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Abstract: In actual industrial sites, verifying the framework for cable manipulation is crucial. There-
fore, it is necessary to simulate the deformation of the cable to predict its behavior accurately. By
simulating the behavior in advance, it is possible to reduce the time and cost required for work.
Although finite element analysis is used in various fields, the results may differ from the actual
behavior depending on the method of defining the analysis model and analysis conditions. This
paper aims to select appropriate indicators that can effectively cope with finite element analysis
and experiments during cable winding work. We perform finite element analysis of the behavior
of flexible cables and compare the analysis results with results from experiments. Despite some
differences between the experimental and analysis outcomes, an indicator was developed through
trial and error to align the two cases. Errors occurred during the experiments depending on the
analysis and experimental conditions. To address this, weights were derived through optimization to
update the cable analysis results. Additionally, deep learning was utilized to update the errors caused
by material properties using the weights. This allowed for finite element analysis even when the exact
physical properties of the material were unknown, ultimately improving the analysis performance.

Keywords: finite element method; flexible cable; cable winding; material property

1. Introduction

The field of automated robots that can replace humans in performing repetitive tasks
in various industrial fields is rapidly growing. By using robot manipulators, dangerous
and difficult tasks can be performed more quickly and precisely. Work performance can
also be improved by optimizing work paths through simulation. To accurately move the
manipulator in the simulation workspace, it is crucial to understand the movement of the
end effector, on which the work tool is mounted, and the characteristics and behavior of
the object being worked on.

Problems related to the deformation of flexible objects frequently occur in industrial
sites, and in particular, work using flexible cables, such as cable arrangement and pick-and-
place, is frequently performed. Although humans can easily manipulate cable deformation,
the increasing use of robot manipulators has made it important to verify the framework for
cable manipulation to replace humans with robots [1].

In cable winding work, which is a typical example of using manipulators in the man-
ufacturing process, the work path changes depending on cable deformation. Inaccurate
simulation of the movement during manipulation can lead to errors in the manipulator’s
work, resulting in reduced production efficiency. Therefore, it is necessary to accurately
represent the behavior of flexible cables during simulation to match actual behavior. How-
ever, due to the nonlinear changes in physical properties, accurately understanding the
properties of flexible cables has its limitations. Neo-Hookean and Mooney–Rivlin models
are used for typical nonlinear analysis such as cable analysis [2,3]. In addition, nonlinear
material behavior can be expressed as a stress–strain relationship using other coefficients [4].
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However, nonlinear elastic models have complex parameters to consider, which can affect
the accuracy of the model. Therefore, if sufficient experience and knowledge are lacking,
large errors may occur in the analysis result or there is no convergence. On the other
hand, this model uses only elements such as Young’s modulus and Poisson’s ratio and can
accurately model the material’s elastic behavior within a small deformation range.

In product design and experimentation, the finite element method can predict results
in advance, helping to save time and costs [5]. The finite element method is a numerical
analysis technique used to solve continuum problems and has been widely utilized in
various fields such as mathematics, physics, and engineering [6–8]. However, when there
is insufficient theory or data required for interpretation, the practical use of this method
in solving real engineering problems becomes challenging. For example, calculating the
complex stress state that continuously changes in fatigue failure lacks sufficient theory,
while the lack of data on the thermal and mechanical properties of non-metallic materials
limits finite element analysis for non-metallic materials [9,10].

Although finite element analysis using software is common in various fields, the
reliability of the results obtained may vary depending on the method used to define the
analysis conditions, assuming a model similar to the real world [11]. In order to enhance
the performance of analytical models, it is essential to verify the finite element-based model
with sufficient experimental data and improve the correlation between the simulation and
experiment [12].

