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Abstract: Through wearable sensors and deep learning techniques, biomechanical analysis can
reach beyond the lab for clinical and sporting applications. Transformers, a class of recent deep
learning models, have become widely used in state-of-the-art artificial intelligence research due to
their superior performance in various natural language processing and computer vision tasks. The
performance of transformer models has not yet been investigated in biomechanics applications. In
this study, we introduce a Biomechanical Multi-activity Transformer-based model, BioMAT, for the
estimation of joint kinematics from streaming signals of multiple inertia measurement units (IMUs)
using a publicly available dataset. This dataset includes IMU signals and the corresponding sagittal
plane kinematics of the hip, knee, and ankle joints during multiple activities of daily living. We
evaluated the model’s performance and generalizability and compared it against a convolutional
neural network long short-term model, a bidirectional long short-term model, and multi-linear
regression across different ambulation tasks including level ground walking (LW), ramp ascent (RA),
ramp descent (RD), stair ascent (SA), and stair descent (SD). To investigate the effect of different
activity datasets on prediction accuracy, we compared the performance of a universal model trained
on all activities against task-specific models trained on individual tasks. When the models were
tested on three unseen subjects’ data, BioMAT outperformed the benchmark models with an average
root mean square error (RMSE) of 5.5 ± 0.5◦, and normalized RMSE of 6.8 ± 0.3◦ across all three
joints and all activities. A unified BioMAT model demonstrated superior performance compared to
individual task-specific models across four of five activities. The RMSE values from the universal
model for LW, RA, RD, SA, and SD activities were 5.0 ± 1.5◦, 6.2 ± 1.1◦, 5.8 ± 1.1◦, 5.3 ± 1.6◦,
and 5.2 ± 0.7◦ while these values for task-specific models were, 5.3 ± 2.1◦, 6.7 ± 2.0◦, 6.9 ± 2.2◦,
4.9 ± 1.4◦, and 5.6 ± 1.3◦, respectively. Overall, BioMAT accurately estimated joint kinematics relative
to previous machine learning algorithms across different activities directly from the sequence of
IMUs signals instead of time-normalized gait cycle data.

Keywords: deep learning; transformer; joint kinematics; wearable; IMUs; stair ascent; stair descent; gait

1. Introduction

Accurate measurement and prediction of joint kinematics enable the development
of tools for pathological diagnosis, implant design, rehabilitation, sports science, and er-
gonomics [1–5]. Passive-marker motion capture (MOCAP) systems are the current gold stan-
dard in measuring joint kinematics. However, the use of these systems is time-consuming,
restricted to lab environments, and requires technical expertise [6–9]. In contrast, wearable
inertial measurement units (IMUs) have gained attention in biomechanics applications and
joint kinematic measurement due to their portability, ease of use, and low cost.

Deep learning, a subset of machine learning, has significantly advanced the capability
to convert IMU signals into joint kinematics. Among those, Mundt et al. tested various
deep neural network (NN) models, including multi-layer perceptron, convolutional neural
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network (CNN), and recurrent neural networks (RNNs) such as long short-term memory
(LSTM) models, in their ability to estimate joint kinematics and kinetics from measured
IMU signals during gait [10,11]. Mundt et al. extended their training dataset to include
both simulated and measured IMU data to estimate joint kinematic profiles using artificial
NNs [12]. Dorschky et al. also found that the addition of synthetic IMU data improved
their model predictions [13]. McCabe et al. incorporated a force-measuring insole with an
IMU on the shank to predict hip joint loading along with kinematics using a neural network
model [14]. However, these studies were restricted to walking and treadmill activities.
Recently, Tan et al. implemented a Bidirectional LSTM (BiLSTM) model to estimate joint
kinematics in the sagittal plane using IMUs for osteoarthritis (OA) patients performing
activities of daily living: gait, sit-to-stand, and negotiating stairs. Hossain et al. achieved a
low error rate in lower extremity joint kinematic predictions using feet IMUs across level
walking, treadmill, ramp, stair ascent, and stair descent activities with DeepBBWAE-Net,
an ensemble CNN-RNN based deep learning model [15].

A common preprocessing step for deep learning model development is segmentation
of kinematics data and the corresponding IMUs signals into individual gait cycles with a
consistent length achieved by normalizing the data with respect to time [12,13,15–18]. Most
previous studies used MOCAP data for segmentation. In a novel approach, Mundt et al.
predicted joint kinematics based on a continuous stream of IMU data without prior seg-
mentation [16]. They then compared the performance of the LSTM model trained on a
longer motion sequence against time-normalized gait cycles and found that a longer motion
sequence resulted in superior performance. Hernandez et al. also utilized a continuous
time series for training their convolutional neural network long short-term memory model
(CNNLSTM) but studied its performance in other activities such as walking, running, and
gait transition [17].

