance in detecting feature points for different
types of weld seams.
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Figure 15. Euclidean distance distribution of predicted and marked positions for five weld types.
(a) Fillet type. (b) Lap type. (c) Butt type. (d) Y type. (e) V type.

Moreover, to comprehensively evaluate the model’s prediction accuracy, we introduce
mean absolute error (MAE) and root mean square error (RMSE) as evaluation metrics.
MAE is the average absolute distance between predicted and labeled points, reflecting the
deviation of predicted values from the actual values. RMSE is the square root of mean
square error (MSE), which is more sensitive to outliers and better reflects the stability of
the prediction system. The formulas for the two indicators are as follows:

MAE =
1
N

N

∑
i=1
|∆ei| (11)

RMSE =

√√√√ 1
N

N

∑
i=1

∆e2
i (12)

where N represents the number of samples, and δei represents the distance difference
between the predicted and standard values in different directions. When the prefixes of
MAE and RMSE are X, Y, and E, they represent the deviation in the X direction, the deviation
in the Y direction, and the Euclidean distance deviation, respectively. The evaluation results
are shown in Table 4. It can be seen that the proposed model’s E-MAE for all predicted
feature points is 2.100 pixels, and the MAE in both X and Y directions is controlled at
around 1.4 pixels, indicating high prediction accuracy. The E-RMSE is 3.099 pixels.
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Table 4. YOLO-weld errors in different directions for different weld types.

Type E-MAE X-MAE Y-MAE E-RMSE X-RMSE Y-RMSE
(pixel) (pixel) (pixel) (pixel) (pixel) (pixel)

All 2.100 1.437 1.207 3.099 2.342 2.029
Fillet 2.161 1.364 1.371 2.831 2.245 1.725
Lap 1.766 1.273 0.972 2.492 2.086 1.363
Butt 1.968 1.301 1.153 3.155 2.274 2.187

Y 2.468 1.752 1.363 3.484 2.724 2.172
V 1.836 1.211 1.101 2.700 1.869 1.949

4.3. Selecting the Base Model for the Experiment

YOLOv5 offers a range of models designed to accommodate tasks with varying
inspection speed and accuracy requirements. In this study, we balance the real-time
demands of welding and the accuracy requirements of feature point localization to select
the appropriate YOLOv5 model as our base model.

We utilize various YOLOv5 models for testing on our welding dataset, maintaining
consistent data enhancement and training parameters throughout the experiments. Table 5
presents the results, where “Parameter” represents the number of network model parame-
ters, and ”Volume” indicates the memory size occupied by the model.

The comparison results indicate that despite YOLOv5n offering the highest detection
speed, it is constrained by the network’s parameter count, limiting its capacity to learn
features. Consequently, it exhibits comparatively low accuracy and stability in feature point
localization. When the number of parameters of the network model is increased to the
number of YOLOv5s, the model can learn relatively complete features and the detection
accuracy is substantially improved, while the detection speed is only slightly reduced.
Following this, as demonstrated by YOLOv5m and YOLOv5l, the increase in the number
of parameters results in a diminished impact on the enhancement of detection accuracy
and leads to a decrease in detection speed. This compromise hinders the model’s ability to
satisfactorily meet the real-time demands of welding. Therefore, YOLOv5s obtains the best
balance between inference speed and accuracy compared to other models with the same
number of parameters. Consequently, we select YOLOv5s as our base model, upon which
we improve to develop YOLO-weld.

Table 5. Comparative test of YOLOv5 model with different parameter sizes.

Method Parameter mAP 0.5:0.95 E-MAE E-RMSE FPS
(%) (pixel) (pixel) (Hz)

YOLOv5n 1.78 72.1 2.325 4.181 93.3
YOLOv5s 7.05 74.0 2.202 3.586 79.9
YOLOv5m 21.9 74.3 2.115 3.527 67.8
YOLOv5l 46.2 75.0 2.075 3.365 56.6

4.4. Ablation Experiments

To verify the impact of the WNGM and the improved network structure on the
feature point recognition and localization task, we have specifically designed two ablation
experiments in this study.

