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Abstract: Under the trend of vehicle intelligentization, many electrical control functions and control
methods have been proposed to improve vehicle comfort and safety, among which the Adaptive
Cruise Control (ACC) system is a typical example. However, the tracking performance, comfort
and control robustness of the ACC system need more attention under uncertain environments and
changing motion states. Therefore, this paper proposes a hierarchical control strategy, including a
dynamic normal wheel load observer, a Fuzzy Model Predictive Controller and an integral-separate
PID executive layer controller. Firstly, a deep learning-based dynamic normal wheel load observer is
added to the perception layer of the conventional ACC system and the observer output is used as a
prerequisite for brake torque allocation. Secondly, a Fuzzy Model Predictive Control (fuzzy-MPC)
method is adopted in the ACC system controller design, which establishes performance indicators,
including tracking performance and comfort, as objective functions, dynamically adjusts their weights
and determines constraint conditions based on safety indicators to adapt to continuously changing
driving scenarios. Finally, the executive controller adopts the integral-separate PID method to follow
the vehicle’s longitudinal motion commands, thus improving the system’s response speed and
execution accuracy. A rule-based ABS control method was also developed to further improve the
driving safety of vehicles under different road conditions. The proposed strategy has been simulated
and validated in different typical driving scenarios and the results show that the proposed method
provides better tracking accuracy and stability than traditional techniques.

Keywords: Adaptive Cruise Control; vehicle longitudinal dynamics; model predictive control;
machine learning

1. Introduction

With the continuous advancement of smart vehicles, advanced driving assistance
systems (ADASs) are being utilized more frequently [1–3]. Among its many functions,
the Adaptive Cruise Control (ACC) system stands out due to its ability to manage the
vehicle’s longitudinal speed and maintain a safe distance from the vehicle in front. This
feature reduces the driver’s workload, making it an integral technology in the industry [4,5].

ACC systems typically employ hierarchical control, which is composed of three layers:
perception, decision and execution [6,7]. The primary role of the perception layer is
to acquire the kinematic information from the vehicle and transmit it to the decision
layer. There are two categories of information that this layer processes: relative motion
information between the vehicle and the target vehicle (such as inter-vehicle distance
and relative velocity) primarily detected via sensors including radar or camera [8]; and
the vehicle’s motion state information (e.g., velocity and acceleration), which is typically
obtained via onboard sensors. Nonetheless, for commercial vehicles, their high center of
gravity and large load characteristics necessitate consideration of the dynamic vertical
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wheel load influence while designing ACC systems [9]. The most widely used method
to estimate dynamic vertical wheel load involves estimating a vehicle model. However,
the accuracy of the estimation using this technique is limited by the model’s precision,
warranting further discussion on the credibility of the results. The decision layer determines
the desired acceleration of the vehicle based on the kinematic information gathered by the
perception layer and subsequently commands the execution layer to perform driving or
braking operations. Finally, the execution layer includes the driving and braking system
that responds to the desired acceleration issued by the decision layer, ultimately enabling
the adaptive cruise function.

The operation of Adaptive Cruise Control (ACC) is influenced by various factors such
as driving scenarios, engine characteristics and braking system characteristics. It can be
reduced to a nonlinear optimal tracking control problem with external disturbance. In the
development of the ACC system’s decision layer, several methods are applied, such as
PID control, MPC control and fuzzy control. Among them, PID control is favored by the
industry due to its low hardware configuration requirements and good control robustness
when encountering interference. M. Canale et al. [10] used a robust PI controller to adjust
the ACC system response according to a specified speed reference curve. Mahmood,
Ali K et al. [11] took into consideration key action parameters of the vehicle and used two
PID controllers to adjust the throttle and brake, respectively. Liang, J et al. [12] developed a
vehicle acceleration controller based on parallel control theory utilizing the self-learning
function of a neural network. However, the PID method requires a considerable amount of
parameter adjustment work and cannot achieve optimal control in actual driving scenarios,
making it an unsuitable method for ACC control. Model predictive control (MPC) can
use future vehicle information for optimal multi-objective control, making it a focal point
among researchers. Scholars have proposed various improvements on MPC for ACC,
including Zengfu Yang’s [13] algorithm combining MPC and active disturbance rejection
control, using feed forward control based on the vehicle dynamic model (VDM) and
compensation control based on ADRC to improve control accuracy and suppressing the
influence of internal or external disturbance. Li SB [14] uses the feedback-correction
method to compensate for prediction error and improve system state prediction accuracy.
The constraint-management method was utilized to soften the input/output constraints
of the prediction optimization problem by modifying the cost function while avoiding
calculation infeasibility caused by large tracking errors. Sangmoon Lee [15] proposed an
event-triggered model predictive controller for an Adaptive Cruise Control system utilizing
sampled and quantized data. Zeeshan Ali Memon [16] performed a parametric study on
the MPC method to assess the response of the ACC system during critical maneuvering
times. Even though the existing MPC approach is highly dependent on model accuracy, it
still has great potential for improvement. Fuzzy logic has unique advantages in dealing
with nonlinear problems, making it an appropriate method for designing the weight factor
of the dynamic comprehensive performance index function based on fuzzy rules utilizing
model predictive control [17].

Currently, two methods are primarily used for the adaptive cruise execution layer
control. One method involves establishing a high-precision longitudinal dynamic model,
which requires obtaining several accurate vehicle parameters for dynamic modeling [18,19].
However, changes in external conditions will affect the model’s response, making it chal-
lenging to achieve optimal performance. The other method replaces the longitudinal
dynamic model with a simple linear model. Although this method is easy to implement,
its anti-interference ability is poor and affects control outcomes adversely. To address this
problem, this paper proposes using the integral-separated PID approach to realize actual
acceleration tracking of desired acceleration [20]. This method avoids system overshoot and
oscillation problems, thus enhancing the response speed and accuracy of the actuator layer.

In conclusion, this paper proposes a Fuzzy Model Predictive Control strategy for the
Adaptive Cruise Control system based on a dynamic normal wheel load observer. In this
control strategy, the observer provides accurate reference for brake force distribution, and
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the Fuzzy Model Predictive Controller ensures the ACC system’s balance between tracking
performance and comfort and adapts to changing driving conditions, while the executive
controller ensures the system’s response speed and execution accuracy. Finally, the joint
simulation verifies the effectiveness of the observer and ACC system’s control. The main
contributions of this paper are as follows:

(1) In the dynamic normal wheel load observer, Random Forest (RF) is adopted for
feature recognition and dimensionality reduction and the processed data are input
to the fully connected neural network (FCNN) for estimating the dynamic normal
wheel load of the vehicle, which provides a new idea for estimating the vehicle’s
dynamic parameters.

(2) Fuzzy rules are combined with model predictive control methods to overcome the
poor adaptability of model predictive control methods to nonlinear problems. The con-
trol parameters can be adjusted according to fuzzy rules to adapt to dynamic changes,
thereby enhancing the controller’s robustness.