In practical applications where subjects wear only IMUs, segmentation of cycles with
kinematic data is not feasible. One possible solution is segmentation based on the charac-
teristics of the IMU data. Proposed methods to segment IMU data are currently limited
to gait activities and healthy populations [17]. The feasibility of these methods for appli-
cations in complex activities of daily living, such as transitioning from gait to stair ascent,
turning, sitting to walking, etc., has not been fully investigated. These methods may not
apply to individuals with musculoskeletal pathology as they produce abnormal movement
patterns [9,19–24]. The time and computational cost of the additional preprocessing steps
required for continuous real-time joint kinematic estimation reduce the desirability of
this approach.

While progress has been made, advancements in machine learning methods in biome-
chanics remain comparably slow to similar applications in language processing and image
recognition. One impeding factor is the lack of publicly available datasets, source codes,
and models. This limits the development and evaluation of models to only a small group
of researchers and delays progress. Publicly available models would allow for additional
opportunities to implement state-of-the-art machine learning techniques such as transfer
learning [22,23], fine-tuning, or one-shot and zero-shot learning. Thanks to Camargo et al.,
a publicly available dataset has been introduced containing 3-dimensional kinematics and
wearable sensor data from 22 adults for multiple locomotion tasks including level walking
(LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA), and ramp descent (SD) [25].
Using such datasets, machine learning models for various applications can be developed
and there is a greater opportunity for researchers to advance the field [26]. As of this time,
there are no publicly available kinematic-prediction models.

Machine learning models that have been used in previous studies were limited to NN models,
including RNN, CNN, LSTM, and fully connected NNs in various combinations [13,15–18,27–29].
These models provided reliable performance in mapping IMU signals to joint kinematics.
However, recent research in the field of deep learning has shown that a relatively new
model, the transformer, outperformed previous models in many tasks and is increasingly
the model of choice for solving deep learning problems. The transformer was introduced
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in 2017 by a team at Google Brain for natural language processing tasks to overcome the
limitations of RNNs for sequence data [30]. RNNs have difficulty capturing long-term
dependencies and processing sequential data in parallel. A transformer, on the other hand,
uses self-attention to capture global dependencies while processing sequences in parallel.
Transformers have evolved beyond language tasks into other areas such as time series
analysis [31–34] and computer vision [35,36]. The potential of this model in biomechanics
tasks has not yet been investigated.

We propose the use of transformer models in biomechanics applications to address
the current limitations of traditional machine learning models, including the requirements
of segmenting gait cycles and the restricted number activities for which a single model
can effectively predict lower limb kinematics. The current study has three aims. The
first aim is to implement transformer-based models for predicting joint kinematics from
continuous streams of unsegmented IMU signals across gait, ramp, and stair activities. The
second aim is to compare the performance of transformer-based models against previously
published models such as BiLSTM and CNNLSTM. The final aim is to investigate whether
a single universal model for all activities has superior performance compared to activity-
specific models. We hypothesize that (1) the transformer-based model will outperform
previous models in predicting joint kinematics and (2) activity-specific models will perform
equivalent to models trained across all activities. These hypotheses will be evaluated
by comparing root mean square errors (RMSE) in kinematic predictions between (1) a
transformer-based model and previously published machine learning architectures and
(2) transformer-based models trained on single-activity datasets and multi-activity datasets.
The trained models from this work will be open source, enabling studies of reproducibility
and the advancement of the field.

2. Materials and Methods
2.1. Dataset

A publicly available lower limb biomechanics dataset has been used in this study [25].
This comprehensive dataset includes IMU data along with the kinematic and kinetic profiles
of joint biomechanics from 19 healthy subjects (11 male, 8 female, age = 20.5 ± 1.2 years old,
height = 1.7 ± 0.1 m, and weight = 68.4 ± 11.7 kg) performing LW, RA, RD, SA, and SD.
Each subject was outfitted unilaterally on the right side with 4 six-axis IMUs (3-SpaceTM,
Yost Labs, Yost, OH, USA), and bilaterally with 32 motion capture markers (Vicon. Ltd.,
Oxford, UK). IMUs were attached to the anterior surface of the foot, shank, and thigh at 3

4
of the length of each segment and the anterior surface of the torso between the sternum
and navel. Ground reaction forces were also recorded using force plates (Bertec, OH, USA)
located in the instrumented treadmill and level with the floor, ramp, and stairs. Joint
kinematics and kinetics were calculated by analyzing the MOCAP data along with ground
reaction forces using inverse kinematics and inverse dynamics in OpenSim [25,37]. The
current study utilized data from the IMUs on the lower limb (foot, shank, and thigh) and
sagittal plane joint kinematics at the hip, knee, and ankle from the MOCAP for 19 subjects
across five activities, including LW at three self-selected speeds, RA, RD, SA, and SD.
The cumulative number of activity trials performed by the cohort of subjects prior to
segmentation was 1170, 1204, 1204, 789, and 789, for LW, RA, RD, SA, and SD, respectively.