First, we applied different data augmentation methods to the same dataset. One group
did not use WNGM augmentation, while the other group used WNGM augmentation for
50% of the data. The comparison of prediction performance after using WNGM augmenta-
tion is shown in Figure 16, and the corresponding evaluation metrics are shown in Table 6.
It can be observed that the model with WNGM augmentation has better robustness, and its
ability to detect feature points in strong noise images is effectively improved, as well as the
regression accuracy of feature points.
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Figure 16. Comparative experimental images of WNGM enhancement: (a) with WNGM enhance-
ment; (b) without WNGM enhancement.

Table 6. Results of comparison experiments with and without WNGM enhancement.

Method With WNGM mAP 0.5:0.95 E-MAE E-RMSE
(%) (pixel) (pixel)

YOLO-weld Yes 75.1 2.100 3.099
YOLO-weld No 74.1 2.103 3.318

We subsequently conducted four experimental sets to illustrate the efficacy of the
enhanced network structure. Each utilized WNGM data augmentation and maintained
identical training parameters. The test results are displayed in Table 7. The improvements
primarily encompass three aspects: the incorporation of the RepVGG structure, which
elevates the test GPU inference speed by 56.2%, achieving 124.8 Hz, albeit with a slight
reduction in feature point prediction accuracy. Subsequently, the integration of the NAM
bolsters the model’s local perception capabilities and global feature extraction capacity for
feature points, enabling the model to better concentrate on regions surrounding feature
points. This enhances the mAP 0.5:0.95 by 0.4% while minimally impacting the inference
speed. Lastly, the introduction of the RD-Head resolves the shared weights issue for
classification and bounding box regression tasks in the head, effectively augmenting the
prediction accuracy of bounding boxes. Following its implementation, the model’s mAP
0.5:0.95 increases by 2%, significantly improving the detection accuracy and stability of
feature points. Ultimately, our proposed YOLO-weld model, in comparison to the baseline
YOLOv5s model, attains a 30.8% increase in inference speed, a 1.1% enhancement in mAP
0.5:0.95, and superior feature point detection accuracy and stability.

Table 7. Results of ablation experiments with a modified YOLO-weld structure.

Method mAP 0.5:0.95 E-MAE E-RMSE FPS
(%) (pixel) (pixel) (Hz)

YOLOv5s 74.0 2.202 3.586 79.9
+RepVGG 72.7 2.212 3.671 124.8

+RepVGG+NAM 73.1 2.187 3.384 121.9
+RepVGG+NAM+RD-Head 75.1 2.100 3.099 104.5

To further validate the performance of our proposed YOLO-weld model and the gen-
eralizability of the improved method, we conducted additional experiments on VOC2007,
an open-source dataset widely used for target detection.The experiments involve a compar-
ison between YOLOv5s and YOLO-weld, using identical training parameters. The training
is halted if there is no growth in the mAP values on the validation set within 100 epochs.
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The variation of mAP 0.5 and total loss with the number of training rounds for both
models is shown in Figure 17. Notably, YOLO-weld, an improvement over YOLOv5s,
exhibits faster convergence, higher optimal accuracy, and superior regression performance.
The test results of the model on the test set are shown in Table 8. The YOLO-weld proposed
in this study has a slightly lower recall compared to YOLOv5s, but both precision and mAP
are significantly improved, and the detection speed is significantly enhanced. Consequently,
YOLO-weld also demonstrates enhanced stability and performance in nonwelding target
detection tasks, further substantiating its advanced, stable, and scalable characteristics.
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Figure 17. Comparison of parameter variations over epochs in the test based on the VOC2007 dataset.
(a) Total loss. (b) mAP 0.5.

Table 8. Results of comparative test of model parameters based on VOC2007 dataset.

Method Precision Recall mAP 0.5 mAP 0.5:0.95 FPS
(%) (%) (%) (%) (Hz)

YOLOv5s 64.3 55.5 57.3 32.1 87.4
YOLO-weld 67.7 54.8 58.9 35.6 112.6

4.5. Comparative Experiments

To demonstrate the superiority of our proposed network, we compared the feature
point detection model designed in this study with other neural network models. The com-
parative experiments used the same dataset and data augmentation methods, selected
default training parameters, trained for 500 epochs, and finally performed validation and
testing on the constructed validation set.

