
Citation: Chen, N.; Liu, W.; Pu, W.;

Liu, Y.; Zhong, Q. SDNC-Repair: A

Cooperative Data Repair Strategy

Based on Erasure Code for

Software-Defined Storage. Sensors

2023, 23, 5809. https://doi.org/

10.3390/s23135809

Academic Editor: Peter Chong

Received: 19 April 2023

Revised: 22 May 2023

Accepted: 19 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SDNC-Repair: A Cooperative Data Repair Strategy Based on
Erasure Code for Software-Defined Storage
Ningjiang Chen 1,2,3, Weitao Liu 1, Wenjuan Pu 1,*, Yifei Liu 1 and Qingwei Zhong 1

1 School of Computer and Electronic Information, Guangxi University, Nanning 530004, China
2 Guangxi Intelligent Digital Services Research Center of Engineering Technology, Nanning 530004, China
3 Key Laboratory of Parallel, Distributed and Intelligent Computing (Guangxi University), Education

Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
* Correspondence: puwenjuan2019@163.com; Tel.: +86-771-3232214

Abstract: Erasure-code-based storage systems suffer from problems such as long repair time and
low I/O performance, resulting in high repair costs. For many years, researchers have focused on
reducing the cost of repairing erasure-code-based storage systems. In this study, we discuss the
demerits of node selecting, data transferring and data repair in erasure-code-based storage systems.
Based on the network topology and node structure, we propose SDNC-Repair, a cooperative data
repair strategy based on erasure code for SDS (Software Defined Storage), and describe its framework.
Then, we propose a data source selection algorithm that senses the available network bandwidth
between nodes and a data flow scheduling algorithm in SDNC-Repair. Additionally, we propose a
data repair method based on node collaboration and data aggregation. Experiments illustrate that
the proposed method has better repair performance under different data granularities. Compared to
the conventional repair method, although the SDNC-Repair is more constrained by the cross-rack
bandwidth, it improves system throughput effectively and significantly reduces data repair time in
scenarios where multiple nodes fail and bandwidth is limited.

Keywords: software defined network; reliability; distributed storage system; erasure code

1. Introduction

A distributed storage system that supports the lower layer of cloud computing is a
reliable platform for storing petabyte (PB)-level data. Due to the large scale of its nodes, it
is prone to abnormal situations. To decrease the disadvantageous influence of abnormal
situations, fault-tolerant mechanisms must be employed to enhance the reliability and
availability of the system. Traditional distributed storage systems, represented by the
Hadoop distributed file system (HDFS) [1], ensure reliability through replication, which
provides fast read speeds, but leads to low storage utilization. However, as the number of
nodes grows and the amount of data increases, the cost of storage and operation becomes
unacceptable, making replication impractical [2]. Erasure codes, which has higher storage
efficiency and the same fault-tolerant capability as replication [3], can be used to address
this issue. Erasure codes can encode multiple pieces of raw data in parallel and form a small
amount of parity data, which can significantly save storage space. An increasing number of
companies are adopting erasure codes for their products. Google applies the Reed–Solomon
code (RS code) [4] in its new file system Colossus [5]. Facebook’s open-source solution
HDFS-RAID introduces erasure code to HDFS clusters [6]. The Local Reconstruction Codes
(LRCs) storage system is used to back up data in Windows Azure Storage (WAS) [7].

The traffic in data center networks is high and dynamic, with significant variation in
each link [8]. However, access to each node during data repair is not equally balanced,
leading to an uneven link load. This leads to wastage of bandwidth for some links, while
the continuous overload on other links will eventually cause network congestion and
further delay data repair. In addition, once link failures or node failures has occurred

Sensors 2023, 23, 5809. https://doi.org/10.3390/s23135809 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135809
https://doi.org/10.3390/s23135809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23135809
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135809?type=check_update&version=1

Sensors 2023, 23, 5809 2 of 20

during data repair, network resources are consumed by large amounts of data, which
is not only detrimental to the reliability of the storage system, but also to other system
applications. Therefore, reducing the volume of data being transmitted and the network
latency caused by data repair is crucial for improving the performance of erasure codes
and system reliability.