(3) In the executive layer’s control, the integral-separate PID method is used to avoid
oscillation caused by the integral action and enhance the system’s response speed,
improving the system’s dynamic performance. The braking safety of the vehicle is
further increased by designing a rule-based ABS control method.

The rest of the paper is organized as follows. Section 2 introduces the key component
models of the vehicle, including the engine, tire, etc. Section 3 describes the specific control
strategy. Section 4 discusses the simulation results, and the key conclusions of the paper
are summarized in Section 5.

2. Vehicle and Component Model

This paper focuses on the rear-mounted rear-drive intercity bus, as illustrated in
Figure 1. The primary components of the vehicle include the radar, controller, steering
system, driving system and braking system. The radar primarily obtains a target vehicle’s
relative distance and velocity information. The controller consists of a state observer that
detects real-time changes in dynamic vertical wheel load and an ACC system controller.
The driving system incorporates the engine control unit (ECU), engine, transmission
and other related parts. The braking system includes the air compressor, air storage cylinder,
brake controller unit (BCU) and double channel axle modulator (DAM), the pneumatic
brake actuator.

State Observer + ACC Controller
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Main 
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Figure 1. Vehicle configuration.
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The vehicle parameters are shown in Table 1.

Table 1. Vehicle parameters.

Parameter Unit Value

Vehicle mass kg 11,550
Wheelbase mm 5500

Front wheel track mm 2080
Rear wheel track mm 1870

Wheel rolling radius mm 530
Frontal area m2 7.5

Engine maximum power kW 323

2.1. Vehicle Mathematical Model

During vehicle operation, it is necessary to balance the driving torque provided by the
vehicle with various resistances, including air resistance, slope resistance and acceleration
resistance. The equation expressing the driving force is presented in Equation (1).

Ttqi0igηt

r
= mg sin β +

1
2

CD Aρv2 + mg f cos β + δmv̇ (1)

where m denotes the vehicle mass, v denotes the vehicle longitudinal velocity, Ttq denotes
the engine torque, ηt denotes the transmission efficiency, r denotes the wheel rolling radius,
CD denotes the wind resistance coefficient, A denotes the windward area, ρ denotes the
air density, f denotes the road rolling resistance co-efficient, β denotes the road grade, δ =

1 + 1
m

∑ Iw
r2 + 1

m
I f i2gi20ηt

r2 denotes the rotary mass coefficient, Iw denotes the rotating inertia of
the wheels, I f denotes the rotating inertia of the flywheel, i0 denotes the main reduction
gear ratio and ig denotes the vehicle transmission ratio.

When the vehicle is in a driving state, based on the current vehicle’s required accelera-
tion, Equation (1) can be transformed into Equation (2) to calculate the required torque of
the engine under the current state.

Ttq =

(
mg f cos β + 1

2 CD Aρv2 + mg sin β + δmv̇
)

r

i0igηt
(2)

2.2. Engine Model

Establishing an accurate engine model is challenging due to the complexity of its
physical characteristics and the numerous factors that affect its working characteristics.
In this paper, based on experimental data from a diesel engine, the relationships between
engine speed, torque and throttle opening were established, as Figure 2 shows.

During the driving process of the vehicle, Equation (2) can be used to obtain the
corresponding driving torque value required for the expected longitudinal acceleration.
Then, the value can be processed by looking up the mapping diagram of the engine torque
characteristics for the ACC vehicle. By using the known engine torque Ttq and engine
speed ωe, the throttle opening αdes required for the expected longitudinal acceleration can
be obtained, as shown in Equation (3).

αdes = f
(
Ttq, ωe

)
(3)
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Figure 2. The map of the engine.

2.3. Brake Model

The brake system is comprised of a compressor that serves as a high-pressure air
source, a storage cylinder, a double channel axle modulator (DAM) for regulating brake
pressure, a brake air chamber, brake calipers and brake discs that convert pressure into
brake torque. Pneumatic disc brakes offer several advantages such as a simple structure,
lightweight, low noise and fast heat dissipation, which can contribute to improving vehicle
active safety. The braking torque on a vehicle equipped with this brake can be computed
using Equation (4) as follows:

Tb = 2Pb Abηbµbrbcb. (4)

where Pb is braking pressure; Ab is braking contact area; ηb is braking efficiency; µb is
braking friction coefficient; rb is effective braking radius; cb is brake coefficient. When
Kb = 2Abηbµbrbcb, Equation (4) can be simplified as Equation (5).

Tb = KbPb. (5)

where Kb is the brake conversion factor, Table 2 gives the brake-related parameter settings
in the simulation, the units are all international system units and the brake conversion
factor can be calculated as Kb = 0.0022.

Table 2. Brake-related parameter setting.

Parameter Unit Value

Ab m2 0.005
ηb - 0.99
µb - 0.25
rb m 0.3
cb - 3

Corresponding to the driving state, the braking torque of the vehicle can be expressed
as Equation (6).

Tb =

(
δmv̇−mg f cos β− 1

2
CD Aρv2 −mg sin β

)
r (6)
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Given the expected brake torque, the corresponding expected brake pressure value
Pb can be calculated according to the above formula. By comparing this value with the
maximum brake pressure value of the ACC vehicle, the corresponding brake pedal opening
value for vehicle deceleration control can be obtained. The calculation of the ACC vehicle’s
brake pedal opening is expressed as Equation (7).

βdes =
Pb

Pb max
× 100% (7)

where βdes is the brake pedal opening, Pb is the wheel demand brake pressure and Pb max is
the upper limit of wheel brake pressure.

2.4. Tire Model

The tire is the sole component of a vehicle that makes contact with the ground and
transmits both force and torque. Longitudinal force, lateral force and aligning torque of a
vehicle arise from the interaction between the tire and the ground. Therefore, tire model
accuracy is essential for creating an accurate vehicle model. Currently, tire models fall into
three categories: theoretical, semi-empirical and empirical models. For this paper, the Dugoff
tire model was selected to calculate tire force due to its applicability and meeting the required
state estimation. The Dugoff tire model equation is shown as Equations (8)–(11).

Fx = µFz × Cx
λ

1− λ
× f (L). (8)

Fy = µFz × Cy
tan(α)
1− λ

× f (L). (9)

f (L) =
{

L(2− L), L < 1
1, L ≥ 1

(10)

L =
(1− λ)

2
√

C2λ2 + C2
z tan2α

×
(

1− ε× vx ×
√

C2
xλ2 + C2

ytan2α
)

. (11)

where Fx is the longitudinal force of the tire, Fy is the lateral force of the tire, Fz is the vertical
force of the tire, Cx and Cy are the longitudinal slip stiffness and lateral deflection stiffness
of the tire, respectively, α is the lateral slip angle of the tire, λ is the actual longitudinal slip
rate and Vw is the longitudinal velocity at the wheel center.

