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Abstract: The complex backgrounds of satellite videos and serious interference from noise and
pseudo-motion targets make it difficult to detect and track moving vehicles. Recently, researchers
have proposed road-based constraints to remove background interference and achieve highly accurate
detection and tracking. However, existing methods for constructing road constraints suffer from poor
stability, low arithmetic performance, leakage, and error detection. In response, this study proposes a
method for detecting and tracking moving vehicles in satellite videos based on the constraints from
spatiotemporal characteristics (DTSTC), fusing road masks from the spatial domain with motion heat
maps from the temporal domain. The detection precision is enhanced by increasing the contrast in
the constrained area to accurately detect moving vehicles. Vehicle tracking is achieved by completing
an inter-frame vehicle association using position and historical movement information. The method
was tested at various stages, and the results show that the proposed method outperformed the
traditional method in constructing constraints, correct detection rate, false detection rate, and missed
detection rate. The tracking phase performed well in identity retention capability and tracking
accuracy. Therefore, DTSTC is robust for detecting moving vehicles in satellite videos.

Keywords: spatiotemporal characteristics constraint; satellite video; moving vehicle detection;
data association

1. Introduction

In recent years, low-orbiting video satellites have gradually become a frontier tech-
nology in the development of remote sensing because of their ability to quickly acquire
high-resolution video data over large areas [1]. Compared to traditional optical remote-
sensing satellites, the most important feature of video satellites is that they can acquire
dynamic information concerning the Earth’s surface. Rich information on vehicle dynamics
in satellite videos is significant for urban traffic planning, road construction, and smart city
buildings. Therefore, the detection and tracking of moving vehicles using satellite video
have become a current research hotspot in remote sensing [2].

Compared with normal ground-based videos, satellite videos must consider their
unique characteristics when detecting and tracking moving vehicles. The problems of scale
variation and inter-target occlusion faced by ground-based videos have been addressed
less by satellite videos [3]. However, the high-altitude nature of video satellites allows for a
wide range of images, resulting in backgrounds containing many complex features and
moving targets that appear faint and tiny. Simultaneously, video satellite gaze-imaging
properties cause stationary targets to appear in motion between frames, that is, parallax
pseudo-motion [4]. Consequently, traditional motion target detection algorithms cannot
effectively identify true motion targets, pseudo-motion targets, and noise. In addition, in
the tracking phase, the vehicle identity cannot be effectively identified because of similar
vehicle characteristics. Therefore, accurate detection and tracking of moving vehicles from
satellite videos remains a difficult task [5].

Sensors 2023, 23, 5771. https://doi.org/10.3390/s23125771 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125771
https://doi.org/10.3390/s23125771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23125771
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125771?type=check_update&version=3


Sensors 2023, 23, 5771 2 of 18

For this reason, many scholars have proposed the use of prior road knowledge to
optimize target detection algorithms [6–9]. Detection precision has been significantly
improved by creating a road mask to reject a large amount of noise and pseudo-motion
interference from the background. However, this approach faces various problems in
establishing constraints. Methods based on the accumulation of motion information use
time domain information. This type of algorithm has poor stability, cannot effectively
accumulate complete masks when traffic volumes are low, and requires a significant amount
of time prior to detection. Methods based on single-frame object-oriented classification use
spatial domain information. This type of method is computationally complex and suffers
from problems such as road misses and breakages. Methods based on loading existing road
network information utilize existing results. This method requires considerable storage
space and the manual creation of road network data in advance.

During the tracking phase, the focus is on correlating the detected targets between
frames. Previously, data association was performed by constructing motion features [10–12].
With the rapid development of neural networks, methods based on depth features have
gradually become mainstream [13,14]. However, the small size, large number, and similarity
of the features of the moving vehicles in the satellite video make consistently tracking the
vehicles between frames using only depth features difficult.

Previous research has clearly shown that most algorithms suffer from three problems:
1© Most algorithms construct a priori constraints considering only time domain or spa-

tial domain information and do not fully combine the two, resulting in poor algorithm
stability. 2© Most algorithms are less effective in dealing with faint and small moving
targets. 3© During the tracking phase, most algorithms rely excessively on deep features.
Therefore, this study proposed a satellite video moving vehicle detection and tracking
method based on spatiotemporal characteristic constraints called Detection and Tracking
Based on Spatiotemporal Characteristics (DTSTC).

The remainder of this paper is organized as follows: Section 2 provides an overview
of the existing research relevant to this study. Section 3 presents the implementation
details of the proposed moving vehicle detection and tracking method. Section 4 presents
the experimental results obtained using the proposed method at various stages. Finally,
Section 5 summarizes the methodology.