Several methods to verify the accuracy of finite element analysis results involve using
sensors or vision systems [13,14]. For example, sensors can be placed on the cable to
measure its deformation or other physical properties during an experiment. Similarly,
vision systems can capture images of the cable and provide accurate measurements of
its deformation. By comparing the results of the experiment with the results of the finite
element analysis, the accuracy of the analysis can be assessed. It is important to note that
different verification methods may be appropriate for different types of cables or materials.
For example, for flexible cables, vision systems may provide a more accurate measurement
of deformation than sensors. Therefore, it may be necessary to use a combination of
verification methods to obtain the most accurate results.

Another important consideration when verifying finite element analysis results is the
development of appropriate verification indices. These indices can be used to evaluate
the accuracy of the analysis and identify areas where improvements are needed. Overall,
experimental verification is an important step in the finite element analysis process. Espe-
cially for flexible cables and other materials with complex behavior. By carefully selecting
appropriate verification methods and indices, the accuracy of the analysis can be improved,
and the reliability of the results can be ensured.

In this study, a method for experimentally verifying the finite element analysis model
for flexible cables is discussed. The input and output variables of the analysis and experi-
mental model were set, and an index was developed to verify the finite element analysis
results. The experimental environment was set to be the same as the finite element anal-
ysis, and verification methods based on sensors and vision systems were used. Vision
systems are particularly effective in observing deformation of objects, making them useful
for comparing flexible cable analysis and experimentation results. This approach has the
potential to improve productivity and economic feasibility by predicting various prob-
lems at industrial sites through simulation. Therefore, this paper aims to improve the
efficiency of automation work with flexible bodies by predicting the behavior of flexible
cables close to reality using only finite element analysis results and applying optimization
using machine learning. In this paper, a relatively simple linear elastic model is employed
to obtain simulation results. Through comparison with experiments, the errors resulting
from nonlinear material properties are identified, and the proposed approach suggests
using machine learning techniques to correct for these errors.
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2. Materials and Methods

Automating the process of winding flexible cables around a cylinder can be challenging
due to the varying behavior of the cables depending on their material properties. Finite
element analysis can be utilized to understand the cable behavior for a specific material,
and the results can be used as input data for machine learning algorithms to predict the
behavior of cables made from different materials. To ensure the accuracy of the finite
element analysis results, indicators can be set up and experiments can be conducted to
validate the analysis. This approach can help predict the behavior of flexible cables for
various materials, enabling the automation of cable winding processes. In this study,
for the analysis and experimentation with the flexible cable, a material exhibiting axial
length changes was utilized to account for the cable’s axial rigidity. The analysis and
experiments were performed using a flexible cable made of silicone rubber. The density
(ρ = 1.337 × 10−9

[
tonnes
mm3

]
) was calculated by measuring the volume and mass of the actual

silicone rubber cable. Poisson’s ratio (ν = 0.47) and elastic modulus (E = 2.6 MPa) were
measured through a tensile test.

2.1. Configuration of Model Parameters for Verification of Finite Element Analysis Results

In order to ensure the accuracy and reliability of the finite element analysis results
for flexible cables, it is essential to validate them through experiments. To achieve this, it
is crucial to establish a correlation between the results of the finite element analysis and
those of the experiments. In other words, it is necessary to select an appropriate analysis
model that can effectively capture the behavior of the cable under different conditions and
accurately predict its response. For flexible cable operations, as shown in Figure 1, the
output value is determined based on the input variables of the finite element analysis, and
the input and output variables in the experiment are also checked. These variables can
include factors such as the material properties of the cable, the winding angle, and the
applied tension. Once the input and output variables have been identified, the parameters
of the analysis model are configured by combining the input and output variables that can
be commonly utilized in both the finite element analysis and experiments. By selecting
appropriate input and output variables and establishing an effective correlation between
the finite element analysis and experimental results, it is possible to validate the accuracy
of the analysis model and further improve its reliability.
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2.1.1. Model for Finite Element Analysis