Existing research on reducing the cost of data repair based on erasure code can be
broadly classified into three types: proposing new solutions with low complexity [9–11],
optimizing the repair algorithm of data transmission [12–14], and modifying the deploy-
ment strategy of data blocks [15–17]. Researchers have made great efforts to improve repair
methods. Nevertheless, two factors currently limit the effectiveness of these repair methods:
(1) most research work adjusts the data transmission route to transfer the data flow at the
network bottleneck, which does not reduce the network burden; and (2) existing work
does not fully consider the network load when allocating data transmission tasks, which
is detrimental to active adaptation to network conditions. For these two factors, further
research is needed.

Software-defined networks (SDNs) [18] have attracted significant attention in recent
years. Centralized network control is achieved by decoupling the control plane and the data
plane through its switch protocol, and software-programmable interfaces are provided for
network applications. The SDN controller can monitor and manage all network resources,
obtain information such as network topology changes and link status, and execute efficient
processing in calculations and traffic statistics based on this information [19]. Because
of the unique characteristics of SDNs, we propose a new data repair strategy, Software-
Defined Network Controller Repair (SDNC-Repair), which aims to improve the repair
throughput of the system and reduce the data repair latency. We put forward a data source
selection algorithm based on intelligent bandwidth measurement and design a transmission
scheduling algorithm based on dynamic feedback to support the strategy we propose and
develop a cooperative and efficient data repair method. Our experiments prove that our
approach can achieve better repair performance and higher system throughput.

The contributions of this work can be summarized as follows:

• Propose a method for improving the performance of erasure-code-based data repair
called SDNC-Repair that optimizes the transmission of the data repair process using
the measurement technology of SDN and creates a distributed pipeline data repair
operation to achieve efficient repair.

• Develop a data source selection algorithm based on intelligent bandwidth measure-
ment and a transmission scheduling algorithm based on dynamic feedback. These
algorithms provide node combinations and schedule data flow during data repair.

• Present a cooperative and efficient data repair method that improves the efficiency
of repair by using SDN to shorten the repair chain, and improve the transmission
efficiency and distribution of computation.

The remainder of this paper is structured as follows. Section 2 provides the method
and motivation of our research, and Section 3 provides an overview of some related works.
Section 4 discusses the details of SDNC-Repair, including a data source selection algorithm
based on intelligent bandwidth measurement, a transmission scheduling algorithm based
on dynamic feedback, and a cooperative and efficient data repair method. Experiments
and analyses are carried out in Section 5. Finally, we draw conclusions and discuss future
work in Section 6.

2. Background and Motivation
2.1. Background

Generally, a storage system based on the RS (n, k) erasure code divides the original
data into k data blocks {d1, d2, · · · , dk} and stores them in data devices {D1, D2, · · · , Dk}.

Sensors 2023, 23, 5809 3 of 20

These k data blocks form m (where m = n − k) parity blocks {P1, P2, · · · , Pm} through linear
coding calculations.

pj =
k

∑
i=1

aj,idi (1)

where aj,i represents an element in the coding matrix, which determines the coefficient of
each data block in the encoding process.

Parity blocks are stored in parity devices {P1, P2, · · · , Pm}. When data blocks and par-
ity blocks are combined, a stripe is formed and deployed to n different nodes to maximize
system reliability. Figure 1 depicts an example of the structure of a storage system using RS
(9,6) erasure code. The system can reconstruct the original data from any k available units
unless the available nodes are less than k.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 21

2. Background and Motivation
2.1. Background

Generally, a storage system based on the RS (n, k) erasure code divides the original
data into k data blocks {𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑𝑘𝑘} and stores them in data devices {𝐷𝐷1,𝐷𝐷2,⋯ ,𝐷𝐷𝑘𝑘}.
These k data blocks form m (where m = n − k) parity blocks {𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑚𝑚} through linear
coding calculations.

𝑝𝑝𝑗𝑗 = �𝑎𝑎𝑗𝑗,𝑖𝑖𝑑𝑑𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (1)

where 𝑎𝑎𝑗𝑗,𝑖𝑖 represents an element in the coding matrix, which determines the coefficient
of each data block in the encoding process.

Parity blocks are stored in parity devices {𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑚𝑚}. When data blocks and parity
blocks are combined, a stripe is formed and deployed to n different nodes to maximize
system reliability. Figure 1 depicts an example of the structure of a storage system using
RS (9,6) erasure code. The system can reconstruct the original data from any k available
units unless the available nodes are less than k.

Figure 1. The data center structure of a storage system using RS (9,6) erasure code.