2. Related Work
2.1. Traditional Background Subtraction

Traditional motion target detection can be divided into four categories: temporal
difference, optical flow, background subtraction, and deep-learning-based methods [15].
The temporal difference method is a simple low-volume algorithm; however, it cannot
adapt to complex environments or overcome the void phenomenon. Optical flow methods
are computationally complex and are sensitive to light. Deep-learning-based methods
are computationally complex and data sensitive. In contrast, background subtraction is
rich in variety, and it is more effective [16]. KaewTraKulPong and Bowden proposed
modeling the change in a particular pixel over time using multiple Gaussian models for
the background [17]. This method helps restore the target profile to its original shape, but
the detection results are not excellent. The visual background extractor (ViBE) algorithm
proposed by Barnich and Van Droogenbroec builds a background model by aggregating
the previous observations at each pixel location [18]. However, this method suffers from
ghosting, incomplete target extraction, and a shadowed foreground. Liu and Zhang pro-
posed an improved ViBe algorithm. In order to reduce the repetition rate of the pixel
value in the background model, the proposed method changes the neighborhood selection
method to improve the accuracy of the initialization of the background model [19]. A
detection framework called E-GMMTFD was proposed by Shu et al. [20]. The E-GMMTFD
framework utilizes the adaptability of the GMM to complex environmental changes and
the strength of the TFD method to eliminate background movement, thus reducing the false
alarms caused by illumination change and background movement. However, traditional
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background subtraction methods do not adequately consider the characteristics of satel-
lite videos and cannot effectively distinguish between noise interference, pseudo-motion
targets, and moving vehicles.

2.2. Detection Methods Based on Road Constraints

Using prior road knowledge to optimize the target detection algorithm is the easiest
and most effective way to remove background noise and pseudo-motion target interference.
Kang et al. detected moving target regions using temporal differences, and after accumulat-
ing the moving regions to generate regions of interest, moving vehicles were detected [6].
Lei et al. used the boundary association of superpixels combined with background subtrac-
tion to generate a motion heat map, thereby completing superpixel-based motion region
estimation and improving target detection results [7]. However, this method requires a
large number of moving vehicles and relies on the accumulation of many video frames,
which is a significant waste of video frame resources. Lu et al. used an object-oriented
classification approach to extract road masks, which were then used to reject false motions
and pseudo-motion targets using the ViBE algorithm [8]. However, this method uses only
a single image frame, which can result in significant breaks and missed detections. Yin
directly used existing road network data overlaid with satellite video data [9]. When
solving problems such as road breaks and missed inspections, the global operating range
of video satellites can lead to an overwhelming amount of data on the road network.

2.3. Data Association

Current inter-frame target association methods often use target motion and appear-
ance features. Bewley et al. used Kalman filtering (KF) [21] to calculate the prediction frame
with the detection frame obtained by Faster R-CNN [22] for intersection over union (IOU)
calculations to associate the target [10]. Zhou used convolutional networks to model move-
ment patterns and interaction relationships [11]. Shan et al. used a graph convolutional
network to fuse multiframe image information for target location prediction [12]. This
method causes significant degradation in tracking performance in dense scenes because
it uses only motion information. Yu et al. extracted target appearance features using
GoogLeNet and used the k-nearest neighbor algorithm to associate targets [13]. Lee and
Kim enhanced the target discrimination by fusing feature pyramids, thus enabling inter-
frame target associations [14]. This method is prone to problems, such as tracking frame
drift in the face of the small size and similarity of features of the moving vehicles in the
satellite video. Wang et al. proposed a graph neural network for joint multi-target tracking
with an optimized detection and tracking phase [23]. Lit et al. proposed a self-correcting
KF position prediction algorithm combined with recurrent neural networks for inter-frame
target association [24]. This method is usually slow to track, owing to the high complexity
and computational effort of the network. In summary, existing algorithms do not exhibit
good applicability in the case of small sizes, large numbers, and similar features of moving
vehicles in satellite videos.

3. Methods

DTSTC, as proposed in this study, consists of four parts: video data pretreatment, con-
struction of spatiotemporal constraints, moving vehicle detection, and inter-frame vehicle
association (Figure 1). The original satellite video data were preprocessed with intra-frame
denoising and inter-frame image stabilization. Road masks containing spatial information
were then extracted within fixed-interval frames using the D-LinkNet, whereas a motion
heat map containing temporal information was cumulatively generated using temporal
differences. The two are fused to generate a region-of-interest constraint and improve the
precision of moving vehicle detection. In addition, a local contrast enhancement algorithm
based on the LAB color space [25] was used to optimize the k-nearest neighbor (KNN) mov-
ing target detection in the region of interest, resulting in the greatly improved detection of



Sensors 2023, 23, 5771 4 of 18

moving vehicles. Finally, vehicle tracking was performed using improved data association
methods for the inter-frame association of moving vehicles.
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Figure 1. DTSTC flow diagram. The video frame data is processed in the order of left to right to
obtain the tracking results. The input is the satellite video data, while the output is the tracking track
result of the moving vehicle in image coordinates.

3.1. Constraint Construction Based on the Spatiotemporal Domain

Among the existing constraint construction methods, the motion-based accumulation
method is unstable and requires the accumulation of a large number of video frames.
Single-frame object-oriented classification methods for extracting road masks are prone to
breakage and missing detections. The method for loading existing road maps has a high
memory footprint and requires significant manual labeling. Therefore, DTSTC incorporates
road masks and motion heat maps to improve the robustness of the constructed constraints.
The road mask in this method fully utilizes spatial domain information and can provide an
improved initial value for the motion heat map. The motion heat map uses time domain
information, which complements the broken and missed detection parts of the road mask.
In addition, this method has a small memory footprint compared to loading an existing
road network and does not require extensive manual marking.