During the preprocessing stage of finite element analysis, the problem is defined and
the analysis model is formulated to incorporate the analysis conditions such as the material
properties, contact conditions, initial conditions, and boundary conditions. The domain
variable values are then calculated by combining the governing equations in the form of a
stiffness matrix. Based on this, the induction variables are calculated to obtain a solution,
such as stress distribution, deformation shape, and reaction force. To verify the accuracy
of the finite element analysis model, the shape change of the cable, which is a common
result of the finite element analysis and the experiment of winding a flexible cable around a
cylinder, was compared. With the end of the flexible cable fixed to the cylinder, the cylinder
rotates and is transported in one direction, and the cable is wound around the cylinder.
Even when cable winding work is performed in actual industrial sites, the manipulator
only serves to adjust the initial position of the cable and cut the cable, and the cylindrical
shape rotates to wind the cable, which is automated. Therefore, to perform finite element
analysis under the same conditions as the experiment, an analysis model was created in
the form shown in Figure 2 with the flexible cable end fixed to the cylinder, which rotates
and is transported in one direction while the cable is wound around it.
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2.1.2. Conditions of Finite Element Analysis

In order to simulate the winding of the flexible cable around the cylinder, a finite
element analysis of the flexible cable was performed using ABAQUS, as shown in Figure 3.
Since the change in the shape of the cable according to the material properties of the
flexible cable is important, the flexible cable was analyzed by dividing the elements into
an 8-node Reduced Integration Element (C3D8R) and setting the cylinder as an Analytic
Rigid Surface. To improve the speed of finite element analysis, the element sizes were
adjusted based on the cable diameter. In the radial direction, 12 nodes were positioned
along the outer circumference of each cable cross-section. In the axial direction, the node
spacing was set to approximately five times the cable diameter. For cables with a diameter
of 2 mm, a node spacing of 10 mm was used in the axial direction. When the cable diameter
increased to 4 mm, the axial node spacing was adjusted to 20 mm. In the case of a cable
diameter of 6 mm, an initial axial node spacing of 30 mm was employed, following the
same ratio as the previous cases. However, this configuration resulted in unacceptably
slow analysis speed. As a result, the axial node spacing was modified to 50 mm to achieve
a reasonable compromise between analysis speed and accuracy. By tailoring the element
sizes according to the cable diameter, the finite element analysis could be performed
more efficiently without compromising the essential features and behavior of the cables.
The contact condition between the cylinder and the cable was general contact, and the
dynamic/explicit analysis method was applied with the friction coefficient set to 0.1. The
explicit finite element analysis method is an inertial force-based analysis method. It is
suitable for problems with strong nonlinearity because it obtains a solution by substituting
the value of the previous step into the next step without solving the stiffness matrix. In
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order to obtain a stable solution, the time interval is shortened to derive output variables
such as acceleration, velocity, and reaction force over time, so it has the advantage of high
convergence. The cylinder was set to rotate at a speed of ωmax = 1.74 rad/s, while the
feed speed was δmax = 5 mm/s. The speed increased linearly until 1 s, and the analysis
was conducted at the same speed for 20 s after 1 s. Ts represents the time it takes to reach
the maximum speed, while Tmax represents the time it takes for the cable rotation and
translation to be completed.

tan λ =
l

πD
=

l
2πR

(1)

l = 2πR × tan λ (2)

∆S =

√
2π(R + r)2 + l2 (3)
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2.1.3. Metrics for Verifying Finite Element Analysis Results