The slip rate represents the proportion of sliding to rolling in the vehicle’s overall
motion. During braking, the rolling component of the wheel decreases while the sliding
component increases as the braking intensity increases. The formula for calculating the
longitudinal slip rate is presented in Equation (12).

Sr =

{
rr0ωw−uw

uw
× 100% Drive

uw−rr0ωw
uw

× 100% Brake
(12)

3. ACC System Control Strategy Development

The ACC system implements a hierarchical control strategy, which consists of three
main layers: perception, decision and execution. Figure 3 depicts the logical associations
and data transmissions among these layers.

Vehicles equipped with ACC systems, during their driving process, obtain information
from the perception layer through vehicle-mounted sensors and state observers. After a
determination of the system’s working mode, the vehicle is determined to be in either constant
speed cruise mode or follow mode. The PID control method is used for constant speed cruise
mode. For follow mode, first the weighting factors applicable to the current scenario are
obtained based on preset fuzzy rules and applied to the optimization solution of the objective
function. Then, the control quantities obtained from the MPC controller are output and sent
to the execution layer, finally achieving the vehicle’s Adaptive Cruise Control function.
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Figure 3. ACC control strategy architecture.

3.1. Dynamic Vertical Wheel Load Observer Based on Machine Learning Methods

The dynamic characteristics of vehicles and the mechanical behavior of their tires
exhibit strong nonlinearity. The traditional model-based frameworks typically linearize the
state equations to compute tire forces, which provide accurate results when the tire is in
the linear region, but they are inefficient for nonlinear conditions [21,22]. Consequently,
a machine learning-driven method is proposed for estimating vehicle parameters with
superior performance in tackling nonlinear problems. The framework shown in Figure 4
consists of three main stages. First, the vehicle travel data is processed and a data model is
established. In the second stage, Random Forest (RF) is employed to detect essential features
and reduce data dimensions because of the numerous vehicle motion state variables that
may lead to high computational loads. Finally, a fully connected neural network (FCNN) is
utilized to generate estimates for tire forces.

Original Dataset

Vehicle

CANcase+CANoe

Band-Pass Filter Cubic Spline Interpolation

Data Acquisition

Data Processing

Feature Selection
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Data Dimensionality 
Reduction

Parameter Estimation
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••••••

••••••

1zF

2zF

3zF

4zF

Input
Layer

Hidden
Layers

Output
Layer

Figure 4. Logic structure diagram of dynamic vertical wheel load observer.
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3.1.1. Data Processing

The output data of vehicle sensors may contain a certain level of noise due to the vari-
ation in their sampling frequency and the vibration that occurs during driving. Therefore,
it is essential to filter, resample and interpolate the data collected by the vehicle for accurate
analysis. One approach to filtering anomalous data points is to use the band-pass filter
technique. This method involves combining a high-pass filter and a low-pass filter either in
series or parallel, resulting in a filter that permits only signals within a specific frequency
range while suppressing signals beyond the cutoff frequency. The transfer function of this
filter can be expressed using Equation (13).

h(s) =
AwoBs

s2 + Bs + w2
o

. (13)

where w0 is the center frequency of the bandpass, A is the passband gain of the filter and B
is the bandwidth ratio of the bandpass.

The discretized difference equation for the bandpass filter is shown in Equation (14).

y(n) = b0x(n) + . . . + bMx(n−M)− a1y(n− 1)− . . . − aNy(n− N). (14)

where b0–bM and a1–aN are the system coefficients, xn is the input signal and yn is the
output signal.

To ensure the continuity and smoothness of the data, the method of cubic spline
interpolation is used to achieve the unification of different signals in the time and frequency
domains, as shown in Equation (15).

S(x) = aix3 + bix2 + cix + di, x ∈ [xi, xi + 1]. (15)

where ai, bi, ci, di are the polynomial coefficients of the i-th interval, which can be obtained
by solving a system of linear equations.

The coefficient matrix of the system of linear equations is a tridiagonal matrix that can
be solved efficiently via the catch-up method.

3.1.2. RF-Based Feature Selection and Data Dimensionality Reduction

The dataset used for neural network models often involves a considerable number of
features, leading to increased complexity and difficulty in optimizing the model. To resolve
this issue, the random forest technique can be implemented to remove irrelevant features
from the dataset and improve the performance of the model by efficiently selecting critical
features as input for the neural network.

During feature selection via the random forest algorithm, the initial dataset is random-
ized into training and testing sets. The random forest model is subsequently trained on the
training set while recording the MDI (Mean Decrease Impurity) score for each feature. Dur-
ing each tree’s training process, a node within the tree randomly selects a subset of samples
from its related parent node, forming out-of-bag (OOB) samples. The OOB importance
value calculates the accuracy of the model’s prediction performance for each sample. Using
the OOB importance scores for individual features, it becomes feasible to select substantial
inputs for the neural network. The calculation of the OOB importance score for feature j is
expressed in Equation (16).

OOB importancej =
1
B ∑ b = 1Bimpj,b. (16)

where B represents the number of trees in the random forest, impj,b represents the MDI
value of feature j in the b-th tree, which is the information gain brought by using feature j to
split in that tree. The OOB standard deviation value of each feature j can also be calculated
to evaluate its stability, as shown in Equation (17).
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OOB stdj =
√

1
B ∑ b = 1B(impj,b −OOB importance

j
)2. (17)

Finally, the features are ranked based on their OOB importance values and standard
deviation values and the subset of features with high importance and good stability is
selected as the final feature subset.

In the RF feature screening in this paper, the results of the decision tree output were
obtained using the mean method and the regression characteristics were obtained as shown
in Equation (18).

VFuture =
T

∑
t=1

vbPb. (18)

where vb is the information output by the b-th decision tree; Pb is the probability distribution
of the output speed information of the b-th decision tree.

3.1.3. FCNN-Based Parameter Estimation

Random forest feature selection provides the dataset for regression analysis of dy-
namic vertical wheel load parameters using a fully connected neural network (FCNN).
The structure of the network, as displayed in Figure 5, contains input layers, hidden lay-
ers and output layers each with defined neuron count and applied activation functions.
The specific hyperparameter settings are shown in Section 4.1.

1v

2v

3v

8v

••••••

••••••

••••••

Input
Layer

Hidden
Layers

Output
Layer

1zF

2zF

3zF

4zF

Figure 5. FCNN architecture.

The dataset is randomly partitioned into two groups consisting of a training set and
a validation set. Further, to enhance training stability and rate, the training data require
normalization. In this paper, Min-Max Scaling normalization, shown in Equation (19),
is utilized.

xnorm =
x− xmin

xmax − xmin
(19)

where x is the original data, xmin and xmax are the minimum and maximum values in
the dataset, respectively, and xnorm is the scaled data. The range of the scaled data is
usually [0,1].