The D-LinkNet road extraction fully considers the spatial representation characteristics
of roads in a single image frame, including the narrowness, connectivity, complexity, and
long spans. The network also exponentially increases the perceptual field of the model
using a jump connection and null convolution module, making it more capable of road
extraction. Then, ResNet34 [26] is used as the encoder to effectively solve the problem of
losing image feature information during the convolution process. The network exhibited
superior results in terms of road extraction when faced with satellite video data. Therefore,
DTSTC used the D-LinkNet for road extraction from a single image frame to initialize
the constraints.

However, D-LinkNet only extracts the road mask using the spatial characteristics
of a single frame of an image, does not take full advantage of the video data in the
time domain, and cannot avoid the occurrence of broken and missing roads. Therefore,
DTSTC complemented this by cumulatively generating a motion heat map using temporal
differences. This temporal difference fully utilizes the target motion information between
two successive frames and can effectively complement the road mask generated using only
a single image frame. Figure 2 illustrates the general flow for generating a coarse-motion
heat map using temporal differences. The video frames are first detected quickly using
the temporal difference, which has a high detection efficiency. The results of each frame
are then processed using mathematical morphology to remove the effects of random noise
and pseudo-motion targets. Finally, the processing results were overlain to produce an
approximate motion heat map.
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Figure 2. Flow chart depicting the automatic acquisition technique for the approximate motion
heat maps.

The specific integration of the two is shown in Figure 3. The connected domain of the
rough motion heat map was first preprocessed and filtered based on parameters such as
the area (A), aspect ratio (Ar), perimeter-to-area ratio (Rca), and surface roughness (Sr) to
remove the influence of pseudo-motion targets. The aspect ratio and surface roughness
were calculated using Equations (1) and (2), respectively:

Ar = l / w, (1)

Sr = Cmech / Ca, (2)

where l denotes the minimum external rectangular length of the connected domain, and
w denotes the minimum external rectangular width of the connected domain. Cmech is
the minimum external convex envelope perimeter of the connected domain, and Ca is the
connected domain perimeter.
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The preprocessed motion heat map was then graphically compared with the road
mask, and the remaining connected domains in the motion heat map were conditionally
discriminated. If these requirements were met, the domain was included in the road mask.
Otherwise, the connected domains were discarded. The goodness of the discriminant
condition directly determines the effectiveness and stability of the constraint construction.
We combined the topological relationship between the two and the growth rate of the
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motion heat map and set the discriminant condition as follows: 1© The motion heat map
connectivity domain intersects the road mask. 2© The historical aspect ratio and length
growth rate of the motion heat map simultaneously satisfy the corresponding thresholds.
One of these two conditions must be satisfied. Condition 1© effectively raises the priority of
motion targets around the road and retains their cumulative results, while suppressing them
for motion targets separate from the road area. The length growth rate under condition
2© can effectively identify the connected domain formed by noise and moving vehicles.

The historical aspect ratio represents the aspect ratio of the connected domain during the
motion accumulation process, which eliminates the effect of a surge in the length of the
connected domain caused by large noise in one frame during the motion accumulation
process. As shown in Figure 4, connected domains B and C both intersect the road mask and
satisfy condition 1©. The length growth rate and historical aspect ratio of connected domain
A meet the threshold requirements and qualify for condition 2©. In contrast, connected
domain D does not meet either condition, and it is selected for elimination. The specific
discriminant condition is described by Equation (3):

IdUI′i > 0 or
∼
A

i

r > TA and R(li) > TR (d = 1, 2, · · ·, m; i = 1, 2, · · ·, n) (3)

where Id denotes the d-th connected domain in the road mask, I′i denotes the i-th connected

domain in the motion heat map,
∼
A

i

r denotes the historical aspect ratio of the i-th connected
domain in the motion heat map, R denotes the formula for calculating the growth rate of the
length of the connected domain, TA denotes the connected domain aspect ratio threshold,
and TR denotes the connected domain length growth rate threshold; m is the number of
connected domains in the road mask, and n is the number of connected domains in the
motion heat map.
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Figure 4. Schematic diagram of the discriminant condition. The left diagram shows frame t, and
the right diagram shows frame t + 1. The bottom layer of the diagram represents the original
image, the middle layer represents the D-LinkNet extracted road mask, and the top layer is the
motion heat map connectivity domain area. The area circled in green is the connectivity domain for
inter-frame variations.

3.2. Moving Vehicle Detection

Moving vehicles in satellite videos are presented as faint and tiny targets, and direct
detection using traditional background subtraction can result in serious under-detection.
To compensate for vehicles being difficult to distinguish from the background owing to
their low contrast, DTSTC optimized the KNN moving vehicle detection algorithm using
the LAB color-space local contrast enhancement algorithm.

