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Abstract: This paper proposes a reinforcement learning-aided channel estimator for time-varying
multi-input multi-output systems. The basic concept of the proposed channel estimator is the se-
lection of the detected data symbol in the data-aided channel estimation. To achieve the selection
successfully, we first formulate an optimization problem to minimize the data-aided channel estima-
tion error. However, in time-varying channels, the optimal solution is difficult to derive because of
its computational complexity and the time-varying nature of the channel. To address these difficul-
ties, we consider a sequential selection for the detected symbols and a refinement for the selected
symbols. A Markov decision process is formulated for sequential selection, and a reinforcement
learning algorithm that efficiently computes the optimal policy is proposed with state element refine-
ment. Simulation results demonstrate that the proposed channel estimator outperforms conventional
channel estimators by efficiently capturing the variation of the channels.

Keywords: data-aided channel estimation; non-iterative approach; first-order Gaussian—Markov
channel model; reinforcement learning

1. Introduction

The multi-input multi-output (MIMO) system is a key technology in modern com-
munication and can significantly improve channel capacity and communication reliability
by using multiple antennas [1–7]. Spatial multiplexing and diversity gain are representa-
tive schemes for this improvement [1,2]. Notably, the channel capacity increases linearly
with the number of either transmitter and receiver antennas. However, this increase is
based on the unrealistic assumption of perfect channel state information (PCSI) at both the
transmitter and receiver.

Many studies have proposed improving the channel estimation accuracy with limited
time and frequency resources [8–15]. A representative method is pilot-aided channel
estimation, which exploits the information shared between a transmitter and receiver.
Linear minimum-mean square-error (LMMSE) channel estimation is a well-known method
for pilot-aided channel estimation, owing to its simple structure [8]. However, LMMSE
channel estimation exhibits unsatisfactory performance with a limited number of pilots.
Thus, many pilots are required to satisfy the performance requirement, which decreases
the spectral efficiency.

To overcome this problem, data-aided channel estimation has been investigated in
which the detected data symbols are exploited as additional pilot symbols [16–26]. However,
the detected data symbols may have errors that degrade the accuracy of channel estimation.
The iterative turbo equalizer can overcome this degradation by increasing the maximum-
a-posteriori probability (MAP) [16–22]. However, such an iterative turbo equalizer has
considerable complexity and latency at the receivers.
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As a non-iterative approach, the reinforcement learning (RL)-aided channel estima-
tor was introduced in [27–33]. The basic concept of this approach is the sequential se-
lection of detected data symbols to minimize the channel estimation errors. Hence, a
Markov decision process (MDP) was defined to solve the sequential selection, and the
corresponding optimal policy was derived in a closed-form expression in [31]. In [32], a
low-complexity algorithm was investigated by introducing sub-blocks and finite backup
samples, and the computational complexity and latency were significantly reduced without
performance loss. Recently, a general framework for RL-aided channel estimation was stud-
ied in [33] based on Monte Carlo tree search. However, the RL-aided channel estimators
in [31–33] were originally considered in time-invariant channels; they perform insufficiently
in time-varying channels.

In this paper, we propose an RL-aided channel estimator for time-varying MIMO
channels. To achieve this, we first introduce an optimization problem for an RL-aided
channel estimator in time-varying channels. We then formulate an MDP to solve the
optimization problem, and propose an RL algorithm for the MDP that considers the time-
varying nature of the channel. The main contributions of this paper are as follows:

• We propose an RL-aided channel estimator for time-varying channels modeled using
a first-order Gaussian—Markov process. First, we define the optimization problem in
time-varying channels to select the detected data symbols and minimize the estimation
error between the estimated and current channels. This optimization problem is
different from those in [31–33], where the selection of the detected data symbols is
unchanged because the current channel remains unchanged with the time slot index.

• We propose an RL algorithm for the optimization problem that captures the time-
varying nature of a channel. Because the optimization problem minimizes the estima-
tion error between the estimated and current channels, we adjust the weights of the
data symbols to improve the channel accuracy of the current channel.
Using this adjustment, we derive the optimal policy as a closed-form solution.
Note that the proposed optimal policy differs from those in [31–33] because the
influence of soft-decision symbols in the virtual state for future rewards gradually
diminishes as the time slot index increases.

• We propose a further performance improvement scheme to refine the state elements.
This is because the previously selected data symbol degrades the estimation accuracy
of the current channel. To improve the estimation accuracy, we refine the previously
selected data symbol by reflecting the channel variation. In addition, we remove
selected data symbols that are too old by introducing a sliding window, because they
have a large noise variance to estimate the current channel. Through simulations,
we demonstrated the effectiveness of the proposed channel estimator compared with
conventional channel estimators in time-varying channels.