2.2. Preprocessing

IMU and kinematic data were down-sampled from 200 Hz to 100 Hz to reduce the
overall size of the training set. The time series data were segmented into samples of
256 contiguous points using a sliding window with 50% overlap between subsequent
samples. The starting point of each sample was chosen randomly so as not to intentionally
coincide with a particular gait event (e.g., heel strike). A zero-padding technique was used
to ensure the data were a consistent length prior to use in the deep-learning models. The
length of 256 was selected to ensure that each sample consisted of at least two successive
gait cycles and limitations of the graphic processing units (GPUs) used during training
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and evaluation. The IMU data were scaled using the standardization method to facilitate
gradient descent convergence during training [26]. A total of 2523, 3369, 3491, 1451, and
1258 samples were generated for LW, RA, RD, SA, and SD, respectively.

2.3. Neural Network Models

Three conventional deep NN models (BiLSTM, CNNLSTM, and a new biomechanical
multi-activity transformer-based model called BioMAT) and a multi-linear regression (MLR)
model were used for mapping IMU data to the sagittal plane kinematics of the hip, knee,
and ankle.

2.3.1. Multi-Linear Regression Model

A MLR model was chosen as the baseline for this study as this is a fundamental
technique in machine learning and is widely used due to its simplicity and interpretability.
Therefore it serves as a baseline for comparisons with more complex models. Input data
to the MLR were a matrix where each row contained the concatenated IMU signals for a
particular sample. The MLR model included coefficients that were optimized by minimizing
the residual sum of squares between the measured and predicted joint kinematics.

2.3.2. CNNLSTM Architecture

CNNLSTM is an architecture specifically designed for sequence prediction with spatial
inputs such as images or videos. CNNLSTMs consist of multiple convolutional layers,
followed by multiple LSTM layers and a final dense or fully connected layer [17,38–40].
Feature extraction occurs with convolutional layers (spatial domain) while time-series
prediction is accomplished with recurrent layers (time domain). This model has been used
for activity recognition and joint kinematic predictions in previous studies [17,38–40]. The
current study implemented a Deep CNNLSTM based on Hernandez et al. [17] with two 2D
CNN layers followed by two LSTM layers.

2.3.3. BiLSTM Architecture

BiLSTM is a type of recurrent neural network, which is a class of neural network
effective in time series regression tasks that temporally propagates information with each
new estimate. As opposed to unidirectional LSTM models which only consider information
from the past, BiLSTM models also consider information from future inputs to improve
accuracy. The performance of BiLSTM was demonstrated in a similar study [18]. LSTMs
mitigate the vanishing gradient problem prevalent in RNNs with a gated structure and cell
state within each node. The BiLSTM used in this study was composed of two LSTM layers
of size 50 and a fully connected layer that reshaped the network output to one size [28].

2.3.4. BioMAT Architecture

Transformer models operate based on an attention mechanism. The original motiva-
tion behind developing transformer models was to solve natural transduction or language
translation problems [30]. This model is ideal for sequence-to-sequence mapping [33].
Given the current study is related to mapping a sequence of IMU data to a sequence of
joint kinematics, as well as the reliable performance of transformers in applications such as
forecasting, transformer models are an ideal candidate.

Transformer models can consist of an encoder and a decoder, which are connected
by an attention layer. The encoder maps the input sequence to a vector representation.
The decoder generates the output sequence from that vector representation. Bidirectional
encoder representations from transformers (BERT) and generative pre-trained transformers
(GPT) are two well-known systems that have been trained on large databases. BERT only
includes an encoder and is typically trained using supervised learning for tasks such as
text classification or named entity recognition [41]. GPT includes decoder and is trained
using unsupervised learning. During training, the model learns to predict the next word
or number in a sequence based on the previous context [30,42]. BioMAT was based on
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the BERT architecture with an encoder consisting of an embedding layer, a positional
layer, and a stack of encoder layers each with multi-head attention layers followed by a
flattening layer (Figure 1) [41]. Three additional fully connected layers were added to map
the resultant vector from the encoder to three kinematics times series (hip, knee, and ankle).
To prevent overfitting, dropout layers were added after positional encoding (res dropout)
and after the flattening layer (fc dropout) (Table 1). The transformer model utilized in this
study was adopted based on previously published work [43].
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Figure 1. BioMAT’s architecture.

Table 1. Selected hyperparameters for each model.

CNNLSTM [18] BiLSTM [27] BioMAT

CNN2D-1 kernel size: 10, 3 BiLSTM hidden size: 128 BioMAT d model: 256
CNN2D-1 n output: 16 BiLSTM n layers: 2 BioMAT n heads: 16
CNN2D-2 kernel size: 10, 3 dropout: 0.2 BioMAT d ff: 128
CNN2D-2 n output: 32 BioMAT n layers: 4
LSTM hidden size: 128 res dropout: 0.5
LSTM n layers: 2 fc dropout: 0.5
dropout: 0.2

BioMAT d model: Total dimension of the model (number of features created by the model); BioMAT n heads:
Parallel attention heads; BioMAT d ff: The dimension of the feedforward network model; res dropout: Amount of
residual dropout applied in the encoder; fc dropout: Dropout applied to the final fully connected layer.