The test results are shown in Figure 18, and the evaluation results are presented in
Table 9. Among the compared models, Faster RCNN is a common two-stage network.
The two-stage design increases the model’s training and inference costs. Simultaneously,
due to the constraints of the backbone network structure, the detection accuracy is relatively
poor, and there are many misidentifications. SSD adopts the prior box method from Faster
RCNN and uses an end-to-end design, which improves the model’s detection speed.
However, as shown in Figure 18b, the model still cannot accurately recognize feature
targets in strong noise environments. CenterNet abandons the use of prior boxes and
instead predicts the center point of the bounding boxes through heatmaps and regression
offsets. From the actual detection data, the heatmap-based method provides the model
with excellent stability, but the overly slow inference speed cannot meet the real-time
requirements of welding tasks. YOLOv4 and YOLOv5, as classic models of the YOLO
series, significantly improve detection speed while further enhancing prediction accuracy.
YOLOv7, as the most advanced object detector currently, performs better than YOLOv5 on
the COCO dataset but does not achieve a significant performance advantage in welding
detection tasks and causes some loss of detection speed. In contrast, our proposed YOLO-
weld model is based on the high-performance YOLOv5 and has been improved for seam
feature point detection tasks. The modified YOLO-weld achieves the fastest inference
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speed and obtains a more significant improvement in feature point detection accuracy and
stability, effectively meeting the needs of welding tasks.

Figure 18. Comparison of YOLO-weld with other neural network models. (a) Faster RCNN. (b) SSD.
(c) Center Net. (d) YOLOv4s. (e) YOLOv5s. (f) YOLOv7. (g) YOLO-weld.
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Table 9. Comparison of YOLO-weld with other network models.

Method mAP 0.5:0.95 E-MAE E-RMSE FPS
(%) (pixel) (pixel) (Hz)

Faster RCNN [41] - 6.489 7.688 26.6
SSD [42] 57.1 3.949 4.871 55.8

CenterNet [43] 71.7 2.426 3.846 20.0
YOLOv4s [44] 72.9 2.251 4.233 76.8

YOLOv5s 74.0 2.202 3.586 79.9
YOLOv7 [45] 74.4 2.131 3.672 67.2

YOLO-weld (ours) 75.1 2.100 3.099 104.5

4.6. Welding Experiment

To better evaluate the performance of YOLO-weld in practical welding tasks, V-shape
welds were selected for welding experiments. First, a dense 3D point cloud was obtained as
the reference by scanning the welds using the Zeiss COMET L3D 2 system, as shown by the
gray portion in Figure 19. Subsequently, continuous welding images were captured during
the actual welding process, and YOLO-weld was employed to perform inference on these
images. Finally, the predicted coordinates were transformed into the world coordinate
system, as illustrated by the green portion in Figure 19. It can be observed that YOLO-weld
is capable of making accurate predictions for the feature points of the V-shape welds.

Figure 19. Reference and predicted point clouds collected from welding experiments.

To further quantify the performance of the model, the Euclidean distances between
the point cloud of the weld feature points predicted by YOLO-weld and the reference point
cloud results were calculated. The comparison results are shown in Figure 20. As can be
seen from the figure, the three feature points of the V-shape welds have high accuracy.
The average position error of the left feature point is 0.119 mm, with a maximum error of
0.224 mm; the average error of the center feature point is 0.125 mm, with a maximum error
of 0.275 mm; and the average error of the right feature point is 0.098 mm, with a maximum
error of 0.3152 mm. The average error of all feature points is 0.114 mm, which adequately
meets the practical welding requirements and reflects the ability of the proposed model to
overcome noise interference and ensure accurate recognition of the weld feature points.
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Figure 20. The YOLO-weld model is used to infer the error distribution of a V-shape weld in the
world coordinate system.

5. Conclusions

This study initially examines the shortcomings of traditional two-stage weld feature
point detection methods and conventional CNN techniques, such as limited inference
speed and incapacity to address the severe imbalance between positive and negative
samples. These constraints hinder the performance of these methods in practical weld
feature detection tasks. To more effectively fulfill the real-time and accuracy demands of
welding robots, we propose a single-stage, enhanced approach based on the state-of-the-art
YOLOv5 model. The following conclusions were drawn:

1. A welding noise generation method was proposed for data augmentation of welding im-
ages, effectively enhancing the model’s detection capability in extreme noise environments.