The backpropagation algorithm updates the network parameters during training by
using the training set data. The network’s regression performance is evaluated by utilizing
the testing set after reducing the training error onto convergence. The parameter regression
formula based on the fully connected neural network is demonstrated in Equation (20).
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y = f (W2 · f (W1 · x + b1) + b2). (20)

In Equation (20), x is the input feature vector, y is the regression output value, W1
and W2 are the parameter matrices for the first and second hidden layers, respectively. b1
and b2 are bias vectors and f is the ReLU activation function. During the training process,
the gradient descent algorithm is used to continuously optimize the parameters W1, W2, b1
and b2 to minimize the difference between the predicted value and the actual value.

It should be noted that this method of observing dynamic vertical wheel loads is not
only applicable to highway vehicles, but also to industrial vehicles with relatively simple
driving scenarios, such as forklifts. Although these vehicles have lower driving speeds,
they can still exhibit changes in wheel normal loads. The observed results of dynamic
vertical wheel loads can be applied to the stability issues of forklifts, such as warning of
vehicle tip-over [23,24].

3.2. ACC Controller Decision Layer Design

The ACC system comprises a decision layer, which serves as the system’s nucleus.
This layer facilitates both intelligent perception and response to complicated traffic condi-
tions and dynamic information throughout car driving. The decision layer’s functionality
includes selecting vehicle control modes and outputting expected acceleration levels to the
execution layer. It derives this based on the kinematic and dynamic information received
from the perception layer. Thus, it reduces the driver’s workload while increasing driving
safety and comfort.

3.2.1. System Operating Mode Switching Logic

The operation of the Adaptive Cruise Control (ACC) system involves an initial deter-
mination of the current mode of the system. If there are no vehicles detected within the
radar range or if the speed of the target vehicle ahead is higher than the speed set by the
host vehicle, it operates in constant speed cruise mode. However, if there is a target vehicle
ahead, it switches to follow mode. A detailed illustration of this procedure is provided in
Figure 6.

Start

Radar detection

Vehicle ahead

Set vehicle speed vset and 
target vehicle speed vt

vset> vt？

Driver operation

End

Constant speed 
cruise mode

N

N

N

Y

Follow mode

Driver operation

Y

Y

N

Y

Figure 6. System operating mode switching flowchart.
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The Anti-Windup PID method is used to control the constant speed cruise mode.
This involves using the relative speed difference and host vehicle speed as input variables
and the desired longitudinal acceleration as the output variable. A saturation function is
then applied to the output to limit extreme acceleration values that might otherwise affect
ride stability. The primary goal of this function is to maintain vehicle stability and ensure
passenger comfort.

3.2.2. ACC System Follows Mode Control Strategy

The implementation of the MPC method for follow mode control necessitates the
provision of the state variables needed by the controller through the perception layer. As a
result of the vehicle’s inertia, there exists a time lag between the expected acceleration and
the current acceleration. To represent the hysteresis properties exhibited by the two acceler-
ations, a primary order inertial link was introduced which is described in Equation (21).

ades = τ j(k) + areal (21)

where areal is the actual acceleration; j(k) is the acceleration change rate; ades is the desired
acceleration; τ is the first-order inertial link time constant.

In the calculation of the desired relative spacing ∆s(k), Time-To-Collision (in this paper,
th is used to represent TTC) is a crucial parameter [25–27]. The physical significance of
th is the time interval for possible collision calculated through the kinematic information
between the vehicle and the forward obstacle, as shown in Equation (22). Combined with
the current vehicle velocity vh and th, as well as the preset minimum safe distance ∆s0
(∆s0 = 5 m), the desired relative spacing ∆s(k) can be obtained, as shown in Equation (23).

th =


th_ max t0 − cvvrel > th−max

t0 − cvvrel − caat; th−min < t0 − cvvrel − caat < th_max
th−min otherwise

(22)

∆sdes = thv + ∆s0 (23)

where t0, cv, ca are constants greater than zero.
Select real-time relative spacing ∆s(k), longitudinal velocity vh(k), relative speed

vrel(k) (vrel = vt − vh, vt is target vehicle velocity; vh is host vehicle velocity), longitudinal
acceleration ah(k) and j(k) as the state variable. The discrete state space model of the
system is established as shown in Equation (24).

x(k + 1) = Ax(k) + Bu(k) + Gω(k)

A =


1 0 TS − 1

2 T2
s 0

0 1 0 TS 0
0 0 1 −TS 0
0 0 0 1− TS

τ 0
0 0 0 − 1

τ 0

, B =


0
0
0
TS
τ
1
τ

, G =


1
2 T2

s
0

TS
0
0

, w(k) = at(k)
(24)

where Ts is the system sampling period, at(k) is target vehicle acceleration and u(k) is the
expected acceleration of the ACC system at moment k.

Select the real-time error between the actual and the desired relative spacing δ(k),
vrel(k), ah(k) and j(k) as the optimized performance target of the ACC control system. This
gives y(k) = [δ(k), vrel(k), ah(k), j(k)]T .

Thus, the expression for y(k) can be written in the form of Equation (25).

y(k) = Cx(k)− Z

C =


1 −th 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, Z =


∆s0

0
0
0

 (25)
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The simplified vehicle dynamic characteristics and external interferences can cause
errors between the predicted and actual values of the ACC system’s prediction model.
These errors can be mitigated through feedback correction, improving the response accuracy
and robustness of the system. Equation (26) demonstrates how the prediction error at a
given time can be calculated using the feedback-correction principle.

e(k) = x(k)− xp(k/k− 1). (26)

where e(k) is the prediction error; x(k) is the actual state of the system at the moment k;
xp(k/k− 1) is the predicted value of moment k− 1 for moment k.

Using a weighted matrix to adjust the prediction error to improve the system prediction
accuracy, Equation (24) is transformed into Equation (27).

xp(k + 1/k) = Ax(k) + Bu(k) + Gω(k) + We(k). (27)

where W = diag(w1, w2, w3, w4, w5), wi ∈ (0, 1).
Due to the safety requirements, vehicle performance and road traffic regulations in the

working process of the ACC system, the real-time relative spacing ∆s(k), relative velocity
vrel(k) and other variables need to be limited within a reasonable range. The constraints
are shown in Table 3.

Table 3. ACC System Constraints.

Constraint Name Constraint Expressions

Safety ∆s(k) ≥ ∆s0
Following δ(k)→ 0, vrel(k)→ 0, when(k→ ∞)

Comfortability jC min ≤ jC(k) ≤ jC max
Velocity restraints vmin ≤ v(k) ≤ vmax

Control variable constraint umin ≤ u(k) ≤ umax

Evaluation indicators for the ACC system include safety, following distance and com-
fort. Safety refers to maintaining a reasonable distance between front and rear vehicles
to prevent collisions. Following distance pertains to matching the speed of the target
vehicle and adjusting the actual spacing to the desired level. Comfort involves avoiding
rapid acceleration and deceleration during driving. By optimizing control variables and
prediction errors while accounting for various performance constraints and evaluation
indicators, the ACC system can more effectively track target vehicles. The objective function
is displayed in Equation (28).