When data stored in the nodes are lost because of abnormal situations, the system
triggers a data repair operation to maintain the stability of the system. The traditional
repair method replaces the failed node with a new node called the new node or destina-
tion node. Then, k normal nodes are selected in the same stripe as the failed node, and
their data are copied to the destination node. These nodes involved in data repair are re-
ferred to as providing nodes or source nodes. Finally, the system determines whether the
failed node is a data block or a parity block. If it is a data block, the destination node
decodes the received data. If it is a parity block, the destination node re-encodes the data.

Data repair is executed in stripes, as depicted in Figure 2. The RS (9,6) method divides
the original data into 6 data blocks {𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑6} (which can be further divided into
smaller sub-blocks) and stores them in data nodes {𝐷𝐷1,𝐷𝐷2,⋯ ,𝐷𝐷6}. Parity blocks {𝑝𝑝1,𝑝𝑝2,𝑝𝑝3}
are formed through data blocks and stored in parity nodes {𝑃𝑃1,𝑃𝑃2,𝑃𝑃3}. Stripe S consists of
data nodes and parity nodes. Suppose the system is ready to access 𝑑𝑑2, but 𝑑𝑑2 is lost due
to the failure of 𝐷𝐷2, triggering data repair. The new node obtains d1, d3, d4, d5, d6, p1 from

Figure 1. The data center structure of a storage system using RS (9,6) erasure code.

When data stored in the nodes are lost because of abnormal situations, the system
triggers a data repair operation to maintain the stability of the system. The traditional
repair method replaces the failed node with a new node called the new node or destination
node. Then, k normal nodes are selected in the same stripe as the failed node, and their
data are copied to the destination node. These nodes involved in data repair are referred
to as providing nodes or source nodes. Finally, the system determines whether the failed
node is a data block or a parity block. If it is a data block, the destination node decodes the
received data. If it is a parity block, the destination node re-encodes the data.

Data repair is executed in stripes, as depicted in Figure 2. The RS (9,6) method
divides the original data into 6 data blocks {d1, d2, · · · , d6} (which can be further divided
into smaller sub-blocks) and stores them in data nodes {D1, D2, · · · , D6}. Parity blocks
{p1, p2, p3} are formed through data blocks and stored in parity nodes {P1, P2, P3}. Stripe S
consists of data nodes and parity nodes. Suppose the system is ready to access d2, but d2 is
lost due to the failure of D2, triggering data repair. The new node obtains d1, d3, d4, d5, d6,
p1 from source nodes D1, D3, D4, D5, D6, P1, and then calculates the missing data through
the inverse matrix operation in the decoding process. The result is saved in the new node,
indicating the repair operation is complete. When multiple nodes fail, the system carries
out the repair of these nodes in parallel.

Sensors 2023, 23, 5809 4 of 20

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21

source nodes D1, D3, D4, D5, D6, P1, and then calculates the missing data through the
inverse matrix operation in the decoding process. The result is saved in the new node,
indicating the repair operation is complete. When multiple nodes fail, the system carries
out the repair of these nodes in parallel.

Figure 2. RS (9,6) data repair process.

2.2. Motivation
Large-scale data centers are deployed in layers, owing to the need to accommodate

large-scale server nodes and the limited scalability of the single-layer network. This situ-
ation results in complex network topologies within data centers, and communication la-
tencies between nodes vary. Moreover, data and servers have unequal degrees of access
frequency, which causes unbalanced burdens on the link [8]. When data repair is needed,
the existing erasure-code-based method usually randomly selects data from the available
nodes in the same stripe (such as the first available k nodes). However, this erasure code
method does not consider the quality of bandwidth between nodes and the burdens on
the link, which affects the transmission and read/write performance during data repair.
In other words, this erasure code method of randomly selecting nodes does not optimize
data repair latency. Furthermore, choosing providing nodes in a poor network or under
high load has two disadvantageous effects. Firstly, it aggravates network congestion. Sec-
ondly, it places a greater burden on the CPU and memory.

Traditional erasure-code-based methods involve a large number of data transmis-
sions, encoding and decoding calculations, and downloading of data blocks, despite their
improper node selection. Repairing lost data requires transmitting k times the amount of
data on average, and the data transmission is slanted and concentrated, which is detri-
mental to the system load balancing. In addition, read/write operations are time consum-
ing, which also adversely affects system performance. Therefore, a low-overhead and
high-efficiency erasure-code-based data repair method is needed.