Owing to the variety of colors in the background areas, the effect can be significantly
reduced or even have side effects when contrast enhancement is applied to the image as a
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whole. We begin with the contrast enhancement within the constrained region constructed
in the previous section. Specifically, the mean Iµ =

[
Lµ, aµ, bµ

]T of the luminance (L) and
color (a, b) feature components of the LAB model are extracted within the constrained
region, as shown in Equation (4):

Iµ =

Lµ

aµ

bµ

 =
1

W × H

∑W
i=1 ∑H

j=1 L(u, v)
∑W

i=1 ∑H
j=1 a(u, v)

∑W
i=1 ∑H

j=1 b(u, v)

. (4)

Subsequently, a Gaussian low-pass filter is applied to the image to obtain the filtered
image Ig, as shown in Equation (5):

Ig = I(u, v)⊗ G(x, y, σ). (5)

The low-pass filtered image is converted to the LAB color space, and the L, a, and b
channels are separated to obtain the three features, Iωhc, as shown in Equation (6):

Iωhc =
[
Lg, ag, bg

]T . (6)

These features are fused to obtain a significant image value. The resulting highlighted
moving vehicles can significantly improve the completeness of moving vehicle detection.
Based on this, the KNN motion target detection algorithm was used to detect areas within
the constraints, resulting in substantially improved detection results.

3.3. Inter-Frame Vehicle Association

The moving vehicles in the satellite video occupied only a few pixels and had similar
shapes, colors, and other features. This results in many false matches when matching
vehicles between frames using only features such as appearance and color. Vehicle motion
in satellite videos can be approximated as a two-dimensional planar motion; therefore, the
two-dimensional position information of moving vehicles in satellite videos is more useful
for describing inter-frame vehicle association. Based on the detection of moving vehicles,
this study proposed a vehicle association method that uses a combination of the relative
vehicle position and historical motion information.

The moving vehicle is first defined as a vector with position and velocity using a
Kalman filter. The covariance matrix infers the next frame state, that is, the trajectory
position of the moving vehicle, from the current frame state of the target. The Kalman filter
prediction equation is given in Equation (7):{

x̂k = Ax̂k−1
Pk = APk−1AT + Q

(7)

where x̂k denotes the target kth frame state volume, A is the state transfer matrix, P is the
state covariance matrix, and Q is the process noise covariance matrix. After associating the
next frame detection result, the target state is updated, and the update equation is shown
in Equation (8): 

Kk = PkHT(HPkHT + R)−1

x̂k = x̂k + Kk(zk −H
−
x̂k)

Pk = (I−KkH)Pk

(8)

where zk is the state-value observation vector, H is the state-observation matrix, R is the
measurement noise covariance matrix, K is the Kalman gain, and I is the unit matrix.

As the video contains multiple targets, data association is required to match the
predicted results with the detection results of the next frame to enable vehicle tracking. For
frame t + 1, m moving targets can be detected using the detection method described in
Section 3.2, and the Kalman filter predicts the target position for frame t + 1 based on the
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tracking results for frame t, yielding n predicted targets, to form a data correlation matrix
as shown in Equation (9):

C =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

, (9)

where C is the data association matrix and cmn denotes the match between the m-th de-
tection and n-th prediction frames. Finally, the Hungarian algorithm was used to obtain
the optimal solution for the data association matrix to complete the inter-frame moving
vehicle association.

The degree of matching is a measure of the similarity of vehicles between frames;
therefore, how well the degree of matching is constructed determines the success of the
association of vehicles between frames. We fully considered the characteristics of the
moving vehicles in the satellite video, integrated the features such as position and motion
topology relationship, and proposed a matching degree construction method combining
the intersection and merging ratio with the angular difference of motion direction. The IOU
effectively describes the position relationship between the target detection and prediction
frames, and the angular difference in direction of motion fully utilizes the historical position
information of the target for its evaluation. As shown in Figure 5, when the green target
prediction frame intersects the two detection frames with the same IOU, the effect of the
wrong target can be effectively rejected using angles α1 and α2. The linear combination of
the two allows for a more robust description of the inter-frame vehicle matching similarity.
The matching degree construction equation is given as Equation (10):

Cij = βCdiou(i, j) + εCtop(i, j), (10)

where Cdiou is the IOU of the two; Ctop = cos(α) is the cosine of the directions of the target
prediction and detection frames; α is the angle between the t detection frame relative to
the t + 1 detection and prediction frames, as shown in Figure 5; and β and ε are weighting
factors that sum to 1.

Sensors 2023, 23, 5771 8 of 19 
 

 

൞𝑲௞ = 𝑷௞𝑯்൫𝑯𝑷௞𝑯் + 𝑹൯ିଵ 𝑥ො௞ = 𝑥ො௞ + 𝑲௞൫𝑧௞ − 𝑯𝑥ොሜ௞൯     𝑷௞ = (𝑰 − 𝑲௞𝑯)𝑷௞
 (8)

where 𝑧௞  is the state-value observation vector, 𝑯  is the state-observation matrix, 𝑹  is 
the measurement noise covariance matrix, 𝑲 is the Kalman gain, and 𝑰 is the unit matrix. 