J =
p

∑
i=1

[
ŷp(k + i | k)− yr(k + i)

]TQ
[
ŷp(k + i | k)− yr(k + i)

]
+

m−1

∑
i=0

u(k + i)T Ru(k + i)

. (28)

where ŷp(k + i | k) is the performance index vector in the prediction time domain; yr(k +
i) = ϕiy(k) is the reference trajectory; ϕ = diag

(
ρδ, ρv, ρa, ρj

)
, ρ ∈ (0, 1); Q is the following

weight coefficient; R is the comfort weight coefficient; p is the prediction time domain; m is
the control time domain; u(k + i) is the control variable.

From Equation (28), it can be seen that the selection of the following weight coefficient
Q and the comfort weight coefficient R will directly affect the performance of the objective
function. The following ability refers to the ability of a vehicle equipped with an ACC
system to converge to the relative distance error and relative velocity error between itself
and the target vehicle, while the comfort weight coefficient affects the control variable u,
that is, the host vehicle acceleration. By adjusting Q and R, the system control parameter
matching for coping with complicated scenarios can be achieved.
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The control matrix constraints of the ACC system are organized as Equation (29).

M̄ ≤ L̄X̂p(k + p) ≤ N̄
U(k + m) ≤ Umax
−U(k + m) ≤ −Umin


M =


∆s0
vmin
amin
jmin

, N =


in f

vmax
amax
jmax

, L =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

, M̄ =


M
M
...

M



U(k + m) =


u(k)

u(k + 1)
...

u(k + m− 1)

N̄ =


N
N
...

N

, L̄ =


L 0 0 0
0 L 0 0

0 0
. . . 0

0 0 0 L


Umax =


umax

...
umax

, Umin =

umin
...

umin



(29)

where in f stands for infinity, which means there is no upper limit to the relative spacing
constraint between the ACC vehicle and the target vehicle.

Based on the above analysis, the multi-objective optimized ACC system control algo-
rithm is turned into an online quadratic optimization problem with constraints as shown
in Equation (30). {

minU(k+m)

{
U(k + m)TK1U(k + m) + 2K2U(k + m)

}
s.t. ΩU(k + m) ≤ T

Ω =


L̄B̄
−L̄B̄

I
−I

, T =


N̄ − L̄Ḡω(k + p)− L̄Āx(k)− L̄W̄ex(k)
−M̄ + L̄Ḡω(k + p) + L̄Āx(k) + L̄W̄ex(k)

Umax
−Umin



Ā =


A
A2

...
Ap

, B̄ =


B 0 . . . 0

AB B . . .
...

. . . . . .
... 0

Ap−1B Ap−2B . . . Ap−mB



Ḡ =


G 0 · · · 0

AG G . . .
...

. . . . . .
... 0

Ap−1G Ap−2G . . . G

, H̄ =


H1
H2
...

Hp



(30)

3.2.3. Fuzzy Control Design Method for Variable Weight Coefficient Design

The effectiveness of Adaptive Cruise Control (ACC) depends on how well it can navi-
gate the complex traffic environment encountered by a vehicle. To ensure control robustness
and scenario adaptability in varying driving scenarios, variable system control parameters
for ACC are required. This paper proposes the use of a weight factor for the comprehensive
performance index function that is updated in real time based on the vehicle’s driving
state. The weight factor comprises two components, Q and R, which correspond to the
following performance index and comfort performance index, respectively. The comfort
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performance index weight factor was fixed as R = 1. However, the online weighting
coefficient parameter identification and optimization were performed by adjusting Q. The
error between the actual and the desired relative spacing δ(k) and relative velocity vrel(k)
were used as input variables, whereas Q was utilized as the output variable for fuzzy
controller design. Fuzzy linguistic variables were employed to establish the weight factor
Q of the followability index, as shown in Equation (31).

δ(k) : {NB,NS,ZO,PS,PB}
vrel(k) : {NB,NS,ZO,PS,PB}
Q : {ZO,PS,PM,PB}

(31)

where NB, NS, ZO, PS, PM, PB represent negative big, negative small, zero, positive small,
positive medium and positive big, respectively.

In the fuzzy process, the fuzzification range of the real-time error between the actual
and the desired relative spacing δ(k) is set as [−30, 30] m and the fuzzification range of
relative velocity vrel(k) is set as [−20, 20] m/s. When Q > 1, it means that the current
driving condition requires a higher following index than the comfort index. Both input
variables are designed by using the affiliation function of a triangle. The image of the
function is shown in Figure 7.

Figure 7. Membership function of each variable. (a) Error between the actual and the desired relative
distance δ(k); (b) Relative velocity vrel(k).

The change range of Q is set to [0, 5] and through analysis it is considered that if the value
of Q is at [0, 1], the driving state at that moment is judged to be based on the optimization
goal of drive comfort, and if the value is at [1, 5], the driving state at that moment is judged
to be based on the optimization goal of vehicle following, so this paper is set in this part to
be able to quickly respond to the desired optimization value of the Gaussian-type affiliation
function and its affiliation. The function image is shown in Figure 8.

Figure 8. Output variable affiliation function.

The fuzzy rules designed in this paper are shown in Table 4.
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Table 4. Fuzzy control rules table.

δ(k)/vrel(k) NB NS ZO PS PB

NB PB PB PB PB PM
NS PB PB PB PM PS
ZO PM PM PS PS ZO
PS PM PS ZO ZO ZO
PB PS PS ZO ZO ZO

Since the output of the fuzzy controller cannot be directly applied to the actual control,
the area-centered method is used to solve the fuzzification calculation to obtain the final
value of the followability weighting factor Q and act on the system. The output variable is
also plotted about the input variable function surface as shown in Figure 9.

Figure 9. Graph of input and output variables.

3.3. ACC System Execution Layer Control Method

The execution layer must determine whether the vehicle requires acceleration or
deceleration based on the desired acceleration received from the decision layer. It must then
convert this desired acceleration into the appropriate actuator commands to achieve the
corresponding action. This involves controlling the actuator to apply the required driving
torque or braking pressure.

3.3.1. Drive–Brake Switching Logic

In the context of ACC for commercial vehicles, switching between driving and braking
states is essential to match the desired acceleration changes. Frequent switching may lead
to acceleration oscillation that can affect the actuator, whereas untimely switching can
impact the control efficacy of the system. In this research, a rule-based driving–braking
switching strategy was implemented. Specifically, the deceleration achieved by the vehicle
in a gear-sliding state serves as the threshold value for the driving–braking switching.
To simulate the gearbox sliding of the target vehicle, the TruckSim software was used.
During the simulation, the throttle opening and braking pressure were set to zero, while
the vehicle’s initial speed was set to 120 km/h. The deceleration corresponding to each
speed from 0 to 120 km/h was measured and the simulation results were smoothed to
derive the driving–braking state switching logic, which is illustrated in Table 5.
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Table 5. Driving–braking switching logic.