To address this problem, we introduce an SDN in our work. Firstly, we use the SDN
to measure the network status of the system and select k available nodes with low load
and high bandwidth. We then schedule transmission routes to reduce the network burden
and shorten the transfer time during data repair. Finally, we utilize computation distribu-
tion and parallel repair to improve data repair performance.

3. Related Works
Many researchers have chosen to improve data repair performance by modifying

erasure codes. In addition to Reed–Solomon codes, array codes adopt array layout coding,

Figure 2. RS (9,6) data repair process.

2.2. Motivation

Large-scale data centers are deployed in layers, owing to the need to accommodate
large-scale server nodes and the limited scalability of the single-layer network. This
situation results in complex network topologies within data centers, and communication
latencies between nodes vary. Moreover, data and servers have unequal degrees of access
frequency, which causes unbalanced burdens on the link [8]. When data repair is needed,
the existing erasure-code-based method usually randomly selects data from the available
nodes in the same stripe (such as the first available k nodes). However, this erasure code
method does not consider the quality of bandwidth between nodes and the burdens on
the link, which affects the transmission and read/write performance during data repair. In
other words, this erasure code method of randomly selecting nodes does not optimize data
repair latency. Furthermore, choosing providing nodes in a poor network or under high
load has two disadvantageous effects. Firstly, it aggravates network congestion. Secondly,
it places a greater burden on the CPU and memory.

Traditional erasure-code-based methods involve a large number of data transmissions,
encoding and decoding calculations, and downloading of data blocks, despite their im-
proper node selection. Repairing lost data requires transmitting k times the amount of data
on average, and the data transmission is slanted and concentrated, which is detrimental to
the system load balancing. In addition, read/write operations are time consuming, which
also adversely affects system performance. Therefore, a low-overhead and high-efficiency
erasure-code-based data repair method is needed.

To address this problem, we introduce an SDN in our work. Firstly, we use the SDN to
measure the network status of the system and select k available nodes with low load and
high bandwidth. We then schedule transmission routes to reduce the network burden and
shorten the transfer time during data repair. Finally, we utilize computation distribution
and parallel repair to improve data repair performance.

3. Related Works

Many researchers have chosen to improve data repair performance by modifying
erasure codes. In addition to Reed–Solomon codes, array codes adopt array layout coding,
which is based on exclusive OR (XOR) rather than the Galois field operations, simplifying
coding and decoding [20]. Dimakis et al. proposed regenerating codes based on the
concept of grid coding, which can greatly reduce the network bandwidth consumed in the
data repair process [9]. Liang et al. used local regenerative code to repair and store data
between failed nodes in industrial networks while ensuring user data privacy, indicating the
extensive usability of regenerating codes [10]. Shan et al. proposed Geometric Partitioning,

Sensors 2023, 23, 5809 5 of 20

which divides the regenerative code into blocks of different sizes to improve the repair
performance of the regenerative code [11].

Some literature focuses on optimizing the data repair process from the perspective of
data transmission structure, as traditional data repair using star structure repair (SSR) is
simple but inefficient. Zheng et al. [21] introduced a traffic efficient repair scheme (TERS)
to SSR, which saves considerable repair bandwidth. Tree structure repair (TSR) [22] forms
a tree structure based on the network distance of nodes. Huang et al. [23] designed a
tree-type repair scheme considering node selection, which includes algorithms to select
nodes and establish the optimal repair tree. Zhou et al. [24] proposed a tree-structured
data placement scheme with cluster-aided top-down transmission, which improves the
practicality and efficiency of data insertion. Repair pipelining (PR) [12] transmits repair
data by pipeline. The literature [13] proposed partial parallel repair (PPR), which uses the
divide-and-conquer method to decompose the repair operation into multiple nodes and
uses a parallel pipeline to transmit calculation data until the repair is completed. Li et al.
implemented a repair pipelining prototype, which improves the performance of degraded
reads and full-node recovery over existing repair techniques [14].