2.4. Training and Parameter Tuning

Data from the 19 subjects were randomly divided into training (16 subjects) and
testing (3 subjects) sets. This subject allocation was selected to maximize the size of the
training set while ensuring a minimum of three subjects in the test set to avoid the potential
effects of outliers. Model training was conducted using adaptive learning rate optimization
with a learning rate of 0.001, batch size of 50, and 50 epochs. The cost function used for
training was the mean square error between predicted and measured kinematics. An L2
regularization coefficient of lambda = 0.001 was used to prevent overfitting. The models
were created using PyTorch 1.8.1 in Python 3.7 and trained and evaluated on NVIDIA
TiTAN XP GPUs with 12 GB of memory. Hyperparameters for the CNNLSTM and BiLSTM
were implemented from the original studies [17,28]. Hyperparameters for BioMAT were
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selected after tuning with a 5-fold cross-validation by subjects on training data across all
five activities. Table 1 includes the list of hyperparameters for each model.

2.5. Neural Network Evaluation and Statistical Tests

To investigate the generalizability of the models in predicting joint kinematics across
various activities, the performance metrics of each model, after training on the combined
dataset of all activities, were reported for predictions of each individual activity and
predictions across all activities combined. The performance metrics included root mean
square error (RMSE), normalized root mean square error (nRMSE), and Pearson correlation
coefficient (r) between measured and predicted kinematics.

In a subsequent analysis, the models were re-trained for each activity separately (e.g.,
trained only on gait) and the predictions tested on that same activity as well as for activities
not included in the training set (e.g., model trained on gait predicting stair ascent). The
same evaluation metrics were used to assess the impact of activity diversity in the training
datasets. Errors for tasks were aggregated by taking the mean across all joints of a specific
activity and test subjects. A two-way multivariate analysis (MANOVA) was conducted
to detect interactions between the two independent variables, training activities and test
activities, and RMSE and r for BioMAT. A multiple comparison test was also conducted to
compute pairwise differences between models trained on different training activities for
each test activity.

3. Results

All machine learning models evaluated in the study produced joint kinematic predic-
tions with higher accuracy than the baseline MLR for each activity after training simulta-
neously on all activities (Figure 2). BioMAT achieved lower RMSE across all three joints
(5.5 ± 0.5◦) compared to BiLSTM (7.0 ± 1.0◦), CNNLSTM (8.8 ± 2.3◦), and MLR models
(14.1 ± 7.3◦, Table 2). A similar trend was observed for nRMSE with the smallest nRMSE of
5.4 ± 1.2 for BioMAT and the largest nRMSE of 24.2 ± 12.7 for MLR. The mean correlation
coefficients between model predictions and measured kinematics ranged from 0.91 ± 0.04
to 0.98 ± 0.01 for the MLR model at ankle joint and BioMAT at the knee, respectively. The
BiLSTM model outperformed the other model architectures with the highest correlation
coefficients at the knee (0.98 ± 0.02), hip (0.97 ± 0.04), and ankle (0.96 ± 0.02). BioMAT had
equivalent performance with coefficients of 0.98 ± 0.01, 0.97 ± 0.04, and 0.95 ± 0.02 for the
knee, hip, and ankle, respectively. Conversely, mean correlation coefficients were lower for
the MLR (0.92 ± 0.04) and the CNNLSTM model (0.92 ± 0.05).

Table 2. RMSE, nRMSE, and r (mean ± standard deviation) between model predictions and ground
truth kinematics for models trained on all activities simultaneously across all subjects in the test set.
Bold indicates most accurate model architecture for that joint metric.

Metrics Joint Hip Knee Ankle Mean

RMSE (◦)

MLR 20.3 ± 11.8 10.1 ± 1.9 11.9 ± 8.3 14.1 ± 7.3
CNNLSTM 10.9 ± 2.2 10.5 ± 3.9 5.09 ± 0.8 8.8 ± 2.3

BiLSTM 9.2 ± 1.4 6.9 ± 1.1 4.8 ± 0.8 7.0 ± 1.0
BioMAT 6.4 ± 1.0 5.5 ± 1.1 4.6 ± 0.7 5.5 ± 0.5

nRMSE

MLR 24.2 ± 12.7 10.0 ± 2.3 17.3 ± 10.0 17.2 ± 7.8
CNNLSTM 13.5 ± 3.5 10.6 ± 4.7 8.1 ± 2.7 10.7 ± 3.2

BiLSTM 11.6 ± 3.4 6.8 ± 1.0 7.5 ± 1.8 8.6 ± 1.0
BioMAT 7.9 ± 1.6 5.4 ± 1.2 7.1 ± 0.9 6.8 ± 0.3