Switching Logic Vehicle State

ades ≥ a + ∆h Driving
ades ≤ a− ∆h Braking

a− ∆h < ades < a + ∆h Keep the original state

3.3.2. Braking Torque Distribution Based on Dynamic Vertical Wheel Load
Observation Results

The distribution of vehicle braking force according to the dynamic load of each wheel
can make full use of the road friction conditions, thus solving the disadvantage of con-
servative braking force distribution and ineffective use of road friction that exists in the
rule-based braking force-distribution strategy.

When the deceleration demand signal from the ACC system or the brake pedal
opening signal from the driver is detected, the braking force-distribution function starts to
work. The first step is to calculate the sum of the spring mass of the vehicle, as shown in
Equation (32).

Ftotal =
4

∑
i=1

Fzi (32)

The second step is to calculate the braking torque of vehicle demand, as shown in
Equation (33).

Ttotal = −
r× a×

4
∑

i=1
Fzi

g
(33)

where r is the rolling radius of the wheel.
Finally, the wheel braking force distribution coefficient is calculated, as shown in

Equation (34).

λi =
Fzi

Ftotal
(34)

Therefore, the braking torque of each wheel can be expressed in the form of Equation (35).

Tbi = λi × Ttotal (35)

3.3.3. Execution Layer PID Control Method

After obtaining the acceleration requirements and braking torque requirements from
the decision-making level, the integral-separated PID method is used to control the actuator.
The control quantity of the output of the integral-separated PID control can be expressed
by Equation (36).

u(t) = kpe(t) + βki

∫
e(t)dt + kd

de(t)
dt

(36)

where β is the switching coefficient of the integral link, β =

{
1 |e(k)| ≤ ε
0 |e(k)| > ε

.

After setting the deviation threshold ε, the deviation between the actual torque and
the expected torque is judged; if |e| > ε, PD control is adopted to cancel the integral link
to avoid excessive overshoot and oscillation due to integral accumulation and if |e| > ε,
PID control is adopted; integral control is introduced to eliminate steady-state error and
improve system control accuracy.

In order to improve the control effect of the ACC system in actual driving scenarios, it
is necessary to consider the influence of road surface adhesion changes on the performance
of the braking system when designing the control method at the execution layer [28,29].
Therefore, a rule-based anti-lock braking system (ABS) control method based on the execu-
tion layer is proposed. In ABS control, the wheel motion state is a combination of rolling
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motion and sliding motion [30,31]. The rule-based ABS control method uses the wheel slip
rate as a reference value and applies corresponding pressure-increase, pressure-holding or
pressure-reduction commands to the braking system based on the logical operation result
of the actual and preset threshold values of the slip rate. This reduces the proportion of
sliding motion in the wheel motion and ensures directional stability and safety during
vehicle braking.

The proposed rule-based ABS control logic is shown in Figure 10. After obtaining the
vehicle speed and wheel speed signals, the slip rate is calculated according to Equation (12).
When braking begins, the ABS function will be triggered when the slip rate is greater than
0.4 and the longitudinal vehicle speed is greater than 6 km/h. The ABS controller sends a
pressure reduction signal to the brake actuator. When the slip rate is less than 0.1 and the
vehicle speed is greater than 6 km/h, the ABS controller issues a pressure-increase control
command. If the slip rate is between 0.1 and 0.4, the braking system pressure remains
unchanged from the previous moment. ABS control is exited when the vehicle speed is less
than 6 km/h.

Pressure 

Reduction

Y

Pressure 

maintenance

Y

N

Start

End

N

6 /v km h

0.4rS 

Normal Brake

Increase pressure

0.1rS 
Y

N

Figure 10. Flow chart of rule-based ABS control method.

4. Simulation and Analysis

To verify the effectiveness of the proposed control method, a simulation platform
was established utilizing Matlab Simulink and TruckSim. The control strategy design for
estimating dynamic vertical wheel load was conducted using Matlab Simulink, which acted
as the controller, while the TruckSim vehicle model functioned as the controlled object.
Additionally, TruckSim was utilized to generate appropriate driving scenarios essential for
the functionality of the ACC system. A diagrammatical representation of the co-simulation
platform is illustrated in Figure 11. Notably, all of the simulation and model training
operations mentioned in this study were performed on a computer equipped with an Intel
i7-12700H processor and 16 GB RAM.
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MATLAB 
SimulinkTruckSim

Sensor Output

Vehicle Motion State

Vehicle Control Input

Sensor Model

ACC system typical scenario

Vehicle Parameter

Vehicle Dynamics

Dynamic wheel load 
observation

Brake force distribution

ACC Control Algorithm

Figure 11. Control strategy simulation platform architecture.

4.1. Dynamic Vertical Wheel Load Observation and Braking Torque Distribution Results

The dataset used in this paper is derived from the results of real vehicle tests conducted
with a cooperative enterprise. Stress–strain sensor strips were installed on the suspension
of the test vehicle to measure the dynamic vertical load of the wheels, as shown in Figure 12.
The electronic stability control (ESC) system of the test vehicle was equipped with a three-
axis accelerometer ADXL313, which can measure the acceleration in the X-Y-Z directions of
the vehicle. Signals such as engine speed and torque, vehicle speed and wheel speed were
all acquired from the vehicle control unit (VCU) through a CANoe device.

Figure 12. Wheel dynamic vertical load sensor installation diagram.

This paper collected data for 20 dynamic parameters that change with time during
vehicle operation. The parameter list is shown in Table 6.

Table 6. Original data classification.

Number Parameter Name Number of Parameters

1 Engine speed and torque 2
2 Front wheel turning angle 1
3 Transmission ratio 1
4 Wheel brake pressure 4
5 Wheel speed 4
6 Wheel slip rate 4
7 Vehicle longitudinal acceleration 1
8 Sprung mass vertical velocity 1
9 Yaw rate 1

10 Longitudinal vehicle speed 1

After filtering and interpolating the data, a random forest algorithm with 500 decision
trees and 3 feature nodes was used for feature selection. Eight data items with high
weights were eventually selected for dynamic observation of vehicle wheel vertical load.
The selected data items are shown in Table 7.
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Table 7. Selected data items.

Number Parameter Name Number of Parameters

1 Engine speed and torque 2
2 Wheel brake pressure 4
3 Vehicle longitudinal acceleration 1
4 Sprung mass vertical velocity 1

The total size of the dataset is 11,800 groups. The selected data groups were divided
into training set, validation set and test set in a ratio of 7:2:1. The normalized data were
trained using FCNN network. The specific parameters and training process of the model
are shown in Table 8.

Table 8. Detailed Parameter Setting.