The remainder of this paper is organized as follows. In Section 1, we introduce the
system model, optimization problem, and the MDP. The proposed channel estimator,
which determines the optimal policy for time-varying channels, is described in Section 2.
We propose a further performance improvement scheme in Section 3. In Section 4, we
present simulation results to demonstrate the effectiveness of the proposed channel estima-
tor. Finally, we provide our conclusions in Section 5.

2. Preliminaries

This section describes the system model of a data-aided channel estimator for time-
varying MIMO channels. We present the considered channel estimation and data detection
schemes based on the model and introduce an optimization problem for data-aided channel
estimation.

2.1. System Model

We consider MIMO systems in which a transmitter with a number of transmit an-
tennas Nt communicates with a receiver with a number of receive antennas Nr (Figure 1).
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The information is first encoded and mapped to the symbol constellation where X is
the symbol constellation set. The transmitted symbol at time n denoted by x[n] ∈ X Nt

is then sent over a wireless channel. We model the wireless channel using a first-order
Gaussian—Markov process as a time-varying channel model [34–38], where the channel
matrix H[n] ∈ CNt×Nr has its (t, r)-th component between the t-th and r-th antennas fol-
lowing a Rayleigh fading CN (0, 1) distribution. The temporal correlation of the wireless
channel, denoted by ε ∈ [0, 1], increases with velocity. Based on this model, the channel
matrix H[n] at time slot n is given by

H[n] =
√

1− ε2H[n− 1] + ε∆[n], (1)

where ∆[n] follows a CN (0, 1) distribution.

Figure 1. Considered system model and frame structure in time-varying channels.

When the transmitter sends the symbol x[n] to the receiver over the wireless channel
H[n], the received symbol z[n] is given by

z[n] = HH [n]x[n] + n[n], (2)

where (·)H denotes the conjugate transpose. n[n] is the additive white Gaussian noise
(AWGN) at time slot n, with distribution CN (0Nr , σ2

nINr ), where 0m and Im respectively
denote m×m zero and identity matrices.

The frame consists of one pilot and Md data blocks (Figure 1). The pilot block contains
Np symbols, whereas each data block contains Nd symbols.Mp = {1, . . . , Np} is defined
as the pilot index set andMd = {(d− 1)Nd + 1, . . . , dNd} is defined as the data index set.
We consider data-aided channel estimation, where the receiver obtains the initial channel
estimates using pilot symbols, and the accuracy of the initial channel estimates is improved
by exploiting data symbols.

We adopt the LMMSE method as the basic channel estimation method because it has a
simple structure and provides a reasonable performance. Based on the LMMSE method, ĥr
of the r-th row for the initial channel estimate Ĥ can be obtained as

ĥr =
(

Xp(Xp)H + σ2
nINt

)−1
Xp(zp

r )
H , (3)

where (·)−1 is the inverse operation. Xp = [x[1], . . . , x[Np]]T and zp
r = [zr[1], . . . , zr[Np]]T

are the pilot and corresponding received symbols in the pilot block, respectively.
The conventional channel estimator performs data detection at the receiver using the

initial channel estimates ĥ. Because the MAP rule guarantees optimal performance, we
adopt it for data detection, which is given by

x̂[n] = argmax
xk∈X Nt

θk[n]. (4)
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where | · | is the cardinality of a set. xk ∈ X Nt where k belongs to the index set of the symbol
vector candidate K = {1, . . . , |X Nt |}. θk[n] denotes a posteriori probability (APP), which is
given by

θk[n] =
P[z[n]|x[n] = xk]P[x[n] = xk]

∑
j∈K

P
[
z[n]|x[n] = xj

]
P
[
x[n] = xj

] , (5)

where the likelihood probability in (5) is calculated by assuming the AWGN channel as

P[z[n]|x[n] = xk] =
1

(πσ2
n)

Nr
e
− ‖z[n]−ĥH xk‖

2

σ2
n . (6)

where ‖ · ‖2 denotes the norm operation and P(·) is the probability of an event.
The a priori probability in (5) is also assumed to have an equal probability for possible
candidate transmitted symbol P[x[n] = xk] =

1
|X |Nt

.

2.2. Problem

In a time-varying channel, the estimation accuracy of ĥ decreases gradually as time
slot index n increases. This degradation results in poor detection performance at the
receiver. Because the detected data symbol may have an error owing to the channel, an
incorrect use of the detected data symbol severely degrades performance. To overcome
this degradation, we consider a data-aided channel estimator that selects the detected data
symbols for data-aided channel estimation.