As the video contains multiple targets, data association is required to match the pre-
dicted results with the detection results of the next frame to enable vehicle tracking. For 
frame 𝑡 + 1, 𝑚 moving targets can be detected using the detection method described in 
Section 3.2, and the Kalman filter predicts the target position for frame 𝑡 + 1 based on the 
tracking results for frame 𝑡, yielding 𝑛 predicted targets, to form a data correlation ma-
trix as shown in Equation (9): 

𝑪 = ൦ 𝑐ଵଵ 𝑐ଵଶ ⋯ 𝑐ଵ௡𝑐ଶଵ 𝑐ଶଶ ⋯ 𝑐ଶ௡⋮ ⋮ ⋱ ⋮𝑐௠ଵ 𝑐௠ଶ ⋯ 𝑐௠௡൪, (9)

where 𝑪 is the data association matrix and 𝑐௠௡ denotes the match between the m-th de-
tection and n-th prediction frames. Finally, the Hungarian algorithm was used to obtain 
the optimal solution for the data association matrix to complete the inter-frame moving 
vehicle association. 

The degree of matching is a measure of the similarity of vehicles between frames; 
therefore, how well the degree of matching is constructed determines the success of the 
association of vehicles between frames. We fully considered the characteristics of the mov-
ing vehicles in the satellite video, integrated the features such as position and motion to-
pology relationship, and proposed a matching degree construction method combining the 
intersection and merging ratio with the angular difference of motion direction. The IOU 
effectively describes the position relationship between the target detection and prediction 
frames, and the angular difference in direction of motion fully utilizes the historical posi-
tion information of the target for its evaluation. As shown in Figure 5, when the green 
target prediction frame intersects the two detection frames with the same IOU, the effect 
of the wrong target can be effectively rejected using angles 𝛼ଵ and 𝛼ଶ. The linear combi-
nation of the two allows for a more robust description of the inter-frame vehicle matching 
similarity. The matching degree construction equation is given as Equation (10): 𝐶௜௝ = 𝛽 𝐶ௗ௜௢௨(𝑖, 𝑗) + 𝜀 𝐶௧௢௣(𝑖, 𝑗), (10)

where 𝐶ௗ௜௢௨ is the IOU of the two; 𝐶௧௢௣ = 𝑐𝑜𝑠(𝛼) is the cosine of the directions of the tar-
get prediction and detection frames; 𝛼 is the angle between the 𝑡 detection frame relative 
to the 𝑡 + 1  detection and prediction frames, as shown in Figure 5; and 𝛽  and 𝜀  are 
weighting factors that sum to 1. 

 
Figure 5. Diagram of the angular difference in the direction of motion. The green and red dots rep-
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Figure 5. Diagram of the angular difference in the direction of motion. The green and red dots
represent the positions of the two moving vehicles in the video in multiple frames, with the solid line
indicating their actual trajectory, and the dashed line indicating the predicted trajectory. α1 indicates
the angle between the green vehicle detection and predicted targets, α2 indicates the angle between
the red vehicle prediction and detection targets, and α3 indicates the angle between the green vehicle
prediction and red vehicle detection targets.

4. Results
4.1. Test Data

Six datasets from VISO [27] were selected to verify the validity and practical perfor-
mance of the method. The dataset was captured using the Jilin-1 satellite constellation.
The spatial resolution of the Jilin-1 video satellite is 1.03 m, with an altitude of 535 km, an
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orbital inclination of 97.54◦, a standard view area of 11 km × 4.5 km, and an uncontrolled
positioning accuracy of approximately 200 m. The data include an RGB color video, and
the dataset is created by intercepting standard images. The videos cover several square
kilometers in real scenes. Figure 6 shows the first video frame for each area. The video
was taken in St. Paul, USA, and Muharraq, Bahrain. For each scene, 100 frames were used
for testing. The video includes not only roads but also residential land, wood, arable land,
water bodies, and other feature types. Specifically, Area 1 comprises a main road with a
large area of rural residential land and vegetation in the background. Area 2 comprises
a main road with a large area of a lake in the background. Area 3 comprises mainly an
overpass with a large area of residential land in the background. Area 4 comprises a road
and a path with a town settlement in the background. Area 5 consists of a crossroad with
a town settlement in the background. Area 6 comprises the coastal highway with a large
body of water in the background. The above 6 are sufficient data for a more comprehensive
assessment of the actual performance of DTSTC.
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4.2. Evaluation Indicators

To quantify the accuracy of the target detection algorithm and compare it with previous
algorithms, the accuracy evaluation metrics used were the precision (P), recall (r), and
F1 score (F), which are commonly used in the target detection field. This was calculated
using Equation (11):

P = TP
TP+FP × 100%

r = TP
TP+FN × 100%

F = 2× P×r
P+r × 100%

, (11)

where TP denotes the number of correct motion target detections, FP denotes the num-
ber of incorrect motion target detections, and FN denotes the number of undetected
motion targets.