2. The YOLO-weld network based on the YOLOv5 model was proposed. RepVGG
was incorporated into the YOLOv5 network to improve the network detection speed
while maintaining prediction accuracy. Furthermore, an efficient lightweight attention
module, NAM, was introduced to enhance the network’s ability to sense feature
points. In addition, the designed RD-Head employs lightweight operations to de-
couple the detection head, solving the spatial misalignment problem and improving
detection accuracy.

3. Through experiments, the proposed YOLO-Weld model achieved a recall rate of 99.0%
on a custom dataset, an mAP 0.5:0.95 of 75.1%, and an inference speed of 104.5 Hz,
outperforming both two-stage detection methods and conventional CNN approaches.
It is capable of accurately predicting feature points in high-noise environments while
meeting real-time detection requirements. The experiments demonstrated that the
mean absolute error of the feature points in the image is 2.100 pixels, and the average
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error of the feature point detection in the world coordinate system is 0.114 mm,
proving that the proposed model possesses sufficient detection accuracy and stability
to meet the requirements of practical welding tasks.

In summary, this method utilizes state-of-the-art visual perception techniques to
detect feature points in welding images with complex noise backgrounds, and its accuracy
surpasses traditional two-stage detection methods and conventional CNN approaches.
This significantly contributes to enhancing the welding accuracy of automated welding
processes and promoting the intelligent development of welding robots.

6. Limitations and Future Directions

Although the YOLO-weld model proposed in this study satisfies the application con-
ditions of real-time welding well, there are still some limitations worth discussing: firstly,
the article only conducts experiments for five weld types, which is not rich enough to adapt
to the changing welding environment; secondly, the RD-Head designed independently in
the article does not validate its performance by designing extensive independent experi-
ments and lacks sufficient evaluation of the module; finally, the dataset used was collected
in a laboratory environment, which may have fewer factors such as noise and external
interference compared to scenarios in actual industrial environments, so its performance in
practical applications needs to be further tested.

In future work, we will further explore the application of the model in real industrial
scenarios, and try to collect data of different weld types in different environments to build
a more diverse and large dataset.

Author Contributions: Conceptualization, A.G., Z.F. and F.D.; methodology, A.G. and Z.F.; software,
A.G., Z.F. and A.L.; validation, A.G., Z.F., A.L. and D.W.; formal analysis, A.G.; investigation, A.G.,
Z.F. and A.L.; resources, D.W., A.L. and Q.L.; data curation, A.G., Z.F. and Q.L.; writing—original
draft preparation, A.G. and Z.F.; writing—review and editing, Z.F. and F.D.; visualization, A.G. and
Q.L.; supervision, F.D.; project administration, Z.F. and D.W.; funding acquisition, F.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key Research and Development Program of Shandong
Province under Grant 2020CXGC010206, the Fundamental Research Funds for the Central Universities
and the Young Scholars Program of Shandong University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, D.; Zhang, Z.; Du, F.; Zou, Y. Effect of arc voltage on process stability of bypass-coupling twin-wire indirect arc welding. Int.

J. Mod. Phys. B 2022, 36, 2240053. [CrossRef]
2. Yang, L.; Liu, Y.; Peng, J. Advances techniques of the structured light sensing in intelligent welding robots: A review. Int. J. Adv.

Manuf. Technol. 2020, 110, 1027–1046. [CrossRef]
3. Wu, D.; An, Q.; Du, F.; Matsuda, K.; Tang, Y.; Zou, Y. Microstructure and corrosion resistance of stainless steel produced by

bypass coupling twin-wire indirect arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 119, 2159–2172. [CrossRef]
4. Yang, L.; Liu, Y. A novel 3D seam extraction method based on multi-functional sensor for V-Type weld seam. IEEE Access 2019,

7, 182415–182424. [CrossRef]
5. Wenji, L.; Zhenyu, G.; Xiao, J.; Li, L.; Jianfeng, Y. Research on the seam tracking of narrow gap P-GMAW based on arc sound

sensing. Sens. Actuators A Phys. 2019, 292, 205–216. [CrossRef]
6. Li, G.; Hong, Y.; Gao, J.; Hong, B.; Li, X. Welding seam trajectory recognition for automated skip welding guidance of a spatially

intermittent welding seam based on laser vision sensor. Sensors 2020, 20, 3657. [CrossRef]
7. Ma, Y.; Fan, J.; Deng, S.; Luo, Y.; Ma, X.; Jing, F.; Tan, M. Efficient and accurate start point guiding and seam tracking method for

curve weld based on structure light. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]
8. Zou, Y.; Wang, Y.; Zhou, W.; Chen, X. Real-time seam tracking control system based on line laser visions. Opt. Laser Technol. 2018,