r

MLR 0.92 ± 0.06 0.95 ± 0.04 0.91 ± 0.04 0.92 ± 0.04
CNNLSTM 0.92 ± 0.04 0.93 ± 0.06 0.91 ± 0.07 0.92 ± 0.05

BiLSTM 0.97 ± 0.04 0.98 ± 0.02 0.96 ± 0.02 0.97 ± 0.02
BioMAT 0.97 ± 0.03 0.98 ± 0.01 0.95 ± 0.02 0.96 ± 0.01
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Figure 2. Representative ground truth and predicted joint kinematics across different activities and
for a test subject from models trained simultaneously on all activities. Ground truth (dash line) and
prediction (solid) for different predictive models (LW: Level Walking, RA: Ramp Ascent, RD: Ramp
Descent, SA: Stair Ascent, SD: Stair Descent).
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When trained on specific activities, BioMAT likewise demonstrated the lowest RMSE
and nRMSE among model architectures for all five tasks with average RMSE and nRMSE
across the three joints of 5.5 ± 1.1◦ and 6.8 ± 1.6◦, respectively. BioMAT yielded similar cor-
relation coefficients to BiLSTM for LW (0.97 ± 0.03), RA (0.97 ± 0.02), and SD (0.98 ± 0.02),
and was slightly higher for RD (0.94 ± 0.02) and lower for SA (0.97 ± 0.04) (Table 3).

Table 3. RMSE, nRMSE, and r (mean ± standard deviation) between model predictions and ground
truth kinematics for models trained on all activities and tested on individual activities. Bold indicates
most accurate model Confarchitecture for that activity.

Metric Model Train: All
Test: LW

Train: All
Test: RA

Train: All
Test: RD

Train: All
Test: SA

Train: All
Test: SD

RMSE◦

MLR 8.5 ± 2.1 21.7 ± 10.3 22.5 ± 10.8 8.9 ± 3.4 9.0 ± 3.5
CNNLSTM 12.3 ± 5.6 9.7 ± 3.8 7.8 ± 2.4 6.8 ± 2.3 7.5 ± 2.7

BiLSTM 5.3 ± 1.6 7.5 ± 2.1 7.4 ± 2.1 7.5 ± 2.6 7.3 ± 2.8
BioMAT 5.0 ± 1.5 6.2 ± 1.1 5.8 ± 1.1 5.3 ± 1.6 5.2 ± 0.7

nRMSE

MLR 11.8 ± 1.7 23.3 ± 9.4 27.7 ± 15.9 10.9 ± 3.0 12.3 ± 8.2
CNNLSTM 16.3 ± 3.3 10.1 ± 2.1 9.2 ± 2.9 8.3 ± 1.6 9.8 ± 5.7

BiLSTM 7.3 ± 1.7 8.0 ± 0.4 8.7 ± 2.8 9.4 ± 2.8 9.7 ± 6.3
BioMAT 7.2 ± 2.4 6.7 ± 0.4 6.7 ± 0.3 6.6 ± 1.4 6.8 ± 3.0

r

MLR 0.92 ± 0.03 0.92 ± 0.04 0.87 ± 0.05 0.96 ± 0.04 0.95 ± 0.05
CNNLSTM 0.85 ± 0.04 0.9 ± 0.04 0.92 ± 0.02 0.97 ± 0.03 0.95 ± 0.03

BiLSTM 0.97 ± 0.02 0.97 ± 0.01 0.93 ± 0.02 0.98 ± 0.02 0.98 ± 0.01
BioMAT 0.97 ± 0.03 0.97 ± 0.02 0.94 ± 0.02 0.97 ± 0.04 0.98 ± 0.02

LW: Level Walking, RA: Ramp Ascent, RD: Ramp Descent, SA: Stair Ascent, SD: Stair Descent.

Increased activity diversity in the training set improved prediction accuracy for certain
model architectures. For example, training the BioMAT and CNNLSTM architectures
simultaneously on all activities improved prediction accuracy for four out of five activities
compared to training on a specific activity (Tables 3 and 4). However, the post hoc multiple
comparison tests for BioMAT indicated the accuracy differences were not statistically
significant. Conversely, training the MLR and BiLSTM architectures simultaneously on
all activities reduced the prediction accuracy for three out of five activities. The two-way
MANOVA identified significant main and interaction effects among the type of training
data (all activities versus activity-specific) and test activity for both RMSE and r with
BioMAT (F(50,142) = 2.674, p ≤ 0.001, Wilks’ Λ = 0.265). As expected, statistically significant
reductions in accuracy (RMSE and r) were observed when the activity-specific models were
used to predict kinematics from other activities (Figure 3).

Table 4. RMSE, nRMSE, and r (mean ± standard deviation) between model predictions and ground
truth kinematics for models trained on a single activity and tested on that same activity. Bold indicates
most accurate model architecture for that activity.