For the selection, we define action a ∈ A = {0, 1} where the detected data symbol
is used in channel estimation when a = 1; otherwise, the detected data symbol is not
used. When we define a ∈ {0, 1}Nd as a set of actions, the considered data-aided channel
estimation can be obtained using this set as

ĥr(a) =
(

X̂(a)X̂H(a) + σ2
nINt

)−1
X̂(a)zH

r (a) (7)

where zr(a) = [zp
r , zr[e1(a)], . . . , zr[e‖a‖0

(a)]]T and X̂(a) = [Xp, x̂[e1(a)], . . . , x̂[e‖a‖0
(a)]]T .

The time slot index of the i-th nonzero element is denoted as ei(·). We then define the
optimization problem as

a? = argmin
a
E{‖ĥ(a)−H[n]‖2}, (8)

where E(·) is the expectation of a random variable.
Compared with previous studies [31–33], the optimization problem in (8) considers

the selection to minimize the MSE between the estimated channel and H[n]. Because the
channel is variant with time slot index n, the best action a? may be different with time
slot index n. That is, the best action in the previous time slot index may be invalid in
the next time slot index. In addition, the optimization problem is difficult to solve be-
cause the number of candidate actions increases exponentially with the data symbol length.
An exhaustive search for action candidates is not feasible in practical applications.
To resolve these difficulties, we introduce a sequential selection of the detected data symbols
and a refinement of the selected data.

2.3. Markov Decision Process

We formulate an MDP that solves the optimization problem in (8). To achieve this,
we define state Sn, transition function T (a,j)

n+1 (Sn), action A, and reward R(Sn,Sn+1) [39].
Subsequently, the Q-value function Q(Sn, a) and the optimal policy π?(Sn) will be pre-
sented. The basic definitions for the MDP are adopted from those in [31–33]; however, the
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RL solution for the MDP is different from those in previous studies, which will be explained
in the next section.

The state set Sn is defined as

Sn =
{(

Xn, X̂n, C
) ∣∣∣Xn =

[
x[1] · · · x

[
Np
]
, xkC(1) , · · · , xkC(|C|)

]
,

X̂n =
[
x[1] · · · x

[
Np
]
, x̂[C(1)], · · · , x̂[C(|C|)]

]
,

C ⊂ {1, · · · , n− 1}
}

, (9)

where C is the set of time slot indices where the symbol is used in channel estimation, and
C(i) is the i-th smallest element. kn ∈ K = {1, . . . , |X |} is the transmitted symbol index at
time slot n. Based on the expression, we can obtain the proposed channel estimate using
the state Sn ∈ Sn as

ĥr(Sn) =
(

X̂nX̂H
n + σ2

nINt

)−1
X̂nzH

r (Sn) (10)

where zr(Sn) = [zp
r , zr[C(1)], . . . , zr[C(|C|)]]T . Note that Sn is the set of all states and Sn is

the state.
The action set is defined as A = {0, 1}. As explained in the previous subsection, the

detected data symbol is used in the proposed channel estimation when a = 1; otherwise,
the detected data symbol is not used. The transition function T (a,j)(Sn) from state Sn ∈ Sn
is defined as

T (a,j)(Sn) = P
[
U
(a,j)
n+1(Sn)

∣∣∣ Sn, a
]
=

{
I
[
x[n] = xj

]
, j ∈ Ja, a = 1,

1, j ∈ Ja, a = 0.
(11)

where I(·) equals one when the event is true and zero otherwise. J0 ∈= {0} and J1 ∈
{1, . . . , K}. U(a,j)

n+1(Sn) ∈ U (a,j)
n+1 (Sn) is a possible candidate for the next state from state Sn

and is defined as

U (a,j)
n+1 (Sn) =

{(
[Xn, xj], [X̂n, x̂[n]], [C ∪ n]

)
, j ∈ Ja, a = 1,(

Xn, X̂n, C
)
, j ∈ Ja, a = 0.

(12)

The rewardR(Sn,Sn+1) is defined as the difference between the MSEs at the current
state Sn ∈ Sn and the next state Sn+1 ∈ Sn+1, which is given by

R(Sn,Sn+1) = E
[
‖ĥr(Sn)− hr[n]‖2

]
− E

[
‖ĥr(Sn+1)− hr[n + 1]‖2

]
= Tr[B(Sn)]− Tr[B(Sn+1)] = Tr[B(Sn)− B(Sn+1)], (13)

where B(Sn) = E
[
(ĥr(Sn)− hr[n])(ĥr(Sn)− hr[n])H

]
is error covariance. Unlike in [31–33],

the error covariance is defined between the estimated channel ĥr(Sn) and hr[n] at time slot
index n.