To validate the accuracy of finite element analysis for flexible cables, an appropriate
index for comparing analysis results with experiments is required, as shown in Figure 4.
The marker spacing (∆S) was determined by using the cylinder radius (d), cable radius
(r) and the pitch of the cable (l) when it was wound around the cylinder, with the starting
point (P0) of the cable fixed on the cylinder as the reference. This marker spacing was then
set as an indicator to determine the length of the cable. When performing finite element
analysis using input variables such as material properties, initial tension, and winding
speed of the flexible cable, the shape of the cable is subject to change. During finite element
analysis, it is easy to obtain the displacement after cable deformation since the coordinates
of all nodes before and after analysis can be determined. However, there are limitations
to measuring the 3-dimensional displacement in experiments. To overcome this, markers
were attached to the flexible cable, and the displacement of the cable was measured based
on the coordinates of the center of the marker to capture the shape change. By marking
the cable at regular intervals and performing the experiment, the center coordinates of
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the markers could be obtained by recognizing the markers using OpenCV. To determine
the displacement of the flexible cable in the experiment, the coordinates were obtained by
calculating the cable length using the distance between the markers and the diameter of
the cylinder and flexible cable.
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To collect the coordinate values (x, y, z) of the corresponding node from the analysis
result after cable deformation, the node number of the element located at the same position
as the marker before deformation was first identified. The accuracy of the experiment
could be verified by converting the collected Cartesian coordinate data into a cylindrical
coordinate system and comparing it with the analysis results.

The position of each marker was determined based on the diameter of the flexible
cable, the diameter of the cylinder, and the distance between the cables when the cable was
wound. Each marker was positioned within the same frame when the cable was wound
around the cylinder. The centers of all markers are theoretically located at the intersection
of the tangent plane containing the starting points of the cylinder and the cable.

2.2. Configuration of Experiment Environment

During the experiments, a manipulator can be used to control the path of the cable,
allowing it to wind along a specific trajectory. However, when using the displacement of
the cable as an input variable in finite element analysis, the output variable becomes a stress
value that cannot be directly compared with experimental measurements. Additionally,
maintaining a constant tension during cable winding is difficult to achieve in experimental
environments, while it is possible to simulate it using finite element simulations.

To validate the simulation results experimentally, an experimental setup was designed
as shown in Figure 5. A linear motion device was used to transport the flexible cable in
the axial direction of the cylinder while the cylinder rotated at a constant speed. This
method allowed the cable to be wound around the cylinder, creating the same experimental
environment as the simulation. Using this approach, simulation and experimental results
could be more accurately compared in this study.
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2.2.1. Design of Experimental Equipment

A mechanism for rotating the cylinder and a mechanism for moving the position
of the wire were produced and constructed, and each mechanism was equipped with an
encoder and a motor to enable real-time control. The system that controlled the rotation and
transfer speed was configured to maintain a constant speed by transmitting the measured
value from the speed measurement MCU to the motor control MCU. The MCU for speed
measurement operated at 1000 Hz, and the MCU for motor control operated at 500 Hz, so it
was possible to operate quickly and accurately. Figure 6 shows that, to maintain a constant
tension while winding the flexible cable around the cylinder, a weight was attached to
the end of the cable, and a load cell was attached to the cable transfer device to measure
the initial tension and tension during the experiment [15,16]. In addition, the design
allowed the cable to move smoothly using pulleys to minimize friction while the cable was
wound around the cylinder. In the experiment, the rotational speed of the cylinder and the
conveying speed of the wire were controlled through the PID algorithm [17,18] to ensure
they were identical to the conditions of the finite element analysis. As shown in Figure 7,
it was confirmed that the target value was closely followed. Reliability was improved by
matching the conditions of the analysis and experiment.
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Figure 7. Graph of translation and rotation speeds used in cable winding experiments.