Parameter Name Value Parameter Name Value

Number of hidden layers 2 Traning epoch 1000
Number of hidden layer nodes 128/64 Training set size 8260

Learning rate 1 × 10−4 Validation set size 2360
Batch size 128 Testing set size 1180
Optimizer ADAM Weight decay 1 × 10−4

To verify the observation accuracy of the vehicle wheel load observer, in the test set,
the selected eight types of data were used as inputs to FCNN and the output results were
compared and analyzed with the results of the actual vehicle test. Figure 13 and Table 9
show the observed results and estimation accuracy of the dynamic vertical wheel load.

To evaluate the accuracy of the machine learning-based wheel dynamic load observer
proposed in this article, a comparative analysis was conducted on the motion parameters of
vehicles over a specified period. Figure 13 illustrates the dynamic vertical wheel load observation
results. Additionally, Table 9 summarizes the findings obtained from this comparison analysis.

Figure 13. Dynamic vertical wheel load observation results. (Taking the left front wheel of the vehicle
as an example.) (a) Observations of actual vehicle driving data over a period of time; (b) Single
braking condition; (c) Single brake condition observation result.
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Table 9. Accuracy analysis of observation results.

Evaluation Criteria Calculation Formula Calculation Results

RMSE RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2 320.04/N

MAE MAE = 1
n

n
∑

i=1
|yi − ŷi| 107.41/N

R2 R2 = SSR
SST = 1− SSE

SST 0.9997

In RMSE and MAE, n denotes the sample size, yi denotes the actual observed value
and ŷi denotes the model predicted value. Smaller values of RMSE and MAE indicate that
the predicted value is closer to the true value. The coefficient of determination (R2) is used
to assess the degree of fit of the regression model and a value closer to 1 indicates a better
fit. SSR denotes the sum of squared regressions, SSE denotes the sum of squared errors
and SST denotes the sum of total squares.

In accordance with the identification results of the dynamic normal wheel load ob-
server, the brake torque of the ACC system is allocated. To verify the control effect of
the proposed brake torque allocation method, the results of the brake torque allocation
method proposed in this paper are compared with the traditional one based on the fixed

proportion of front and rear axles in a single brake scenario (βd =
FB f
FBr

= 0.55 : 0.45, FB f ,
FBr are the maximum braking force of the vehicle front and rear axle brakes, respectively).
The comparison of vehicle deceleration and braking distance under the two methods is
shown in Figure 14. It should be noted that, to highlight the performance differences
between different brake torque allocation methods more significantly, open-loop control is
adopted for deceleration in the comparison process. The simulation scenario is set as fol-
lows: the initial speed of the vehicle is 80 km/h and the braking begins at 4 s; the required
deceleration is 3.5 m/s2 and the vehicle is released from braking at 8 s.

Figure 14. Validation results of brake force distribution strategy. (a) Comparison of braking torque
distribution; (b) Comparison of braking deceleration and braking distance results.

From Figure 14, it can be seen that the braking force allocation method based on
the machine learning dynamic wheel vertical load observer proposed in this paper can
effectively improve the vehicle’s braking capability. Compared with the constant propor-
tional braking force allocation method, allocating the braking force based on the vehicle’s
dynamic vertical wheel load distribution in open-loop braking scenarios can increase the
average deceleration of the vehicle by 18% and shorten the braking distance by 4 m. This
significantly improves the utilization rate of road adhesion during the braking process.
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4.2. ABS Control Simulation Results

To validate the effectiveness of the proposed rule-based ABS control strategy, a simu-
lation verification of the control strategy was carried out on typical road surfaces. The sim-
ulation verification scenario was set up as shown in Table 10.

Table 10. ABS simulation conditions.

Road Setting Initial Speed

Low adhesion road 50 km/h
Split road 50 km/h

Bisectional road 80 km/h

4.2.1. Low Adhesion Road Simulation Result

The vehicle was subjected to a braking test with an initial speed of 50 km/h on the
aforementioned road surface at µ = 0.4, and simulation results are shown in Figure 15.
The trends of wheel speed changes under ABS control were found to be consistent with
those of vehicle speed changes. No locking of wheels was observed during the entire
braking process and ABS disengaged control when the vehicle speed decreased below
6 km/h. The average slip rate of all four wheels was calculated to be 11.23% during the
braking process, indicating the effectiveness of the proposed strategy under low-adhesion
road conditions.

Figure 15. Simulation results of ABS strategy under low adhesion conditions. (a) Vehicle speed and
wheel speed curves; (b) Wheel slip rate curves.

4.2.2. Split Road Simulation Result

The vehicle was subjected to a braking test with an initial speed of 50 km/h on the
aforementioned split µ road surface, with a low adhesion coefficient of µ = 0.4 on the
left side and a high adhesion coefficient of µ = 0.8 on the right side. The simulation
results are shown in Figure 16. During the braking process, the average slip rate of the left
wheels was found to be 17.43%, with a maximum value of 43.34%, slightly higher than
the predetermined threshold value. On the other hand, the average slip rate of the right
wheels was 6.14%. No locking of wheels was observed during the entire braking process,
demonstrating that the proposed strategy still has a good control effect under the split
road conditions.



Sensors 2023, 23, 5722 22 of 27

Figure 16. Simulation results of ABS strategy under split road conditions. (a) Vehicle speed and
wheel speed curves; (b) Wheel slip rate curves.

4.2.3. Bisectional Road Simulation Result

In this section, the road simulation conditions were set to have a road surface adhesion
coefficient of µ = 0.8 from 0 to 25 m and a road surface adhesion coefficient of µ = 0.4
after 25 m. The vehicle was subjected to a braking test with an initial speed of 80 km/h
and simulation results are shown in Figure 17. When the vehicle reached the boundary
between the two road surfaces, there was a significant increase in the slip rate of the front
wheels, but it returned to around 20% within 0.3 s. No locking of wheels was observed
during the entire braking process, demonstrating that the proposed strategy can still have
a certain control effect under harsh bisectional road conditions.

Figure 17. Simulation results of ABS strategy under bisectional road conditions. (a) Vehicle speed
and wheel speed curves; (b) Wheel slip rate curves.

4.3. ACC System Typical Scenario Simulation Result

During vehicle operation, three common scenarios are following a target vehicle,
target vehicle insertion and target vehicle braking. These scenarios are utilized to verify
the functionality of Adaptive Cruise Control (ACC) systems. The target vehicle scenario is
prevalent in high-speed road sections and suburban areas with fewer traffic lights. In this
scenario, the ACC system must regulate the vehicle’s speed to smoothly track the target
vehicle ahead. The target vehicle insertion scenario requires the ACC system to adjust the
vehicle’s longitudinal speed using control strategies to prevent a collision. In the target
vehicle braking scenario, the ACC system must promptly brake to avoid collisions. All of
these simulation test scenarios compare the Fuzzy Model Predictive Control (MPC) method
proposed in this paper with the conventional MPC method that uses fixed weight factors.
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4.3.1. Following Target Vehicle

The initial conditions of the simulation of the following target vehicle scenario are set
to the target vehicle driving with variable speed according to the sinusoidal wave-form,
the initial velocity of the ACC vehicle is 75 km/h, the initial relative distance is 55 m and the
initial velocity of the target vehicle is 60 km/h. The simulation results under this scenario
are shown in Figure 18.