The Q-value function Q(Sn, a) is the sum of the rewards, which is given by

Q(Sn, a) = ∑
j∈Ja

T (a,j)(Sn)
[
R
(
Sn,U(a,j)

n+1(Sn)
)
+ γV?

(
U
(a,j)
n+1(Sn)

)]
, (14)

where Tr(·) is a trace operation. V?
(
U
(a,j)
n+1(Sn)

)
is the optimal sum of future reward after

U
(a,j)
n+1(Sn). γ is a discounting factor whose value is assumed as one because the proposed

channel estimator also considers the effect of future rewards at the ending state [31].
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The optimal policy maximizes the Q-value function, which is expressed as

π?(Sn) = argmax
a∈A

Q(Sn, a). (15)

Solving the optimization problem in (15) is highly difficult because the transition prob-
ability T (a,j)(Sn) is unknown, and the number of candidate states exponentially increases
with the data length. An effective method to solve this problem is to use a reinforcement
learning algorithm. Therefore, the proposed channel estimator also adopts a reinforce-
ment learning algorithm, but the effect of the time-varying channel is also considered in
comparison with [31–33].

A deep reinforcement learning (DRL) approach is a promising solution for dealing
with the dimension explosion of the states by leveraging deep neural networks. To apply
the DRL approach to our MDP, an agent needs to interact with an environment to obtain an
action-value function for a given action and state. However, both the states and rewards
of our MDP are not observable at the receiver. This means that the agent cannot acquire
training samples, each of which consists of the state (or the state transition) and the
corresponding reward. Consequently, the DRL approach and other data-driven approaches
are not directly applicable to solving our MDP.

3. Proposed Optimal Policy

This section describes the proposed optimal policy. The basic concept of the derivation
is similar to that in [31–33]. However, its direct extension is difficult for time-varying
channels. This is because capturing time-variant channels using previously selected data
symbols is difficult. To address this, we approximate the first-order Gaussian—Markov
process and propose a computationally efficient algorithm.

We employ the approximation in [31–33] for the transition function, which is given by

T̂ (a,j)(Sn) =

{
θj[n], j ∈ Ja, a = 1,
1, j ∈ Ja, a = 0,

(16)

where T̂ (a,j)(Sn)→ T (a,j)(Sn) as θj[n]→ 1.
The main difficulty in analyzing the time-varying channel model is solving element

∆[n]. To resolve this difficulty, we approximate the first-order Gaussian—Markov process
in (1) as follows:

H[n] ≈
√

1− ε2H[n− 1], (17)

where H[n− 1]� ∆[n]. This approximation is often adopted in studies because it provides
analytical tractableness [36–38]. Using this approximation, the received symbol z[n + m]
for 1 ≤ m can be expressed in terms of H[n] as follows:

z[n + m] = HH [n + m]x[n + m] + n[n + m]

≈ HH [n]
(√

1− ε2
m

x[n + m]
)
+ n[n + m], (18)

From approximation (18), the virtual state in [31] that mimics the optimal behavior
from state U

(a,j)
n+1(Sn) can be obtained as follows:

Ũ
(a,j)
m (Sn) =

(
X(a,j)

m , X̂(a)
m , C(a)

m

)
, (19)
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where

X(a,j)
m =


[
Xn, xj,

(√
1− ε2x̃[n + 1]

)
, · · · ,

(√
1− ε2m−n−1

x̃[m− 1]
)]

, a = 1,[
Xn,

(√
1− ε2x̃[n + 1]

)
, · · · ,

(√
1− ε2m−n−1

x̃[m− 1]
)]

, a = 0.

X̂(a)
m =


[
X̂n, x̂[n],

(√
1− ε2x̃[n + 1]

)
, · · · ,

(√
1− ε2m−n−1

x̃[m− 1]
)]

, a = 1,[
X̂n,

(√
1− ε2x̃[n + 1]

)
, · · · ,

(√
1− ε2m−n−1

x̃[m− 1]
)]

, a = 0.

C(a)
m =

{
[C ∪ {n + 1, . . . , m}], a = 1,
[C ∪ {n + 2, . . . , m}], a = 0.

