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Abstract: This paper presents a low-noise amplifier (LNA) with an integrated input and output
matching network designed using RF-SOI technology. This LNA was designed with a resistive
feedback topology and an inductive peaking technology to provide 600 MHz of bandwidth in the N79
band (4.4 GHz to 5.0 GHz). Generally, the resistive feedback structure used in broadband applications
allows the input and output impedance to be made to satisfy the broadband conditions through
low-impedance feedback. However, feedback impedance for excessive broadband characteristics
can degrade the noise performance as a consequence. To achieve a better noise performance for a
bandwidth of 600 MHz, the paper provided an optimized noise performance by selecting the feedback
resistor value optimized for the N79 band. Additionally, an inductive peaking technique was applied
to the designed low-noise amplifier to achieve a better optimized output matching network. The
designed low-noise amplifier simulated a gain of 20.68 dB and 19.94 dB from 4.4 to 5.0 GHz, with
noise figures of 1.57 dB and 1.73 dB, respectively. The input and output matching networks were also
integrated, and the power consumption was designed to be 9.95 mA at a supply voltage of 1.2 V.

Keywords: RF-SOI (radio frequency silicon-on-insulator); low-noise amplifier (LNA); RC feedback;
inductive peaking; 5G; New Radio (NR) frequency band

1. Introduction

For the efficient utilization of the frequency spectrum, the 5G new radio frequency
bands (3.3 to 4.2 GHz of N77, and 4.4 to 5.0 GHz of N79, respectively) has recently received
a lot of attention, and various studies for mobile communication are being conducted
for this purpose. The broadband low-noise amplifier (LNA) was designed using various
design methods, and in particular, broadband low-noise amplifiers using feedback tech-
niques have been commonly used [1–4]. Such feedback techniques have the advantage of
enabling the broadband matching of the required impedance for the broadband’s perfor-
mance. However, it is difficult to achieve an optimized performance due to the trade-off
relationship between the gain and noise performance. In addition to these methods, various
design techniques, such as series peaking and gm-boosting are currently being assessed as
broadband techniques [5,6].

Figure 1 shows various broadband techniques. The shunt peaking in Figure 1a adds a
series resistor and inductor to compensate for the impedance drop due to the parasitic ca-
pacitance at the output [5]. This helps in reducing the rolling down of the output frequency
response resulting in a broadband characteristic. However, adding a resistor creates voltage
headroom, which is the limiting factor for high-voltage operations. Figure 1b displays a
method using gm-boosting, which has the advantage of minimizing the sensitivity to the
bandwidth and input current noise [6]. However, using larger transistors to reduce input
impedance results in increased power consumption. Furthermore, the increase in parasitic
capacitance from larger transistors necessitates the inclusion of additional compensation
circuits to minimize its effects, thereby increasing circuit complexity.
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Figure 1. The broadband LNA topologies. (a) Inductively degenerated LNA with shunt peaking, (b) 
gm-boosted LNA, and (c) resistive-feedback LNA. 

Figure 1c shows a commonly used structure with feedback, where matching the in-
put impedance can be designed using the appropriate feedback resistor (RFB) value [6]. 
However, this feedback noise cannot be arbitrarily removed, and is amplified as a result, 
causing the increase in the output noise, along with the occurrence of performance degra-
dation. 

In this paper, a low-noise amplifier design using an optimum RC feedback and in-
ductive peaking technique is presented for the N79 band, covering a frequency range of 
4.4 GHz to 5.0 GHz using the RF Silicon on Insulator (RF-SOI) process. To design the input 
and output matching network for N79 band applications, the optimal resistor value of 
resistive feedback was selected and subsequently optimized. In addition, an inductive 
peaking technique was added for the output matching network to ultimately achieve a 
better matching network and an optimized low-noise amplifier design. Furthermore, the 
proposed low-noise amplifier is designed with integrated matching networks for both in-
put and output, enabling high integration without the need for additional external match-
ing circuits. Section 2 presents the design methodology using resistive feedback, and Sec-
tion 3 explains the inductive peaking techniques used in this paper, following which the 
simulation results and conclusions are presented. 

2. Resistive Feedback for the Wide Input Matching Network 
The resistive feedback technique has been commonly used for broadband low-noise 

amplifiers. However, although it can have a wideband performance according to the feed-
back structure, the output noise is also fed back, and is in a trade-off relationship that 
degrades the noise of the low-noise amplifier. Therefore, careful design consideration is 
necessary. Figure 2 shows a simplified circuit diagram of a Cascode low-noise amplifier 
with resistive feedback. Cascode LNAs have been widely used for their high gain and 
low-noise characteristics, including inductor (Lg) and capacitor (Cg) for matching. How-
ever, due to its narrowband characteristics, it is challenging to apply this to the broadband, 
meaning resistive feedback must be used to design the broadband.  