2.2.2. Cable Displacement Measurement Using Vision System

After fixing one end of the flexible cable to the cylinder, it was transferred in the axial
direction of the cylinder and the displacement of the cable was measured using a high-
speed camera while rotating the cylinder, as shown in Figure 8. During the cable winding,
the coordinates ( r, θ, z) of the marker center point were detected using the cylinder axis
transfer distance and the diameter of the cylinder and cable. The high-speed camera used
in the experiment can measure 1000 FPS at a resolution of up to 1920 × 1080 (FHD) and
24,046 FPS at a resolution of 640 × 96. The marker center coordinates were calculated by
calculating the rotation speed of the cylinder and the number of frames of the high-speed
camera. At this time, the distance from the center of the actual camera to the object changes
due to the distortion of the camera lens, so the exact distance was corrected [19,20]. To
accurately detect the position of the yellow marker attached to the cable, we used a specific
color algorithm in OpenCV to detect its color [21–23]. We converted the marker’s RGB
value to an HSV value to configure the algorithm for color classification. To prevent any
potential issues with detecting objects with colors similar to the marker in the experimental
environment, we extracted the RGB values of the markers in the image to detect accurate
marker color information and adjust the threshold accordingly.
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2.2.3. Selection of Flexible Cable Materials and Test Conditions

In the process of winding the flexible cable around the cylinder, the axial rigidity of the
cable was taken into account by using silicon rubber, which changes in length in the axial
direction. For the actual experiment, the physical properties of the materials used were
directly measured and used as input conditions for finite element analysis and experiment.
The density was calculated by measuring the volume and weight of the cable, while the
elastic modulus and Poisson’s ratio were measured using a tensile tester. Table 1 shows
the experiment and finite element analysis conditions, which were varied by changing the
cylinder diameter to 30 mm and 60 mm with cable diameters of 2 mm, 4 mm, and 6 mm.
The experiment was also conducted with variations in the tension for the same cylinder
diameter and cable diameter.

Table 1. Conditions of finite element analysis and experiment for silicone rubber cable.

Case Cylinder Diameter (mm) Wire Diameter (mm) Tension (MPa)

1

30

2
0.6245

2 1.249
3

4
0.1561

4 0.3122
5

6
0.06939

6 0.1388

7

60

2
0.6245

8 1.249
9

4
0.1561

10 0.3122
11

6
0.06939

12 0.1388

3. Finite Element Analysis and Collection of Experimental Datasets

Ten experiment repetitions were conducted to verify the accuracy of the finite element
analysis for a flexible cable under the same conditions. To enable comparison with the
experimental results, the finite element analysis results in orthogonal coordinate systems
were converted into cylindrical coordinate systems, and the curve length between the
center coordinates of the fixed marker and each marker was calculated. The results of the
finite element analysis were validated by comparing the curve length between marker
center coordinates after cable deformation to the marker interval before deformation. In the
experiment, the curve distance was calculated on a cylindrical coordinate system with the
sum of the cylinder and cable radii as the radius because the cable was twisted while being
wound around the cylinder. In the finite element analysis, the location of each node was
compared while the cable was deformed by grasping the node corresponding to the same
point as the marker’s position before the flexible cable was deformed. Figure 9 shows the
results of the finite element analysis, which indicate that the axial length change decreased
as the diameter of the flexible cable increased. Through this, it was possible to confirm the
difference in axial stiffness through the axial length change that varies depending on the
cable diameter.

3.1. Displacement Difference of the Center Marker Coordinates on the Flexible Cable

Through the experiments and finite element analysis, the angle differences and z-
coordinate changes were measured to compare the behavior of the cable according to its
diameter. The curve distance from the center coordinate of the fixed marker to the center
coordinate of each marker was calculated using this information and the radius of the
cylindrical coordinate system. The simulation results were verified through experiments.
Tables 2–4 present the comparisons between the finite element analysis and experimental
results while varying the diameter of the cylinder and the flexible cable. Table 2 shows the
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results for a cable diameter of 2 mm and Table 3 presents the results for a cable diameter of
4 mm. Similarly, Table 4 reports the results for a cable diameter of 6 mm.
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Table 2. Comparison of rotation angles and z-coordinates for markers in the simulations and
experiments when the cable diameter was 2 mm.