The soft-decision symbol x̃[m] for m ≥ n + 1 is define as

x̃[m] =
K

∑
k=1

θk[m]xj. (20)

In (19), because 0 ≤ ε ≤ 1, the effect of soft decision symbol x̃[n + m] for estimating
H[n] is diminished as m increases. Based on the virtual state, the state-action diagram for
the proposed channel estimator is shown in Figure 2. In this figure, the number of state
transitions at state Sn are one and K for a = 0 and a = 1, respectively. However, after n + 2,
the state transition is simplified to one because the virtual state mimics the behavior of
state U

(a,j)
n+1(Sn).

Figure 2. State-action diagram of the proposed channel estimator. After the time slot index n + 2, the
virtual state is applied such that the state transition is simplified.
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Using the definition of virtual state (19), we can compute the future reward
V?
(
U
(a,j)
n+1(Sn)

)
as

V?
(
U
(a,j)
n+1(Sn)

)
≈ R

(
U
(a,j)
n+1(Sn), Ũ

(a,j)
n+2(Sn)

)
+
Md(Nd)

∑
m=n+2

R
(
Ũ
(a,j)
m (Sn), Ũ

(a,j)
m+1(Sn)

)
. (21)

By applying (13) to the future reward, the future reward is simplified as

V?
(
U
(a,j)
n+1(Sn)

)
= Tr

[
B
(
U
(a,j)
n+1(Sn)

)
− B

(
Ũ
(a,j)
n+2(Sn)

)
+
Md(Nd)

∑
m=n+2

B
(
Ũ
(a,j)
m (Sn)

)
− B

(
Ũ
(a,j)
m+1(Sn)

)]
= Tr

[
B
(
U
(a,j)
n+1(Sn)

)
− B

(
Ũ
(a,j)
Md(Nd)+1(Sn)

)]
. (22)

Using the approximations (16) and (22), the Q-value function in (14) is obtained
as follows:

Q(Sn, a) = ∑
j∈Ja

T̂ (a,j)(Sn)Tr
[
B(Sn)− B

(
Ũ
(a,j)
Md(Nd)+1(Sn)

)]
. (23)

The error covariance matrix B
(

Ũ(a,j)
m

)
can be computed as

B
(

Ũ(a,j)
m

)
= E{‖ĥr

(
Ũ(a,j)

m

)
− hr[n]‖2}

= E{(ĥr

(
Ũ(a,j)

m

)
− hr[n])(ĥr

(
Ũ(a,j)

m

)
− hr[n])H}

= E
{

ĥr

(
Ũ(a,j)

m

)
ĥH

r

(
Ũ(a,j)

m

)
− hr[n]ĥH

r

(
Ũ(a,j)

m

)
− ĥr

(
Ũ(a,j)

m

)
hH

r [n] + hr[n]hH
r [n]

}
(24)

(a)
= Q(a)

m X̂(a,j)
m

((
X(a,j)

m

)H
X(a,j)

m + σ2
nI
|C(a)

m |

)
(X̂(a,j)

m )HQ(a)
m

− X(a,j)
m (X̂(a,j)

m )HQ(a)
m −Q(a)

m X̂(a,j)
m

(
X(a,j)

m

)H
+ INt

=

(
INt −Q(a)

m X̂(a,j)
m

(
X(a,j)

m

)H
)(

INt −Q(a)
m X̂(a,j)

m

(
X(a,j)

m

)H
)H

+ σ2
nQ(a)

m − σ4
n

(
Q(a)

m

)2

(b)
= Q(a)

m D(a,j)
m

(
D(a,j)

m

)H
Q(a)

m + σ2
nQ(a)

m − σ4
n

(
Q(a)

m

)2

where the distribution of zH
r

(
Ũ
(a,j)
m (Sn)

)
is given by CN

(
0
|C(a)

m |
,
(

X(a,j)
m

)H
X(a,j)

m + σ2
nI
|C(a)

m |

)
and Q(a)

m =

(
X̂nX̂H

n +
m−1
∑

k=n+1
(1− ε2)m−nx̃[k]x̃H [k] + σ2

nINt

)−1

is applied in (a).

D(a,j)
m = (Q(a)

m )−1 − X̂mXH
m = X̂m

(
X̂m − Xm

)H
+ σ2

nINt is used in (b).
By applying (24) to the Q-value function, the optimal policy at Sn is computed as

π?(Sn) = argmax
a∈{0,1}

Q(Sn, a) = I [(Q(Sn, 1)−Q(Sn, 0)) ≥ 0]

= I
[

Tr

[(
K

∑
j=1

B
(
Ũ
(0,0)
Md(Nd)+1(Sn)

)
− θj[n]B

(
Ũ
(1,j)
Md(Nd)+1(Sn)

))]
≥ 0

]
. (25)
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where B
(
Ũ
(a,j)
Md(Nd)+1(Sn)