Metric Model Train: LW
Test: LW

Train: RA
Test: RA

Train: RD
Test: RD

Train: SA
Test: SA

Train: SD
Test: SD

RMSE◦

MLR 9.6 ± 3.5◦ 31.2 ± 10.6◦ 13.8 ± 2.4◦ 7.9 ± 3.5◦ 7.9 ± 1.3◦

CNNLSTM 6.2 ± 2.2◦ 10.3 ± 4.5◦ 8.3 ± 1.4◦ 13.4 ± 5.2◦ 18.8 ± 6.8◦

BiLSTM 5.5 ± 1.6◦ 8.2 ± 2.9◦ 7.0 ± 2.0◦ 5.3 ± 1.7◦ 7.2 ± 2.1◦

BioMAT 5.3 ± 2.1◦ 6.7 ± 2.0◦ 6.9 ± 2.2◦ 4.9 ± 1.4◦ 5.6 ± 1.3◦

nRMSE

MLR 13.1 ± 3.2 33.2 ± 6.7 16.2 ± 2.2 9.5 ± 2.7 10.1 ± 3.6
CNNLSTM 8.4 ± 1.6 10.6 ± 2.3 9.7 ± 1.2 16.0 ± 1.5 22.4 ± 0.9

BiLSTM 7.5 ± 0.3 8.6 ± 1.2 8.2 ± 2.4 6.5 ± 1.2 9.5 ± 5.1
BioMAT 7.3 ± 2.3 7.1 ± 0.6 8.2 ± 3.1 5.9 ± 0.7 7.5 ± 3.9
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Table 4. Cont.

Metric Model Train: LW
Test: LW

Train: RA
Test: RA

Train: RD
Test: RD

Train: SA
Test: SA

Train: SD
Test: SD

r

MLR 0.91 ± 0.04 0.90 ± 0.03 0.83 ± 0.06 0.96 ± 0.04 0.95 ± 0.02
CNNLSTM 0.94 ± 0.03 0.91 ± 0.04 0.88 ± 0.03 0.70 ± 0.30 −0.02 ± 0.04

BiLSTM 0.97 ± 0.03 0.96 ± 0.01 0.93 ± 0.03 0.98 ± 0.03 0.98 ± 0.01
BioMAT 0.97 ± 0.02 0.97 ± 0.01 0.95 ± 0.03 0.97 ± 0.03 0.98 ± 0.02

LW: Level Walking, RA: Ramp Ascent, RD: Ramp Descent, SA: Stair Ascent, SD: Stair Descent.
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4. Discussion

This study introduced an adaptation of a state-of-the-art transformer-based model
(BioMAT) for predicting joint kinematics of lower extremities based on streams of IMU
data including acceleration and angular velocity. BioMAT consistently yielded the highest
performance with the lowest RMSE, nRMSE, and highest correlation coefficients compared
to other published models at all three joints and across all five activities of daily living.
When trained with data from all activities of daily living, BioMAT’s prediction accuracy
was improved compared to training purely on activity-specific data for four out of five
tasks. Further, this performance was achieved without the need to segment the input IMU
data into discrete gait cycles, which stands as a key finding of our study. By eliminating
the need for gait segmentation, this approach simplifies the preprocessing stage, reduces
computational complexity, and potentially improves the real-time performance of gait
analysis systems.

Zerveas et al. introduced a transformer-based model for multivariate time series
representation learning in 2020 [33]. Their modeling approach generated the most accurate
method for multivariate time series classification and regression tasks on several benchmark
datasets when compared to contemporary models such as XGboost [44] and ResNet [45].
Siddhad et al. demonstrated that the transformer model outperformed BiLSTM and CNN
models in a study to classify electroencephalograms [46]. These studies built the foundation
for the current transformer-based model for multivariate time series in joint kinematic
predictions from IMUs. BioMAT was likewise compared against CNNLSTM [17] and
BiLSTM [28] architectures, the predominant models in recent literature for joint kinematic
predictions, showing compelling results. The proposed BioMAT model demonstrated
superior prediction accuracy with an average RMSE of 5.5◦ across all three joints and
activities, compared to BiLSTM and CNNLSTM with average RMSEs of 7.0◦ and 8.8◦

respectively. BioMAT also achieved smaller standard deviations in RMSE across all joints
and tasks (BioMAT standard deviations: joint level = 0.5◦ and task level = 1.1◦), compared
to BiLSTM and CNNLSTM (BiLSTM standard deviations: joint level = 1.0◦ and task
level = 2.1◦, and CNNLSTM standard deviations: joint level = 2.3◦ and task level = 3.7◦).
The smaller standard deviations demonstrate the increased reliability of the transformer
compared to other models.