Figure 1. The broadband LNA topologies. (a) Inductively degenerated LNA with shunt peaking,
(b) gm-boosted LNA, and (c) resistive-feedback LNA.

Figure 1c shows a commonly used structure with feedback, where matching the input
impedance can be designed using the appropriate feedback resistor (RFB) value [6]. How-
ever, this feedback noise cannot be arbitrarily removed, and is amplified as a result, causing
the increase in the output noise, along with the occurrence of performance degradation.

In this paper, a low-noise amplifier design using an optimum RC feedback and in-
ductive peaking technique is presented for the N79 band, covering a frequency range of
4.4 GHz to 5.0 GHz using the RF Silicon on Insulator (RF-SOI) process. To design the input
and output matching network for N79 band applications, the optimal resistor value of
resistive feedback was selected and subsequently optimized. In addition, an inductive
peaking technique was added for the output matching network to ultimately achieve a
better matching network and an optimized low-noise amplifier design. Furthermore, the
proposed low-noise amplifier is designed with integrated matching networks for both
input and output, enabling high integration without the need for additional external match-
ing circuits. Section 2 presents the design methodology using resistive feedback, and
Section 3 explains the inductive peaking techniques used in this paper, following which
the simulation results and conclusions are presented.

2. Resistive Feedback for the Wide Input Matching Network

The resistive feedback technique has been commonly used for broadband low-noise
amplifiers. However, although it can have a wideband performance according to the
feedback structure, the output noise is also fed back, and is in a trade-off relationship that
degrades the noise of the low-noise amplifier. Therefore, careful design consideration is
necessary. Figure 2 shows a simplified circuit diagram of a Cascode low-noise amplifier
with resistive feedback. Cascode LNAs have been widely used for their high gain and low-
noise characteristics, including inductor (Lg) and capacitor (Cg) for matching. However,
due to its narrowband characteristics, it is challenging to apply this to the broadband,
meaning resistive feedback must be used to design the broadband.
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By expressing the current flowing into the RFB resistor as Ix, the above equation can 
be obtained. Cgs and gm are the gate-source capacitance and the transconductance of the 
transistor, respectively, and RL is the load resistance. Using these equations, we can rep-
resent the impedance observed by the feedback as follows: 𝑅 ൌ 𝑉௦𝐼𝑥 ൌ 𝑅ி  𝑅1  𝑔𝑅 (2)
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Figure 3 illustrates an equivalent small-signal model using a common-source amplifier
for the simplification of analysis. In this case, the input impedance of the LNA with
feedback, including RFB, can be derived as follows.

IX =
Vgs −Vout

RFB
, IX = gmVgs +

Vout

RL
(1)
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By expressing the current flowing into the RFB resistor as Ix, the above equation can
be obtained. Cgs and gm are the gate-source capacitance and the transconductance of
the transistor, respectively, and RL is the load resistance. Using these equations, we can
represent the impedance observed by the feedback as follows:

R f =
Vgs

Ix
=

RFB + RL
1 + gmRL

(2)

In this case, the intrinsic gate-drain capacitance Cgd was ignored. The input impedance
changes due to the feedback current Ix, and this can be expressed as follows:

ZIN,w FB = 1
sCg
||
[
sLS +

(
1

sCgs
||R f

)]
= 1

sCg
|| s

2LgCgsR f +sLg+R f
sCgsR f +1 =

s2LgCgsR f +sLg+R f

s3LgCgsCgR f +s2LgCg+sR f (Cg+Cgs)+1

(3)

To achieve a perfect matching condition of Zin = ZS, it has thus been commonly
assumed that Rf = ZS and Cg = Cgs. By setting Cg equal to Cgs, which minimizes the
parasitic capacitance present in the input, and having Rf and ZS with an equal impedance,
the best matching condition can thereby be achieved. Using the given equations, we can
express |S11| in terms of Zin and ZS, as follows:

|S11| =
∣∣∣∣Zin − ZS
Zin + ZS

∣∣∣∣ =
∣∣∣∣∣ −s3LgZ2

SC2
gs + s

[
Lg − Z2

S2Cgs
]

s3LgZ2
SC2

gs + s2LgZS2Cgs + s
[
Lg + Z2

S2Cgs
]
+ 2ZS

∣∣∣∣∣ (4)

where the response of |S11| includes two zero points. ω02 is as follows [7]:

ω02 =

√
2

LgCgs
− 1

Z2
SC2

gs
=

1√
LgCgs

(5)

where according to the condition of Lg = Rf
2Cgs and Cg = Cgs, the input matching network

has a symmetrical third-order, ladder-type, low-pass filter characteristic. In this case,
the frequency of ω02 can be adjusted using the inductance of Lg and the capacitance of
Cgs to provide a matching condition of −10 dB or more, thereby making it possible to
design a broadband matching network. However, in the case of a feedback resistor, a low
impedance feedback structure cannot be applied due to the trade-off relationship between
the bandwidth and the noise figure (NF). Therefore, optimization between the desired
bandwidth for the frequency range extension and the targeted NF becomes essential. NF
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can be represented using a model of the common-source amplifier with resistive feedback,
which is as follows [8]:

NF ≈ 1 +
4Rs
RFB

+ γ + γgmRs (6)

where γ represents the excess noise coefficient of the MOSFET. As shown in Equation (6), if
the RFB has a low value, the NF performance will degrade as a consequence. Figure 4 is a
simulation result showing the relationship between the bandwidth and the NF according
to the feedback resistor value. As the resistor value of RFB decreases, the bandwidth of
the input matching increases as a result. However, in the case where the NF performance
degrades, the feedback resistor value used for the desired broadband matching should be
matched using the optimal value.
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3. Inductive Peaking for the Wide Output Matching Network

Figure 5 shows the output matching network for a conventional low-noise amplifier.
Here, LL and CL represent the frequency response characteristics of the bandpass filter, and
Cds is the parasitic source-drain capacitance generated in the intrinsic transistor, respectively.
Cds is combined with the load CL, and together with LL, has a resonance frequency ω0. The
impedance of the output matching network can be expressed as:

ZOUT1 =
1

sCt
|| sLL =

sLL

s2CtLL + 1
(7)

As shown in Equation (7), the output impedance can be decreased depending on the
Ct of the matching circuit, and due to the capacitance of Cds, it will thereby have a more
abrupt frequency response characteristic. Ct represents the total capacitance value of Cds
and CL.
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For the wide output matching network design, adding a series inductor Ls to the
output matching network has been considered, as shown in Figure 6. The addition of a
series Ls could be able to compensate for the frequency response degradation caused by the
Cds of the intrinsic transistor. This inductive peaking technique has been expanded to the
resonance frequencies of Ls and Cds, as well as to CL and LL, thereby allowing it to operate
as a wide matching network. The output impedance can be expressed as:

ZOUT2 =

(
1

sCds

)
||
(

sLs +

[
1

sCL
|| sLL

])
=

s3CLLLLS + s(LS + LL)

s4CdsCLLLLS + s2(CdsLS + CdsLL + CLLL) + 1
(8)
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When making the imaginary part of the output impedance zero, we obtain the follow-
ing Equation (9), which is the characteristic equation involving the frequency ω as follows:

ω4LLCLLSCds −ω2(LSCds + LLCds + LLCL) + 1 = 0 (9)

Equation (9) can be simplified to the product of the sum of roots S and the root P,
respectively, as previously shown in [9].

S = ω1
2 + ω2

2 =
CdsLS + CdsLL + CLLL

CdsCLLLLS
=

1
CLLL

+
1

CLLS
+

1
CdsLS

(10)

P = ω1
2ω2

2 =
1

CdsCLLLLS
(11)

Using Equations (10) and (11), we can determine three resonance frequencies through
the output matching network: ω1, 2, and the average of the two operating radian frequen-
cies, which hence referred to as ω3. The ω3 resonance frequency can be determined using
the ratio of LS to LL and CL to Cds, respectively, and the network should be designed with
an optimal matching value to achieve the desired performance.
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4. Low-Noise Amplifier Design for the NR 79 Band

Figure 7a shows a Cascode low-noise amplifier, which uses the resistive feedback
structure and an inductive peaking technique for the N79 band. The decoupling capacitors
Cg, CFB, and Cout, were all added to the design. Ctotal is an equivalent capacitance that
represents the combination of parasitic capacitance from the Electrostatic Discharge (ESD)
protection circuit and bump pad and was designed to be included in the input matching
network. In the previous section, Ctotal, similar to Cg in Figure 5, is a parameter that needs
to be taken into consideration, as it can unexpectedly affect the matching conditions.
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In a real design, resistors are accompanied with parasitic parallel capacitors that are
generated in the layout. This parasitic parallel capacitor is a capacitor between the metal
line for connection and the substrate, and the larger the resistance, the larger the parasitic
capacitor that is formed. Therefore, to achieve the same effect for the output and input
in the feedback structure, the resistive feedback (RFB) was symmetrically applied with a
decoupling capacitor to achieve the required resistance for the resistive feedback structure.
Cds represents the capacitance generated at the drain of the common-gate transistor in
the Cascode amplifier. As Cds performs a function that causes a faster rolling down
depending on the frequency in the general output matching network, LP was added as a
compensation. Then, the output matching with the third pole was designed with LL and CL.
Figure 7b represents the chip layout of the designed LNA, which was designed at a size of
700 µm × 1000 µm and includes a ESD protection circuit for the input and output, as well
as three matching inductors for impedance matching. Furthermore, the layout includes
ground bumps for the AC grounding of the common-gate stage.