)
= σ2

nQ(a) − σ4
n

(
Q(a)

)2
+ Q(a)D(a,j)

(
D(a,j)

)H
Q(a). Q(a) = Q(a)

Md(Nd)+1 and

D(a,j) = D(a,j)
Md(Nd)+1 are defined as

Q(a) =

(
X̂(a)
Md(Nd)+1

(
X̂(a)
Md(Nd)+1

)H
+ σ2

nINtx

)−1

(a)
=


(

X̂nX̂H
n +

Md(Nd)

∑
m=n+1

(1− ε2)m−nx̃[m]x̃H [m] + σ2
nINt

)−1

, a = 0,((
Q(0)

)−1
+ x̃[n]x̃H [n]

)−1
, a = 1.

D(a,j) = X̂(a)
Md(Nd)+1

(
X̂(a)
Md(Nd)+1 − X(a,j)

Md(Nd)+1

)H
+ σ2

nINt

(b)
=

{
X̂n
(
X̂n − Xn

)H
+ σ2

nINt , j ∈ Ja, a = 0,

D(0,0) + x̂[n]
(
x̂[n]− xj

)H , j ∈ Ja, a = 1.

Similar to [31], Q(1) and Q(0) satisfy Q(1) = Q(0) − Q(0) x̂[n]x̂H [n]Q(0)

1+x̂H [n]Q(0) x̂[n]
. In addition, D(1,j)

and D(0,0) satisfy
K
∑

j=1
θj[n]D(1,j)

(
D(1,j)

)H
=
(

D(0,0) + d̂n

)(
D(0,0) + d̂n

)H
+ δnx̂[n]x̂H [n]

where d̂n = x̂[n](x̂[n]− x̃[n])H , and δn =
K
∑

j=1
θj[n]‖x̂[n]− xj‖2 − ‖x̂[n]− x̃[n]‖2.

Finally, similar to [32], by applying the results in (23) and (24) to (25), we obtain the
proposed optimal policy in closed-form as

π?(Sn) = I
[

σ2
n(1 + αn) + σ4

n‖an‖2 + ‖dn‖2

2σ4
n βn + γn + ‖cn − bn + dn‖2 ≥ 1

]
. (26)

When we define Q = Q(0) and D = D(0,0), vectors are computed as an = Qx̂[n]√
1+αn

,

bn = DHbn, cn = x̂[n]−x̃[n]√
1+αn

, and dn = DHQan
‖an‖2 . In addition, the constants are computed as

αn = x̂H [n]Qx̂[n], βn = aH
n Qan
‖an‖2 , and γn = δn

1+αn
. Note that the expression of the optimal

policy in (26) is similar to that in [32]. However, the vectors and constants in the optimal
policy is different from those in [32] because the temporal correlation ε is considered in Q
and D. When ε = 0, the optimal policy in (26) is equivalent to that in [32].

4. Further Performance Improvement

In this section, we propose a practical method to improve the estimation accuracy of
the proposed channel estimator. The proposed method refines state elements to capture the
time-varying nature of the channel.

4.1. State Element Refinement

Elements Xn and X̂n in state Sn are updated when the detected data symbol is selected
based on the optimal policy. However, the elements gradually lose their effectiveness
in estimating H[n] as time slot index n increases. To address this, we first represent the
received symbol for 1 ≤ m in terms of H[n] as

z[n−m] = HH [n−m]x[n−m] + n[n−m]

≈ HH [n]
(√

1− ε2
−m

x[n−m]

)
+ n[n−m]. (27)
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Using (27), we refine the elements Xn and X̂n in state as the time slot index increases,
which is given by

Xn ←
√

1− ε2
−1

Xn (28)

X̂n ←
√

1− ε2
−1

X̂n.

Regardless of the above refinement, the previously selected data symbols lose their
effectiveness as the time slot index increases, particularly for large data lengths. This is
because the term ∆[n] in (1) becomes dominant, increasing the uncertainty in estimating the
channel. To overcome this, we remove too-old selected data symbols in state by introducing
a window size Nw. In other words, we maintain the size of the set of time slot indices as
|C| = Nw. Thus, when the optimal action is one at time slot index n, n is included, whereas
the first index C(1) is removed from set C, which can be expressed as

Xn ← Xn \ Xn[C(1)],
X̂n ← X̂n \ X̂n[C(1)], (29)

C ← C \ C(1).