Cable Diameter:
2 mm

Cylinder Diameter (mm)
30 60

Tension
(MPa) Distance

Simulation Experiment Simulation Experiment

θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm)

0.6245

P0 − P1 6.26 7.01 7.1 6.72 7.05 8.31 8.38 11.62
P0 − P2 12.02 17.69 14.66 17.51 13.91 22.07 18.1 34.62
P0 − P3 18.31 30.54 22.38 32.23 18.94 39.66 27.75 60.9
P0 − P4 24.64 45.26 30.32 50.15 25.75 57.86 - -

1.249

P0 − P1 6.85 7.24 7.1 6.91 7.06 8.38 8.45 11.84
P0 − P2 13.09 17.33 15.03 19.5 13.34 22.23 19.15 37.55
P0 − P3 19.38 29.73 23.74 38.11 19.56 39.75 30.58 67.28
P0 − P4 25.65 44.8 - - 25.78 58.07 - -

Table 3. Comparison of rotation angles and z-coordinates for markers in the simulations and
experiments when the cable diameter was 4 mm.

Cable Diameter:
4 mm

Cylinder Diameter (mm)
30 60

Tension
(MPa) Distance

Simulation Experiment Simulation Experiment

θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm)

0.6245

P0 − P1 8.48 5.68 6.23 3.67 6.85 9.53 6.6 9.13
P0 − P2 12.73 16.33 12.34 14.66 13.11 23.32 13.37 23.13
P0 − P3 19.07 28.31 18.38 28.68 19.32 40.2 20 41.23
P0 − P4 25.34 42.29 24.38 45.01 25.55 58.21 26.7 59.95

1.249

P0 − P1 6.31 5.66 6.28 4.5 6.86 9.69 6.77 8.21
P0 − P2 12.49 16.33 12.52 14.86 13.13 23.46 13.56 22.14
P0 − P3 18.79 28.28 18.78 28.39 19.31 40.27 20.32 39.73
P0 − P4 25.06 42.19 24.96 43.6 25.55 58.35 27.17 59.12
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Table 4. Comparison of rotation angles and z-coordinates for markers in the simulations and
experiments when the cable diameter was 6 mm.

Cable Diameter:
6 mm

Cylinder Diameter (mm)
30 60

Tension
(MPa) Distance

Simulation Experiment Simulation Experiment

θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm) θn(rad) Zn(mm)

0.6245

P0 − P1 6.31 6.35 5.76 5.85 9.54 10.16 5.99 8.87
P0 − P2 12.49 16.55 11.47 12.73 12.23 22.62 12.13 19.95
P0 − P3 18.79 28.25 17.05 24.88 18.55 39.1 18.29 34.5
P0 − P4 25.05 41.68 22.74 42.3 24.9 56.67 24.43 49.1

1.249

P0 − P1 6.66 6.37 5.88 5.19 6.66 10.33 6.06 9.77
P0 − P2 12.9 16.54 11.64 11.5 12.9 22.82 12.23 21.83
P0 − P3 19.15 28.22 17.28 23.93 19.15 39.16 18.5 36.56
P0 − P4 25.37 41.72 23.11 38.11 25.37 56.75 24.73 51.66

3.2. Curved Length between Marker Center Coordinates Marked on a Flexible Cable

Accurately calculating the length of the cable curve involved measuring the difference
in angle and z-coordinate change, while also taking into consideration the diameters of
both the cylinder and the cable. It is worth noting that torsion occurs when the flexible cable
is wound around the cylinder, which can have an impact on the curve distance calculation.
To overcome this challenge, a cylindrical coordinate system was utilized, where the radius
was determined by adding the cylinder radius to the cable diameter. The calculated
curve length was then compared with the length before the cable deformation, and this
comparison was carried out through both finite element analysis and experimentation. The
detailed methodology for measuring the curve length is illustrated in Figure 10, while the
comparison of results is presented in Tables 5 and 6.
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Figure 10. Curve distance between marker center coordinates.

Table 5. Calculations of the cable length to each marker for a cylinder diameter of 30 mm.