The designed LNA was implemented using the GlobalFoundries RF-SOI 90 nm process.
The widths of the two transistors were designed to be 128 µm, and the sum of the synthetic
resistor of feedback resistors was 7 k ohm to achieve the desired gain and NF performance,
respectively. A small degeneration inductor, Ls, was added to the 120 pH inductor to obtain
better matching conditions. Figure 8 shows the simulation results of the LNA for the N79
band. The LNA consumes a current of 9.95 mA at a 1.2 V supply voltage. Figure 8a shows
the forward gain S21, input, and output reflection coefficients (S11 and S22, respectively).
Figure 8b presents the simulated results of the NF and NFmin up to 5.4 GHz. The LNA
exhibited a gain of 20.68 dB at 4.4 GHz with the input and output reflection coefficients of
−9.24 dB and −15 dB, respectively. At 5.0 GHz, it exhibited a gain of 19.94 dB, with the
input and output reflection coefficients of −12.6 dB and −14.6 dB, respectively.
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The simulated NF was determined to be 1.57 dB and 1.73 dB, with NFmin values of
1.2 dB and 1.32 dB at 4.4 GHz and 5.0 GHz, respectively. This paper applied resistive
feedback for designing an LNA operating in the N79 band. Although the designed LNA
achieved a bandwidth of 600 MHz, it was designed with a performance difference of
around 0.38 dB from the optimal low-noise performance, NFmin, as shown in Figure 7b.
However, it has the advantage of including an internal input/output matching network,
which shows an excellent performance from the point of view of the NF. This is because
the inductor used in typical chip internal matching networks may cause degradation in the
noise performance with a relatively low Q value but may still have an advantage in terms
of size in a circuit configuration for an external matching circuit.

In Figure 9, the input third-order intercept point (IIP3) was simulated to be −15.4 dBm
at 1 MHz tone spacing. The LNA using feedback generally exhibited an improved linearity
compared to the conventional LNAs, as the feedback had a greater effect on the high power
obtained from the input.

A summary of the results is provided in Table 1. Generally, LNAs using resistive feed-
back possess wide broadband characteristics. However, this paper presents an optimized
LNA design for the N79 band using appropriate resistive feedback and inductive peaking
techniques, rather than a typical broadband LNA design. Therefore, it was compared
with previous studies which assessed in the 0.2 to 5 GHz band. As shown in Table 1, the
designed LNA satisfies the bandwidth requirement for the N79 band and exhibits excellent
performance in terms of the NF and IIP3.

Table 1. LNA performance summary and comparison.

Ref. Technology Frequency
[GHz]

S11/S22
[dB]

Gain
[dB]

NF
[dB]

IIP3
[dBm]

Area
[mm2]

[10] 180 nm
CMOS 3–5 <−10.5/- 16 1.8 −9 0.63

[11] 65 nm CMOS 0.2–5 -/- 15.6 <3.5 >0 0.009

[12]

180 nm
RFSOI 5 −33/−28 11 0.95 5 0.29

180 nm
RFSOI 5 −22/−28 9.3 1.9 6.5 0.29

This work * 90 nm RFSOI 4.4–5.0 −9.4/−15 20.6–19.9 1.57–1.73 −15.4 0.7

* Simulation results.
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5. Conclusions

This paper presents the design of a low-noise amplifier using the RF-SOI process.
The designed low-noise amplifier applied resistive feedback and an inductive peaking
technique for the N79 band operation. Although the additional inductive peaking technique
includes an increase in the chip size, this paper integrated the matching network that needs
to be used externally to eliminate the additional external matching components. In addition,
to minimize the occurrence of errors between the design and measurements, circuit design
was performed with EM-based simulation results and the PEX-based model. This low-noise
amplifier was designed and simulated to achieve an optimal performance for a bandwidth
of 600 MHz, and these broadband techniques can be appropriately applied to various
low-noise amplifier designs.
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