The machine learning models used in this study improved the prediction accuracy
relative to the benchmark MLR by 37% to 61% for RMSE, 69% to 93% for nRMSE, and up to
5% for correlation coefficients. The hip and ankle joints had the largest and smallest RMSE
across all models, respectively. When normalized over the range of the kinematics data,
the knee joint achieved the lowest nRMSE. This indicated that the deep learning models
were most robust for the knee joint, then the ankle, and lastly the hip. The correlation
coefficients were consistent across the joints for all models. The highest correlations were
observed for the knee and the lowest for the ankle. Earlier studies have also observed
this trend [28]. A plausible explanation for decreased predictive ability at the ankle joint
is that the smaller range of motion generates a reduced signal-to-noise ratio in the IMU
measurements [13,15,18,47]. In contrast, the hip joint’s larger range of motion did not
necessarily result in better predictions due to increased soft tissue artifacts when tracking
pelvis movements with both IMUs and the gold standard MOCAP. Previous studies have
demonstrated lower accuracy in MOCAP measurements for the hip joint compared to
the knee and ankle, which adversely affects the accuracy of the model predictions [48,49].
When comparing model performance across different tasks, BiLSTM and BioMAT had
similar accuracy, with the lowest average RMSE of 5.3 ± 1.6◦ and 5.0 ± 1.5◦ for LW and the
largest RMSE with values of 7.5 ± 2.1◦ and 6.2 ± 1.1◦ for RA, respectively. In contrast, the
CNN model had its lowest accuracy for LW with an average RMSE of 12.3 ± 5.6◦, and its
best performance in SA with an RMSE of 6.8 ± 2.3◦.
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Mundt et al. evaluated an LSTM model’s kinematics predictions during level walking
at different speeds using approximately 88,000 simulated IMU samples from 150 subjects
and achieved an RMSE of 1.6◦, 1.7◦, and 1.4◦ with r of 0.98, 0.99, and 0.94 across the hip,
knee, and ankle joints respectively [16]. Hernandez et al. employed a CNNLSTM model
with 27 subjects performing treadmill walking and running tasks with reported mean abso-
lute errors of 3.8◦, 3.0◦, 4.9◦, and r of 0.99, 0.99, and 0.97 across three joints [17]. Compared
to these studies, BioMAT had higher RMSEs (hip = 6.8◦, knee = 4.2◦, ankle = 4.2◦), mean
absolute error (hip = 5.5◦, knee = 3.3◦, ankle = 3.3◦), and a lower correlation coefficient
for the ankle joint (0.93). This was likely due to a combination of factors, including the
larger training sets used in the previous studies, the use of simulated IMU data instead
of measured IMU data, and performing walking on a treadmill instead of level ground.
Simulated IMU data calculated from the kinematics of a musculoskeletal model do not
include noise or skin artifacts inherent in measured IMU data. We have demonstrated
in previous work that including synthetic IMU data improves prediction accuracy [18].
Treadmill walking also provides a more controlled environment compared to walking
on level ground, resulting in more repeatable gait patterns [15,16]. Table 5 compares the
current results to other similar studies that used measured IMU signals for model training.
While BioMAT demonstrated comparable results, it should be noted that datasets, sensor
positions, numbers of sensors, and environmental conditions varied between studies. Train-
ing models using a public dataset, such as the one used in this study, helps to standardize
studies and can facilitate benchmarking various models and methodologies [15].

Table 5. Prediction accuracies from previous studies for sagittal lower limb kinematics. Sensor
locations included the pelvis (P), thigh (T), shank (S), and foot (F). Activities include level walking
(LW), level running (LR), treadmill running (TR), ramp ascent (RA), ramp descent (RD), stair ascent
(SA), and stair descent (SD).

RMSE◦ r
Study Activity Model Sensors Hip Knee Ankle Hip Knee Ankle

Dorschkey et al. [13] LW + LR 2DCNN PTSF 5.4 5.2 5.5 0.97 0.99 0.96
Gholami et al. [47] TR 1DCNN F 5.6 6.5 4.7 0.84 0.93 0.78
Tan et al. [28] LW BiLSTM TS NA 8.4 NA NA 0.85 NA
Tan et al. [28] SA BiLSTM TS NA 9.7 NA NA 0.95 NA
Tan et al. [28] SD BiLSTM TS NA 10.0 NA NA 0.86 NA
Sharifi et al. [18] LW BiLSTM PTSF 7.2 2.9 NA 0.88 0.99 NA
Hossain et al. [16] LW DeepBBWAVE-Net FF 4.3 4.3 3.1 0.97 0.99 0.95
Hossain et al. [16] RA DeepBBWAVE-Net FF 5.7 5.0 3.5 0.98 0.98 0.96
Hossain et al. [15] RD DeepBBWAVE-Net FF 4.3 6.1 3.7 0.93 0.97 0.94
Hossain et al. [15] SA DeepBBWAVE-Net FF 6.0 5.9 4.0 0.98 0.99 0.96
Hossain et al. [15] SD DeepBBWAVE-Net FF 5.3 6.8 5.0 0.93 0.97 0.98
Current LW BioMAT TSF 6.8 4.2 4.2 0.99 0.99 0.93
Current RA BioMAT TSF 7.3 6.2 5.1 0.98 0.97 0.95
Current RD BioMAT TSF 4.9 7.0 5.5 0.92 0.97 0.94
Current SA BioMAT TSF 6.9 5.3 3.7 0.99 0.99 0.93
Current SD BioMAT TSF 6.0 4.8 4.7 0.96 0.99 0.98