Case
Cable Length (mm)

S1 S2 S3 S4

Original length 100 200 300 400

1 Simulation 100.37 193.14 294.51 396.77
Experiment 113.8 235.21 359.53 487.71

2 Simulation 109.87 210.16 311.51 412.76
Experiment 113.81 241.27 381.75 -

3 Simulation 144.23 217.03 325.37 432.92
Experiment 105.97 210.29 313.77 416.9

4 Simulation 107.42 212.92 320.7 428.04
Experiment 106.85 213.36 320.52 426.55

5 Simulation 113.75 225.37 339.38 452.89
Experiment 103.84 206.85 307.91 411.5

6 Simulation 120.1 232.8 345.78 458.55
Experiment 105.97 209.84 311.96 417.72
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Table 6. Calculations of the cable length to each marker for a cylinder diameter of 60 mm.

Case
Cable Length (mm)

S1 S2 S3 S4

Original length 200 400 600 800

7
Simulation 218.68 431.86 588.49 800.24
Experiment 260.04 562.17 862.4 -

8
Simulation 219.06 414.05 607.8 801.32
Experiment 262.22 594.84 950.36 -

9
Simulation 219.49 420.03 619.47 819.54
Experiment 211.4 428.46 641.33 856.5

10
Simulation 219.76 420.72 619.39 819.62
Experiment 216.8 434.48 651.45 871.45

11
Simulation 314.92 404.32 613.55 823.61
Experiment 197.87 400.79 604.56 807.68

12
Simulation 220.11 426.33 633.03 839.1
Experiment 200.22 404.18 611.59 817.72

3.3. Calculation of Length Error of Flexible Cable

Table 7 presents the error calculations obtained by comparing the curve length between
the marker center coordinates in the finite element analysis and those of the experiment
with a flexible cable, using the length before cable deformation. The accuracy of the finite
element analysis was confirmed by calculating the relative error for each condition. The
results indicate that the analysis and experimental outcomes are most consistent when the
cable diameter is 4 mm. However, for a cable diameter of 2 mm, the cable length changes
more in the experiment than in the analysis, while for a cable diameter of 6 mm, the length
change is greater in the analysis than in the experiment.

Table 7. Percentage error for cable length in each case.

Case
Percentage Error of Cable length (%)

S1 S2 S3 S4

1 13.38 21.78 22.08 22.92
2 3.59 14.8 22.55 -

3 26.53 3.11 3.57 3.7
4 0.53 0.21 0.06 0.35

5 8.71 8.22 9.27 9.14
6 11.77 9.86 9.78 8.9

7 18.91 30.17 46.54 -
8 19.7 43.66 56.36 -

9 3.69 2.01 3.53 4.51
10 1.35 3.27 5.18 6.32

11 37.17 0.87 1.47 1.93
12 9.04 5.2 3.39 2.55

4. Automatic Updating of Physical Properties of Flexible Cable through
Machine Learning

The analysis models were categorized based on experimental and finite element
analysis conditions such as the cylinder diameter, flexible cable diameter, and tension. To
create a dataset for machine learning, the curve length from the fixed point to the marker
was calculated by combining the flexible cable displacement obtained from finite element
analysis with the coordinate changes of the markers positioned at regular intervals in the
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actual experiment. Each dataset was matched with a learning model by applying the K-NN
(K-Nearest Neighbor) algorithm [24,25].