Figure 18. Simulation results of following target vehicle scenario. (a) Vehicle velocity simulation
results; (b) Relative distance simulation results; (c) Curves of weight coefficient Q versus time and
velocity and relative distance.

In the initial stage of the simulation, the actual relative distance is greater than the
desired relative distance, but since the velocity of the host vehicle is higher than the target
vehicle, it needs to take braking to adjust the velocity of the host vehicle. Therefore, in the
first 2 s at the beginning of the simulation, the ACC system focuses more on the followability
index, which is reflected in Figure 18c. After this stage, the weight factor Q is stabilized
to 1 because the vehicle velocity error and the vehicle distance error gradually converge.
According to Figure 18a,b and Table 11, it can be seen that the Fuzzy MPC method has a
significant improvement in the control accuracy compared with the normal MPC method.

Table 11. Comparison of the control accuracy of different methods of following target vehicle scenario.

Normal MPC Fuzzy MPC Performance Enhancement

Velocity RMSE 3.80 km/h 2.23 km/h 41.38%
Relative distance RMSE 3.72 m 2.18 m 41.31%

4.3.2. Target Vehicle Insertion

In the simulation of the target vehicle insertion scenario, the initial conditions of the
simulation are set as follows: the initial speed of the ACC vehicle is 60 km/h, the original
target vehicle is traveling at 70 km/h in front and the initial distance between the two
vehicles is 30 m. At 20 s, the vehicle maintains a constant speed of 60 km/h in the next lane,
suddenly cuts in and becomes the new target vehicle, at which time the distance between
the host vehicle and the target vehicle is 25 m. The simulation results under this condition
are shown in Figure 19.
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Figure 19. Simulation results of target vehicle insertion scenario. (a) Vehicle velocity simulation
results; (b) Relative distance simulation results; (c) Curves of weight coefficient Q versus time and
velocity and relative distance.

In the first 20 s after the simulation starts, both the Fuzzy MPC algorithm and the
normal MPC algorithm can follow the vehicle in front well. At the 20 s mark, the actual
relative distance is less than the desired relative distance and the speed of the host vehicle
is higher than the target vehicle due to the cut-in of the front vehicle, which creates a risk of
collision between the two vehicles. From Figure 19c, it can be seen that the ACC system
can accurately determine the priority of following over comfort in this scenario. It can be
seen from Figure 19a,b and Table 12 that the Fuzzy MPC method allows the velocity and
relative distance to converge to the desired values more quickly. The time required for
the velocity and distance to reach the desired values mentioned in Table 12 refers to the
time elapsed after the front vehicle intervenes and starts calculating until the velocity and
distance converge again.

Table 12. Comparison of the control accuracy of different methods of target vehicle insertion scenario.

Normal MPC Fuzzy MPC Performance Enhancement

Velocity RMSE 6.82 km/h 6.04 km/h 11.38%
Relative distance RMSE 6.37 m 5.98 m 6.31%

Time required for velocity to reach reference value 25.55 m 12.16 m 13.39 s
Time required for distance to reach reference value 24.83 m 16.25 m 8.58 s

4.3.3. Target Vehicle Braking

In the simulation of this scenario, the initial conditions of simulation for the ACC
vehicle and the target vehicle are set as follows: the initial speed of the ACC vehicle is
65 km/h. The target vehicle travels at a constant speed of 50 km/h and brakes suddenly
at the 17th second with an acceleration of 3 s and then maintains a constant speed. The
simulation results under this condition are shown in Figure 20.

Figure 20. Simulation results of target vehicle braking scenario. (a) Vehicle velocity simulation results;
(b) Relative distance simulation results; (c) Curves of weight coefficient Q versus time and velocity
and relative distance.



Sensors 2023, 23, 5722 25 of 27

In the beginning, the speed of the host vehicle followed the target vehicle and in
the 7th second, the speed of the two vehicles converged and the distance between the
two vehicles also converged to the expected value. At 17 seconds, the target vehicle
braked suddenly and the ACC system braked and effectively avoided a rear-end collision,
ensuring the safety of the vehicle. From Figure 20a,b, it can be seen that the minimum
relative distance of the Fuzzy MPC control method is greater than that of the normal MPC,
which guarantees a relative distance greater than Deltas0. From Table 13, it can be seen that
the following accuracy and convergence speed of the FMPC method are significantly better
than those of the conventional control method. Figure 20c shows that the ACC system has
higher requirements for safety when the target vehicle brakes, which follows the design
expectation of the controller.

Table 13. Comparison of the control accuracy of different methods of target vehicle braking scenario.

Normal MPC Fuzzy MPC Performance Enhancement

Velocity RMSE 6.36 km/h 5.69 km/h 10.57%
Relative distance RMSE 4.82 m 3.20 m 33.62%

Time required for velocity to reach reference value 9.07 m 5.23 m 3.84 s
Time required for distance to reach reference value 14.64 m 12.11 m 2.53 s

5. Conclusions

This paper proposes a control strategy for the ACC system of commercial vehicles in
actual driving scenarios based on machine learning state observers and Fuzzy MPC, aiming
to improve its performance. It consists of a vehicle dynamic normal wheel load observer,
a Fuzzy Model Predictive Controller and an integral-separate PID executive layer controller.
The design based on the machine learning state observer estimates the dynamic normal
wheel load parameters during vehicle travel and applies them to the longitudinal dynamic
control of the ACC vehicle, determining the prerequisite for brake force allocation based
on the estimation results. This allocation method can increase the braking deceleration by
18% under fixed brake pedal opening. The Fuzzy Model Predictive Controller dynamically
adjusts control parameters through fuzzy processing of performance index weight factors
to ensure system safety. To verify the proposed strategy, a joint simulation platform
was established in the TruckSim-Simulink environment and the system performance was
simulated and tested in typical scenarios. The results show that the proposed method
improves speed-tracking accuracy (RMSE value) by 41.38% and distance-tracking accuracy
by 41.31% in the following target vehicle scenario. In the target vehicle insertion scenario,
while improving tracking accuracy, the convergence speed of speed and distance tracking is
also increased. It can be proved that compared with previous MPC Adaptive Cruise Control
strategies, the ACC system control strategy based on machine learning state observer and
Fuzzy MPC can respond to changes in vehicle driving scenarios more quickly and stably.
The proposed execution layer control method was verified under simulation conditions
on a low-adhesion road, a bisectional road and a split road; the results showed that it can
handle changing road conditions well and further improve the safety performance of the
ACC system.

Future work will focus on two aspects. First, further research will focus on the robust-
ness of the strategy to parameter uncertainties and external disturbances, especially the
applicability of the strategy to different vehicle models and its robustness under more de-
tailed driving scenarios (such as vehicle passing over speed bumps). Second, the proposed
control strategy will be validated in real-world vehicle tests.
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