4.2. Algorithm

Using the proposed optimal policy and performance improvement strategy, the pro-
posed channel estimator is summarized in Algorithm 1. The receiver obtains the initial
channel estimation during pilot transmission. Subsequently, during the data transmission,
the receiver sequentially selects a data symbol based on the optimal policy. When the
optimal action a? = 1, the state Sn is updated using the most-probable state transition [31].
In addition, the state element refinement is performed based on this condition. After each
data block ends, the channel estimate is updated using the state Sn.

Algorithm 1: Proposed channel estimator

1 Obtain the initial channel estimate H← ĥ =
[
ĥ1, · · · , ĥNr

]
from (3)

2 Initialize the state S1 = (Xp, Xp, φ).
3 for d = 1 to Md do
4 for n ∈ Md do
5 Compute the optimal policy a? = π?(Sn) from (26).
6 Set the optimal values j? = 0 for a? = 0 and xj? = x̂[n] for a? = 1.

7 Update Sn+1 ← U
(a? ,j?)
n+1 (Sn) from (12).

8 if a? == 1 and Nw < |C| then
9 Remove the state elements in Sn+1.

10 Xn+1 ← Xn+1 \ Xn+1[C(1)],
11 X̂n+1 ← X̂n+1 \ X̂n[C(1)],
12 C ← C \ C(1).
13 end

14 Refine the state elements in Xn+1 ←
√

1− ε2−1
Xn+1 and

X̂n+1 ←
√

1− ε2−1
X̂n+1.

15 end

16 Update the channel estimate H← ĥ =
[
ĥ1(Sn), · · · , ĥNr (Sn)

]
from (10).

17 end

In Figure 3, we show a block diagram of the proposed channel estimator, which
consists of the LMMSE channel estimator, optimal policy calculator, and state element
refinement. The LMMSE channel estimator obtains the initial estimate at pilot transmission
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and updates the estimate at data transmission using state Sn. The optimal policy calculator
obtains the optimal action of (26) from the channel estimates and APP from the data detector.
The state elements are then refined based on the obtained optimal action, and the refined
state is used to estimate the channel and optimal policy for the next step.

Figure 3. Proposed channel estimator using a further performance improvement strategy.

Application of other data detection: The proposed RL-aided channel estimator can
be universally applied to any other soft-output data detection method. To achieve this,
the proposed RL-aided channel estimator relies on the availability of APPs, which can be
directly derived from the MAP data detection method. In the case of using other soft-output
data detections, the proposed RL-aided channel estimator can utilize the APPs that are
computed from the log-likelihood ratios.

Complexity analysis: Complexity is analyzed in terms of real multiplications to
provide an implementation perspective. Figure 3 shows the hardware structure of the
proposed RL-aided channel estimator, which consists of the LMMSE channel estimator,
state element refinement, and optimal policy calculator. Because the exact complexity
can vary depending on the implementation details, the complexity order (O(·)) of each
component is analyzed.

The complexity order of the LMMSE channel estimator in (7) is O((Np + |C(a?)|)
(N2

t + NtNr)) where C(a?) is the set of selected data symbol vectors. The complexity order
of state element refinement in Section 4.1 is O(4(Np + |C(a?)|). The complexity of the
optimal policy in (25) is primarily determined by the computation of Q(a). Consequently,
the complexity order of the optimal policy in (25) is O

(
2N2

t T2
d
)
. It is important to note that

among the components of the proposed channel estimator, the optimal policy calculator
has the highest complexity because it performs every data symbol index n, while the other
components perform every data block index d.

5. Simulation Results

This section presents the effectiveness of the proposed channel estimator using sim-
ulations. The numbers of transmit and receive antennas used were Nt = 2 and Nr = 4.
The transmission frame consisted of one pilot block with Np = 8 symbols and Md = 20
data blocks with Nd = 128 symbols. Each symbol used 4-quadrature amplitude modulation
(QAM) symbol mapping. We adopted turbo channel code with a rate of 1/2 and 16 cyclic
redundancy check bits. For the proposed channel estimator, the window size was set to
Nw = 2× Nd. The signal-to-noise ratio (SNR) was defined as Eb/N0 = 1/(log2 |X |σ2

n) un-
der the power constraint E{‖x[n]‖2} = 1. The proposed channel estimator was compared
with the following methods.

• PCSI: This method is ideal for time-invariant channels in which a perfect initial channel
estimate is available at the receiver. Because the initial channel changes during data
transmission, it is not optimal for time-varying channels.

• Pilot: This method uses a conventional pilot-aided channel estimator using (3).
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• Soft: This method is a data-aided channel estimator when all symbols in (20) are used
as additional pilot symbols.