The K-NN algorithm was used to analyze the cable curve length error data obtained
from the experiments and finite element analysis, resulting in accurate classification of
the experimental conditions based on the given cable length. The achieved classification
accuracy was up to 91.3%. Using accumulated data classification and error automatic
update with DNN, weights were obtained for new input data not included in the classified
data. The input data included the cylinder diameter, cable diameter, tension, and others.
The neural network was constructed with three hidden layers, each consisting of ten nodes,
and ReLU (Rectified Linear Unit) was used as an activation function for the output weights.
The weight derived in this way was multiplied by the finite element analysis result to
update the cable length in the simulation [26–28]. The error calculations obtained by
comparing the updated finite element analysis results with the experimental results are
shown in Figure 11. In Formula (4), h represents a weight derived through machine learning
using the cylinder diameter, cable diameter and tension as input variables for updating the
distance between cable markers. βn represents a node’s weight for each input variable. In
Equation (5), SFEM is the distance between markers in the finite element analysis, and SEXP
represents the distance between markers calculated through experiments.

h = f (Dcylinder, Dcable, T) = f (x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 (4)

L = MSE(h × SFEM − SEXP) (5)
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As shown in Table 8, it was confirmed that the relative error of each cable decreased
by up to 7% after updating the finite element analysis result. When the cable diameter was
2 mm, which was the smallest cable diameter and had very low axial rigidity, the error
rate was larger compared with the other diameters. However, when the axial rigidity was
relatively large, the error in the updated cable length was very small. In the first length,
there was a large error in the process of fixing the cable to the cylinder, which hindered a
smooth update. In order to increase accuracy, more data could be obtained by lengthening
the cable length and increasing the experimental and finite element analysis time, leading
to more accurate results.
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Table 8. Percentage error of cable length for updated finite element analysis.

Case
Updated Percentage Error of Cable length (%)

S1 S2 S3 S4

1 2.56 4.66 4.91 5.64
2 16.05 6.96 0.68 -

3 24.28 0.14 0.61 0.75
4 0.28 1.02 0.76 0.47

5 1.04 1.59 0.42 0.57
6 3.1 1.01 0.92 0.04

7 14.23 6.11 5.7 -
8 19.92 3.89 4.6 -

9 8.76 3.37 1.92 0.99
10 8.26 3.97 2.2 1.13

11 34.09 3.98 3.36 2.87
12 5.45 1.46 0.42 1.29

5. Conclusions

The objective of this study was to develop a reliable method for estimating the physical
properties of new materials by matching the behavior of a flexible cable wound around
a cylinder through both finite element analysis and experiments. To achieve this, a finite
element analysis model for the flexible cable winding operation was created, and the
analysis was conducted based on the material properties and input/output conditions
of the cable. To verify the accuracy of the finite element analysis results, experimental
devices were designed and manufactured to behave in the same way. However, there
were some differences between the experimental and analysis results, so an indicator had
to be developed through trial and error to properly match the two cases. Many errors
occurred during the experiment, depending on the analysis and experimental conditions.
To improve this, weights that could update the cable analysis results were derived through
optimization. Finally, deep learning was used to update the error caused by material
properties by multiplying the finite element analysis result by the weight. In this way, even
when the exact physical properties of the material were unknown, finite element analysis
could be performed, thereby enhancing the performance of the analysis.

6. Future Work

The focus of this study was to enhance the performance of finite element analysis in
cases where the physical properties of materials are unknown. The proposed method
involves using deep learning techniques to update the errors between finite element
analysis data and experimental data, which is achieved through a weighting strategy. This
strategy enables the updating of analysis results, even when the data preprocessing, initial
conditions, and boundary conditions are not optimized for simulation analysis. Nonlinear
materials, such as flexible cables, often require time-consuming and expensive experiments,
such as tensile tests, to determine the material properties needed for finite element analysis.
This process is further complicated by the difficulty in accurately identifying properties
due to the nonlinear nature of these materials. Moreover, modifying the analysis model
for changes in cable type or diameter can be cumbersome. To improve the performance of
finite element analysis, the final analysis result can be updated through multiplication by
the weight. However, the error in the preprocessing stage cannot be completely eliminated
from the perspective of finite element analysis. Therefore, a fundamental solution based on
the material’s properties cannot be proposed, and further research is needed to automate
the process of updating material properties by conducting experiments and finite element
analysis on a wider range of cables and cases.
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