For the inter-frame association of moving vehicles, we used the number of correct
tracking target identity detections (IDTP), number of false tracking target identity detec-
tions (IDFP), number of missed tracking target detections (IDFN), multiple object tracking
accuracy (MOTA), total number of object identity switches (IDS), and identity F1 score
(IDF1). To obtain accurate precision results, the IDP, IDP, IDF, and IDS were obtained by
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manual counting. Among all the evaluation metrics, MOTA and IDF1 are the most impor-
tant for evaluating multi-objective tracking algorithms, as shown in Equations (12) and (13),
respectively:

MOTA = 1− ∑(FN + FP + IDS)
∑ GT

, (12)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (13)

where GT indicates the number of true bounding boxes.

4.3. Constraint Construction Validation Tests

To verify the effectiveness of DTSTC for constructing the spatiotemporal domain
constraints, the temporal difference cumulative motion heat map method [6], U-Net road
extraction algorithm [28], and D-LinkNet road extraction algorithm [29] were compared
with DTSTC. The method in this study used the threshold settings of TA = 5 and TR = 0.3.
The results of the comparison tests are presented in Figure 7. As can be seen from the results,
the motion heat map accumulated using the temporal difference is less effective, with no
superior road masks obtained in the six trial sets and large non-road areas accumulated
in both Areas 2 and 3. This is because there were fewer vehicles in the video frame, and
it was not possible to effectively accumulate sufficient thermal areas of motion in a few
frames to form a road mask. In addition, noise accumulated in the video, creating pseudo-
motion heatmap areas. Therefore, this method is only suitable for city centers and areas
with high traffic volumes. The U-Net road extraction algorithm extracted only relatively
complete road masks in Areas 4 and 5, with incorrect extraction in all other areas. This
is because the U-Net road extraction network has a small feature perception field and
does not fully consider the complex structural characteristics of roads; therefore, there
are obvious omissions and breakdowns. D-LinkNet largely ensures the integrity of the
extraction results. However, road breaks still exist, such as in the upper-right trail in Area 3
and the lower-middle bypass in Area 6. DTSTC fully utilizes the time domain information
to complement the road mask extracted by D-LinkNet and achieves better results. Most
of the road area was extracted in all six trial sets, and there was improvement in breakage
and missed detections that existed with D-LinkNet. Breaks and misses in the red areas
in the Figure 7 have been effectively addressed. Therefore, the proposed algorithm can
build constraints more robustly and provide a good basis for the subsequent detection of
moving vehicles.

To verify the effect of stepwise optimization of the mask generation method in this
study, a set of video data was selected for experimentation. The D-LinkNet mask was
supplemented every 15 frames using the motion heat map generated by the frame difference
method, as illustrated in Figure 8, which shows the effect of mask fusion at each stage.
As shown in the diagram, the missing roads are gradually supplemented and do not
cause excessive noise. The feasibility and superiority of DTSTC in constructing constraints
based on the spatiotemporal domain are demonstrated by the progressive addition of road
network masks.

4.4. Comparative Testing and Quantitative Analysis of Moving Vehicle Inspection

To verify the effectiveness of the proposed method in the moving vehicle detection
phase, several of the best motion target detection algorithms developed in recent years
were selected for comparison tests on the experimental data. The comparison methods
include temporal difference (TD), an improved mixture of Gaussian v2 (MOGv2), ViBE, the
MOGv2 algorithm based on the constraints in this study (CMOGv2), the method presented
in Literature 6 (MVDSV), and the method presented in Literature 8 (VOMVD).
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Figure 9 shows the detection results for each algorithm in Area 1. The results show
that the temporal difference detects most of the moving vehicles but is severely affected by
noise and produces many false detections owing to minor changes in the background, as
shown in Figure 9b-6,b-7. There are also serious “double shadows,” as shown in Figure 9b-5.
There are incomplete detection frames when MOGv2 detects larger targets, as shown in
Figure 9c-5, and there are also false detections due to background variations, as shown in
Figure 9c-6,c-7. ViBE moving target detection was heavily ghosted, as shown in Figure 9d-5,
and was unable to suppress the effects of background noise, as shown in Figure 9d-7.
CMOGv2 effectively eliminated noise and pseudo-motion interference in the background,
as shown in Figure 9e-7. However, the phenomenon of missed detection remains, and the
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phenomena of “double shadow” and “ghostly shadows” occur for large targets without
texture, as shown in Figure 9e-6. Although MVDSV partly removes the interference of
noise in the background, as shown in Figure 9f-7, there are missed detections, as shown
in Figure 9f-5,f-6. The VOMVD detection target is the presence of ghosting, as shown in
Figure 9g-5, as well as missed detection (Figure 9g-6).
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Figure 9. Comparison diagram for Area 1 moving vehicle detection, where columns (1)–(4) are the
detection results in Area 1 for frames 30, 50, 70, and 82, respectively. Columns (5) and (6) show the
road area refinement maps. Column (7) shows the refinement of the background area. The yellow
box in the diagram shows the detected moving vehicles. For ease of description in the subsequent
text, the names of the methods are replaced by (a–h).