The accuracy of both BioMAT and the CNNLSTM models were statistically equivalent
when trained simultaneously on all activities compared to task-specific models. This is
likely because all activities considered in this study were variations of ambulation and
had generally similar lower-limb motion patterns. The NN-models were robust enough to
recognize subtle differences in IMU signals between similar activities such as walking down
a ramp versus walking downstairs and predict the associated kinematics. This improves
the generalizability of the tool and removes the need for activity classification and gait cycle
segmentation prior to kinematic predictions. It remains unclear whether incorporating
non-ambulatory activities (e.g., sit-to-stand) or ambulatory movements with significant out
of plane movements (e.g., pivoting) would further improve the model’s generalizability
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and should be investigated in future work. In addition to the gains in prediction accuracy,
BioMAT required less training and inference time for kinematic predictions (Table 6).
Specifically, the inference time from BioMAT was 0.003 s/batch, 79% faster than predictions
from the BiLSTM model [30,33]. The reduction in inference time has practical implications
for applications that require real-time gait feedback, such as incorporation into control
systems for active orthoses. Further, if deploying BioMAT on mobile devices with limited
computational resources, the algorithm would employ less overall processor time.

Table 6. Number of parameters, training time, and inference time for each model.

Model # Parameters Training Time (s/epoch) Inference Time (s/batch)

BiLSTM 106,635,584 14.2 0.014
CNNLSTM 1,201,046 15.9 0.006

BioMAT 51,257,603 12.9 0.003

There were multiple limitations to this study. First, the dataset used in this study
included multiple configurations of stair height (four heights: 102 mm, 127 mm, 152 mm,
and 178 mm) and ramp inclination angles (6 inclination angles of 5.2◦, 7.8◦, 9.2◦, 11◦, 12.4◦,
and 18◦) as well as different speeds for level walking. Including greater variability in
the training dataset likely improved the models’ generalizability, however, the effect of
each configuration on the models’ performance was not examined and was outside the
scope of the current study. Application of the current models to new datasets should
be carried out with caution, as variations in sensor placement and sensor accuracy may
adversely affect model predictions. Second, the sensitivity of each model’s performance
to the number of data points in the inputs (e.g., 256) has not been investigated. Using
a longer sequence length may further improve the models’ accuracy [16,18]. Third, the
hyperparameters associated with the CNNLSTM and BiLSTM were selected based on
previously reported studies to allow a direct comparison to the published results. It is
plausible that hyperparameter tuning may improve the prediction accuracy of these models.
Fourth, the current study focused on evaluating the performance of BioMAT for activity-
specific and multi-activity training sets, but the contribution of each training activity to
the final model performance remains unclear. Finally, the current study was limited to
predicting joint angles in the sagittal plane and the accuracy of the proposed model for
predicting joint angles in the coronal and axial planes has not been evaluated. Since the
current model and dataset are both open-sourced, future researchers could leverage the
current method and model to address some of these limitations.

In future work, the current model could be used to investigate machine learning
techniques such as transfer learning [50,51], fine-tuning, and one- or zero-shot learning
methods [52,53] for relevant biomechanical tasks or datasets. Transfer learning is a powerful
technique to achieve highly accurate results on a wide range of tasks [54,55]. In biomechan-
ics, kinematic prediction models trained on one dataset (e.g., gait activities in a healthy
population) could be used with transfer learning to evaluate a new task or patient popula-
tion (e.g., stair ascent in the OA population). Although BioMAT was trained on a healthy
population, the tool could be fine-tuned to OA and total joint arthroplasty populations by
adding a small number of observations from those groups. This would reduce the need to
collect large quantities of data, preprocess samples, and train models from scratch, saving
time, money, and computational resources [55]. Additionally, developing subject-specific
models could improve the accuracy for temporal studies measuring changes in a subject’s
movement patterns during interventional treatments such as rehabilitation. Synthetic data
could potentially be used to overcome the hurdle of collecting large subject-specific training
datasets, as we have demonstrated in a previous study [18]. Finally, knowledge distillation
could potentially be used to compress the current model to a smaller model without sig-
nificant loss in performance, improving computational efficiency for deployment on edge
devices such as smartphones with limited hardware and resources [56].
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5. Conclusions

In this study, we evaluated a deep learning transformer architecture, BioMAT, to
estimate lower extremity kinematics from a continuous stream of IMU data for multiple
activities of daily living. This model was trained using a publicly available dataset. BioMAT
predicted joint kinematics with equivalent or lower errors than conventional deep NN mod-
els without the additional computational steps associated with activity classification and
segmentation of gait cycles. This comprehensive analysis revealed that training the model
on a diversity of activities outperformed models trained on specific activities in four out of
five tasks. The primary scientific contribution of this research was demonstrating that a gait
measurement equipped with a single multifunction transformer model relying on streams
of unsegmented and unclassified IMU data can bridge the gap to real-time applications of
wearable sensors for monitoring movement in clinical and commercial applications.
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