103, 182–192. [CrossRef]

http://doi.org/10.1142/S0217979222400537
http://dx.doi.org/10.1007/s00170-020-05524-2
http://dx.doi.org/10.1007/s00170-021-08343-1
http://dx.doi.org/10.1109/ACCESS.2019.2944884
http://dx.doi.org/10.1016/j.sna.2019.04.015
http://dx.doi.org/10.3390/s20133657
http://dx.doi.org/10.1109/TIM.2021.3072103
http://dx.doi.org/10.1016/j.optlastec.2018.01.010


Sensors 2023, 23, 5640 23 of 24

9. Zhao, X.; Zhang, Y.; Wang, H.; Liu, Y.; Zhang, B.; Hu, S. Research on Trajectory Recognition and Control Technology of Real-Time
Tracking Welding. Sensors 2022, 22, 8546. [CrossRef]

10. Cardellicchio, A.; Nitti, M.; Patruno, C.; Mosca, N.; di Summa, M.; Stella, E.; Renò, V. Automatic quality control of aluminium
parts welds based on 3D data and artificial intelligence. J. Intell. Manuf. 2023, 2023, 1–20. [CrossRef]

11. Baek, D.; Moon, H.S.; Park, S.-H. In-process prediction of weld penetration depth using machine learning-based molten pool
extraction technique in tungsten arc welding. J. Intell. Manuf. 2022, 2022, 1–17. [CrossRef]

12. Wang, N.; Zhong, K.; Shi, X.; Zhang, X. A robust weld seam recognition method under heavy noise based on structured-light
vision. Robot. Comput.-Integr. Manuf. 2020, 61, 101821. [CrossRef]

13. Zeng, J.; Cao, G.; Li, W.; Sun, J.; Lv, J.; Chen, B. Feature point extraction based on contour detection and corner detection for weld
seam. J. Phys. Conf. Ser. 2018, 1074, 012161. [CrossRef]

14. Zou, Y.; Chen, X.; Gong, G.; Li, J. A seam tracking system based on a laser vision sensor. Measurement 2018, 127, 489–500.
[CrossRef]

15. He, Y.; Xu, Y.; Chen, Y.; Chen, H.; Chen, S. Weld seam profile detection and feature point extraction for multi-pass route planning
based on visual attention model. Robot. Comput.-Integr. Manuf. 2016, 37, 251–261. [CrossRef]

16. Fan, J.; Deng, S.; Ma, Y.; Zhou, C.; Jing, F.; Tan, M. Seam feature point acquisition based on efficient convolution operator and
particle filter in GMAW. IEEE Trans. Ind. Inform. 2020, 17, 1220–1230. [CrossRef]

17. Du, R.; Xu, Y.; Hou, Z.; Shu, J.; Chen, S. Strong noise image processing for vision-based seam tracking in robotic gas metal arc
welding. Int. J. Adv. Manuf. Technol. 2019, 101, 2135–2149. [CrossRef]

18. Xiao, R.; Xu, Y.; Hou, Z.; Chen, C.; Chen, S. An adaptive feature extraction algorithm for multiple typical seam tracking based on
vision sensor in robotic arc welding. Sens. Actuators A Phys. 2019, 297, 111533. [CrossRef]

19. Dong, Z.; Mai, Z.; Yin, S.; Wang, J.; Yuan, J.; Fei, Y. A weld line detection robot based on structure light for automatic NDT. Int. J.
Adv. Manuf. Technol. 2020, 111, 1831–1845. [CrossRef]

20. Zou, Y.; Chen, T.; Chen, X.; Li, J. Robotic seam tracking system combining convolution filter and deep reinforcement learning.
Mech. Syst. Signal Process. 2022, 165, 108372. [CrossRef]

21. Wu, K.; Wang, T.; He, J.; Liu, Y.; Jia, Z. Autonomous seam recognition and feature extraction for multi-pass welding based on
laser stripe edge guidance network. Int. J. Adv. Manuf. Technol. 2020, 111, 2719–2731. [CrossRef]