In contrast, DTSTC eliminates the influence of pseudo-motion targets and background
noise with very few missed detections, as shown in Figure 9h-7. There are no “double
shadows” for larger targets, as shown in Figure 9h-5,h-6. Therefore, DTSTC has a significant
advantage over traditional methods in terms of visualization.

To quantify and analyze the detection results, P, r, and F1 score were calculated
separately for each algorithm within each area. As shown in Table 1, bold text indicates
optimal values and underlined text indicates suboptimal values. Within Area 1, DTSTC
achieves the highest detection precision. The recall of this method was slightly lower than
that of temporal difference. The analysis suggests that this may be due to the low threshold
setting for the inter-frame differencing method, which increases the detection recall at the
expense of lower detection precision (no distinction between noise and moving targets).

Within Area 2, DTSTC had the highest recall and F1 scores. The accuracy was
slightly lower than that of VOMVD; however, the recall was considerably higher than
that of VOMVD. Comparison tests show that the accuracy of the method with con-
straints is considerably higher than that of the conventional method, which is analyzed
because the background of Area 2 contains a large lake, and the diffuse reflection of the
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lake causes a lot of noise interference. The constraint effectively eliminates this type of
background interference.

Table 1. Results of different algorithms for vehicle detection.

Test Data Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

TD
P (%) 72.56 38.81 67.21 56.72 68.35 24.52
r (%) 89.45 77.88 96.01 89.21 86.08 91.22
F (%) 79.90 51.65 78.80 68.63 74.73 39.49

MOGv2
P (%) 68.70 36.06 67.43 61.13 69.61 39.40
r (%) 80.40 67.81 95.63 89.70 83.70 82.67
F (%) 73.63 46.52 78.85 71.31 74.72 51.24

ViBE
P (%) 81.47 38.33 91.59 63.38 72.24 72.85
r (%) 75.78 71.84 86.16 70.66 65.61 82.74
F (%) 78.23 49.42 88.74 66.02 68.52 77.36

CMOGv2
P (%) 93.17 92.50 87.51 94.77 87.44 93.76
r (%) 80.40 67.48 85.88 87.79 83.70 82.67
F (%) 85.88 77.63 86.79 91.04 85.16 87.85

MVDSV
P (%) 98.37 87.94 81.37 90.08 84.41 89.40
r (%) 55.43 51.48 79.03 75.93 61.77 80.28
F (%) 70.59 64.67 80.02 81.57 71.05 83.96

VOMVD
P (%) 94.80 96.45 86.82 92.21 91.26 80.43
r (%) 75.78 71.83 86.17 70.66 65.61 82.73
F (%) 84.00 82.31 85.82 79.65 75.99 81.35

DTSTC
P (%) 98.86 96.01 91.69 99.99 91.84 88.75
r (%) 84.00 79.24 96.05 92.44 87.26 97.15
F (%) 90.03 86.80 93.28 95.96 89.22 92.47

Bold text in the table indicates the best value and underlined text indicates the second best value.

The best results in terms of precision, recall, and F1 score were achieved in Areas 3–5.
This is because there is less noise interference in these areas and a greater degree of road
and vehicle disparity, providing better initial conditions for moving target detection. Spa-
tiotemporal domain constraints build complete and contrast-enhanced assisted detection,
greatly enhancing detection capabilities and enabling the robust detection of vehicles in
motion satellite videos.

Within Area 6, both DTSTC and CMOGv2 performed well. DTSTC was slightly less
accurate than CMOGv2 in terms of detection precision. The reasons for this are as follows:
On the one hand, it may be that the MOGv2 misdetection phenomenon causes it to have no
misdetection noise; therefore, the phenomenon of low recall and high precision occurs. On
the other hand, it may be that the contrast enhancement algorithm in DTSTC increased the
influence of noise within the road, resulting in more mis-detected targets.

Figures 10 and 11 provide statistics on the detection precision and recall of each
algorithm for different areas. As shown in the chart, DTSTC has the best detection accuracy
in most cases, it being only slightly lower than CMOGv2 in Area 6. The recall rates were
low in Area 2 under the influence of harsh environmental factors, while the rest of the area
maintained high levels.

To further validate the stability of the algorithm, Figure 12 shows the variations in
the precision and recall for each area over 100 frames. The detection precision of DTSTC
remained high in all areas and varied smoothly between the frames. There are more
noticeable fluctuations in the recall, but they still perform better than the other methods.
Therefore, DTSTC is not only better in terms of average detection performance, but also
exhibits good results in terms of detection stability.
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By combining the results of each area detection for the satellite video data, we find
that the temporal difference and MOGv2, despite maintaining a good recall rate, are sub-
ject to serious interference and have a low precision rate. Although ViBE performs more
consistently, the overall precision is low, and there is significant “ghosting” and missed
detections. CMOGv2 showed significant improvement in precision but still had a high rate
of missed detections. Although MVDSV improves detection accuracy through heat map
constraints, the recall performance is mediocre, which is probably due to the instability
of the constraint construction when analyzed. The VOMVD performed well overall, but
there is still room for improvement in the recall rate. In contrast, DTSTC achieved better
results in terms of both detection precision and recall, with the highest F1 score. Therefore,
the detection algorithm in DTSTC can also perform well in the face of the complex back-
ground and noise of satellite video data and has certain advantages in terms of robustness
and applicability.