• Conv-RL [31]: This method is a data-aided channel estimator in which the detected
data symbol is selected using the RL approach developed for time-invariant channels.

The performance of the methods was compared with that of the proposed channel
estimator in terms of the block-error rate (BLER) and normalized MSE (NMSE). In addition,
we considered the time-invariant channel ε = 0 and time-variant channel with ε = 0.005
and ε = 0.01. Note that channel was more severely variant when ε = 0.01 than when
ε = 0.005.

Figure 4 shows the BLERs for the proposed and other channel estimators in the time-
invariant channel, i.e., ε = 0. The conventional pilot-aided channel estimator exhibited a
poor performance when the number of pilots was small. Data-aided channel estimators can
overcome performance degradation caused by pilot-aided channel estimators. In particular,
the RL-based channel estimator [31] showed an outstanding performance compared with
other channel estimators. The BLER of the proposed channel estimator was slightly worse
than that of [31] because of a reduced window size Nw = 2× Nd.

-9 -8 -7 -6 -5 -4 -3 -2 -1 0
10

-2

10
-1

10
0

Figure 4. BLER for different channel estimators in time-invariant channels.

In Figure 5, the proposed channel estimator is compared with other channel estimators
in time-varying channels. The proposed channel estimator had a better BLER improve-
ment than the conventional pilot-aided channel estimator. In particular, the performance
improvement is more prominent at ε = 0.01 than that at ε = 0.005. This is because the
proposed channel estimator can efficiently capture channel variations by selecting and
refining detected data symbols. In addition, in time-variant channels, the proposed channel
estimator had a slightly higher BLER than the RL-based channel estimator, primarily due
to the utilization of a reduced window size (see Figure 5). However, in time-varying chan-
nels, this reduction in window size actually contributed to an improvement in BLER by
effectively leveraging the most recent data symbols. Consequently, the proposed channel
estimator had a lower BLER compared to the RL-based channel estimator. In Figure 6,
we show the BLER of the proposed channel estimator for different window sizes Nw in
time-varying channels with ε = 0.01 The BLER of the proposed channel estimator gradu-
ally degraded as Nw increased. This is because the selected data symbol is undesirable as
an additional pilot symbol in fast fading channels; therefore, only the usage of the latest
selected data symbol can improve the performance.
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Figure 5. BLER for different channel estimators in time-varying channels (ε = 0.005 and ε = 0.01).
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Figure 6. BLER of the proposed channel estimator for different window sizes Nw in time-varying
channels with ε = 0.01.

To further investigate the effect of window size, we investigated the NMSE of the
proposed channel estimator for different window sizes Nw at ε = 0.005 and Eb/N0 = −2 dB
(Figure 7). We observed that the NMSE improved until Md = 2 but decreased as the data
block length increased. This is because the old selected data symbol is ineffective for
estimating the channel. Thus, when we discard the old data symbol, we can further
improve the estimation accuracy (Figure 7).
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Figure 7. NMSE of the proposed channel estimator for different window sizes Nw in time-varying
channels with ε = 0.005.

6. Conclusions

A data-aided channel estimator was proposed for time-varying channels, which in-
volves selecting the detected data symbol. To facilitate efficient selection of the detected
data symbol, an optimization problem was initially formulated to minimize the channel
estimation error. Subsequently, the MDP for this optimization problem was formulated,
and its optimal policy was derived using an RL algorithm. In the derivation process,
approximations for the transition probability and a first-order Gaussian–Markov process
were utilized. To improve estimation accuracy, a state element refinement was intro-
duced to capture the time-varying nature of the channel by incorporating a window size.
Simulation results demonstrated that the proposed channel estimator provides similar
performance to the conventional RL-based channel estimator in time-invariant channels
when ε = 0, while showing improved performance in time-varying channels when ε = 0.01
and ε = 0.005 compared to conventional RL-based channel estimator.

An interesting direction for further research involves optimizing the frame structure
in terms of the spectral efficiency. In this study, the frame structure comprises one pilot and
D data block. The proposed RL-aided channel estimator is applied to the data blocks to
capture the time-varying nature of the channel. However, in fast fading channels, it can
be challenging for the proposed channel estimator to accurately track channel variations.
In such cases, reducing the value of D in the frame structure can potentially improve the
performance. However, this reduction also leads to a degradation in spectral efficiency. To
find an appropriate value for D in time-varying channels, an optimization problem that
maximizes spectral efficiency while maintaining acceptable performance levels becomes a
suitable criterion. To address this, one approach is to first derive the performance of the
RL-aided channel estimator. Subsequently, the solution to the optimization problem can be
obtained using the derived performance.
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