22. Zou, Y.; Wei, X.; Chen, J. Conditional generative adversarial network-based training image inpainting for laser vision seam
tracking. Opt. Lasers Eng. 2020, 134, 106140. [CrossRef]

23. Yang, L.; Fan, J.; Huo, B.; Li, E.; Liu, Y. Image denoising of seam images with deep learning for laser vision seam tracking. IEEE
Sens. J. 2022, 22, 6098–6107. [CrossRef]

24. Lu, J.; Yang, A.; Chen, X.; Xu, X.; Lv, R.; Zhao, Z. A Seam Tracking Method Based on an Image Segmentation Deep Convolutional
Neural Network. Metals 2022, 12, 1365. [CrossRef]

25. Liu, Z.; Gu, X.; Chen, J.; Wang, D.; Chen, Y.; Wang, L. Automatic recognition of pavement cracks from combined GPR B-scan and
C-scan images using multiscale feature fusion deep neural networks. Autom. Constr. 2023, 146, 104698. [CrossRef]

26. Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl.
2021, 35, 13895–13906. [CrossRef]

27. Sha, J.; Wang, J.; Hu, H.; Ye, Y.; Xu, G. Development of an Accurate and Automated Quality Inspection System for Solder Joints
on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Appl. Sci. 2023, 13, 5290. [CrossRef]

28. Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network
combined with YOLO v5 algorithm in small target detection of remote sensing image. PloS ONE 2021, 16, e0259283. [CrossRef]

29. Yao, J.; Qi, J.; Zhang, J.; Shao, H.; Yang, J.; Li, X. A real-time detection algorithm for Kiwifruit defects based on YOLOv5. Electronics
2021, 10, 1711. [CrossRef]

30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

31. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y. ultralytics/yolov5: V6. 1-TensorRT TensorFlow edge TPU and
OpenVINO export and inference. Zenodo 2022, 2, 2.

32. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000.

33. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742.

34. Liu, Y.; Shao, Z.; Teng, Y.; Hoffmann, N. NAM: Normalization-based attention module. arXiv 2021, arXiv:2111.12419.
35. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

36. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

37. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

http://dx.doi.org/10.3390/s22218546
http://dx.doi.org/10.1007/s10845-023-02124-1
http://dx.doi.org/10.1007/s10845-022-02013-z
http://dx.doi.org/10.1016/j.rcim.2019.101821
http://dx.doi.org/10.1088/1742-6596/1074/1/012161
http://dx.doi.org/10.1016/j.measurement.2018.06.020
http://dx.doi.org/10.1016/j.rcim.2015.04.005
http://dx.doi.org/10.1109/TII.2020.2977121
http://dx.doi.org/10.1007/s00170-018-3115-2
http://dx.doi.org/10.1016/j.sna.2019.111533
http://dx.doi.org/10.1007/s00170-020-05964-w
http://dx.doi.org/10.1016/j.ymssp.2021.108372
http://dx.doi.org/10.1007/s00170-020-06246-1
http://dx.doi.org/10.1016/j.optlaseng.2020.106140
http://dx.doi.org/10.1109/JSEN.2022.3147489
http://dx.doi.org/10.3390/met12081365
http://dx.doi.org/10.1016/j.autcon.2022.104698
http://dx.doi.org/10.1007/s00521-021-06029-z
http://dx.doi.org/10.3390/app13095290
http://dx.doi.org/10.1371/journal.pone.0259283
http://dx.doi.org/10.3390/electronics10141711


Sensors 2023, 23, 5640 24 of 24

38. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

39. Song, G.; Liu, Y.; Wang, X. Revisiting the sibling head in object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11563–11572.

40. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
41. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December

2015; pp. 1440–1448.
42. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
43. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
44. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
45. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Experiment System
	Methodology
	Data Processing
	Setting of the Detection Targets
	Data Collection
	Data Augmentation

	YOLOv5 Network Architecture
	YOLO-Weld
	RepVGG
	NAM
	RD-Head


	Experiment and Analysis
	Training of the Model
	Training Results and Evaluation
	Selecting the Base Model for the Experiment
	Ablation Experiments
	Comparative Experiments
	Welding Experiment

	Conclusions
	Limitations and Future Directions
	References