4.5. Moving Vehicle Tracking Test

To verify the effectiveness of DTSTC during the tracking phase, it was tested for
four scenarios. The visualization results are shown in Figure 13, with different colored
boxes representing different tracked objects. Figure 13a shows the results of long-distance
tracking for a single vehicle. The blue box in the diagram tracks the target with good results
over long distances, no ID switching occurs during tracking, and the tracking box position
is more accurate. Figure 13b shows the vehicle tracking results obtained using a right-angle
bend. The red box tracks the target steadily through the bend without ID switching, and the
vehicle color remains similar to the background without losing the target. Figure 13c shows
the more intensive multivehicle tracking results, where the proposed algorithm tracks
stably, with no significant false detections, missed detections, or ID switching. Figure 13d
shows the vehicle tracking results with partial occlusion. Although the tree branches
occluded the vehicle, the tracking results were good, with no ID switching or missed
detections. Thus, the proposed tracking algorithm has a more robust tracking performance
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in complex environments such as long sequences, non-linear, dense multiple targets, and
partial occlusion.
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A small area within each area was intercepted for testing to further verify the effective-
ness of the data association method. The experiments compared the CMOGv2 approach
combined with the data association approach (CMOGv2_D), the detection approach com-
bined with the SORT algorithm (C_SORT), and DTSTC. In Table 2, the optimal values are
indicated in bold. The proposed method is more stable in most areas, multitarget tracking
precision remains high, tracker identity maintenance is excellent, and the number of ID
switches is low. The method of tracking data associations using SORT was the next most
effective, maintaining a high overall level. However, the method using CMOGv2 detection
was less effective. Notable among these is the low precision of multitarget tracking for
each method in Area 2. This is because missed detections occurred during the detection
phase, resulting in certain targets not being tracked during the tracking phase. In Area
3, the results of the proposed method and the method of tracking data associations using
SORT were free of omissions and misdetections. This is because there is less traffic in
the area, vehicle contrast is evident, and excellent detection provides good initial values
for tracking.
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Figure 13. Tracking results in complex situations. The figure (a–d) depict the tracking results
for each of the four different scenarios. The different color boxes in the figure represent different
tracking targets.

Table 2. Tracking performance evaluation results.

Test Data Method IDFN IDFP IDTP IDS MOTA (%) IDF1 (%)

Area 1
CMOGv2_D 100 6 329 4 74.71 86.13

C_SORT 67 2 366 3 83.44 91.38
DTSTC 62 0 373 1 85.52 92.33

Area 2
CMOGv2_D 117 15 239 9 61.99 78.36

C_SORT 121 18 232 3 61.72 76.94
DTSTC 111 15 245 2 65.49 79.55

Area 3
CMOGv2_D 44 0 75 3 60.50 77.32

C_SORT 0 0 119 0 100.00 100.00
DTSTC 0 0 119 0 100.00 100.00

Area 4
CMOGv2_D 109 33 241 12 59.79 77.24

C_SORT 36 22 325 2 84.33 91.80
DTSTC 36 2 345 2 89.56 94.78

Area 5
CMOGv2_D 218 6 166 12 39.49 59.71

C_SORT 28 12 350 4 88.72 95.49
DTSTC 28 12 350 4 88.72 95.49

Area 6
CMOGv2_D 77 36 137 8 51.60 70.80

C_SORT 29 34 187 7 72.00 85.58
DTSTC 29 16 205 5 80.00 90.11

Bold in the table indicates the optimal value.

In summary, DTSTC used in this study can effectively correlate inter-frame vehicles
in satellite videos. However, tracking precision largely depends on the detection effect.
Although the detection method in DTSTC has largely improved the detection precision and
recall rate, the phenomenon of missed detection still exists, which leads to ID switching or
missed targets in the tracking targets.

5. Conclusions

Given the complex background of satellite videos, noise, and pseudo-motion targets
that interfere with the detection and tracking of moving vehicles, this study proposed a
method for detecting and tracking moving vehicles in satellite videos with spatiotemporal
characteristic constraints (DTSTC). Compared with traditional methods, DTSTC is more
robust in constructing constraints and removing background noise interference. The
detection rate of moving target extraction was improved, and a significant advantage was
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achieved in detecting moving vehicles. DTSTC was also proven to be more stable during
the tracking phase.

Although DTSTC reduced the rate of missed detection of moving vehicles to a certain
extent in this study, there were still missed detections of faint targets. To further improve
detection precision, the incorporation of time-dimensional motion information can be
considered in the detection process. In addition to the method proposed in this study, as
with most current algorithms, the tracking performance depends on the detection algorithm.
In the future, further consideration should be given to transferring features from the past
moments of the target to the current frame, enhancing detection; thus, detection and
tracking can reinforce each other and form a closed loop.
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