The evolution of the data repair transmission structure focuses on the scarce resource
of network bandwidth, aiming to improve efficiency by reducing the network overhead
introduced by data repair. In addition, some literature focuses on cross-rack networks
and strives to reduce the transmission traffic of data repair on high-level links of network
topology. For example, the Intra-Node Parity data reconstruction scheme proposed in the
literature [25] uses switch computing to realize traffic merging and forwarding, effectively
reducing the amount of data transmitted on the network. Hou et al. [26] proposed a cross-
rack-aware regenerating code that achieves a balance between storage cost and cross-rack
network repair bandwidth cost. Hu et al. [15] proposed a hierarchical block placement
strategy in DoubleR, which places multiple data blocks on each rack and aggregates
data blocks by finding suitable relay nodes within the rack, minimizing cross-rack traffic.
Xu et al. [16] proposed rPDL, which effectively reduces cross-rack traffic and provides
nearly balanced cross-rack traffic distribution by uniformly choosing replacement nodes
and retrieving determined available blocks to recover the lost blocks. Liu et al. [17] achieved
low latency by deploying caching services at the edge servers close to end-users.

In conclusion, existing data repair strategies either require significant changes to the
existing system architecture, or do not consider the differences in Quality of Service (QoS)
among heterogeneous networks. SDN enables monitoring and management of all network
resources. By utilizing SDN, it is possible to dynamically adjust network resources to adapt
to changing network conditions and optimize the data repair process accordingly, balancing
latency and link utilization in a more flexible way to improve the data repair efficiency.

4. SDNC-Repair
4.1. The SDNC-Repair Framework

The data repair process in erasure codes consists of two essential parts: data transmis-
sion and encoding/decoding calculations. The framework of SDNC-Repair and interactions
between components are shown in Figure 3. SDNC-Repair is implemented by the storage
system with RS code, the SDN controller, and a network of switches. Storage nodes are
used to store data blocks and parity blocks. They are deployed in racks. Information such
as the location of the data and the location of the redundancy is stored in the metadata
node. The network of switches is composed of SDN switches (such as OpenFlow) and the
links between these switches. The top-of-rack software switch supports the XOR operation,
which can reduce the amount of data transferred across racks. The SDN controller realizes
the control and monitoring of the switch group through the SDN switches protocol.

Sensors 2023, 23, 5809 6 of 20

Sensors 2023, 23, x FOR PEER REVIEW 6 of 21

metadata node. The network of switches is composed of SDN switches (such as Open-
Flow) and the links between these switches. The top-of-rack software switch supports the
XOR operation, which can reduce the amount of data transferred across racks. The SDN
controller realizes the control and monitoring of the switch group through the SDN
switches protocol.

Figure 3. The framework diagram of SDNC-Repair.

Figure 3 describes the basic principle of SDNC-Repair, which consists of two main
phases: the transmission phase and the calculation phase.
1. Transmission phase (Steps 1–7 in Figure 3): The most suitable transmission routes are

selected according to the network topology and monitors the workload of the switch
to control the repair rate.

2. Calculation phase (Steps 8–10 in Figure 3): The switch delivers data to the top-of-rack
switch based on the flow table and achieves efficient data repair through pipelining
and parallelization.
In the aforementioned process, the OpenFlow protocol matches VLAN ID and VLAN

priority to route the data flow through the path designated by the controller. SDNC-Re-
pair provides three algorithms to improve data repair efficiency: an intelligent bandwidth
measurement-based data source selection algorithm and a dynamic feedback-based trans-
mission scheduling algorithm during the Transmission phase (shown in red in Figure 3),
and a cooperative and efficient data repair method during the Calculation phase (shown
in blue in Figure 3). These algorithms are discussed in Sections 4.2–4.4, respectively. Table
1 provides a summary of the notations used in this paper.

Table 1. Notations used in SDNC-Repair.

Notation/Variable Description Notation/Variable Description

(𝑛𝑛, 𝑘𝑘) Encoding parameter 𝑝𝑝𝑗𝑗 The j-th parity blocks, 𝑗𝑗 ∈ {1,⋯ ,𝑚𝑚}

𝑥𝑥 Number of data blocks lost, 𝑥𝑥 < 𝑛𝑛 − 𝑘𝑘 𝑅𝑅ℎ The h-th rack, ℎ ∈ {1,⋯ , 𝑟𝑟}

Figure 3. The framework diagram of SDNC-Repair.

Figure 3 describes the basic principle of SDNC-Repair, which consists of two main
phases: the transmission phase and the calculation phase.

1. Transmission phase (Steps 1–7 in Figure 3): The most suitable transmission routes are
selected according to the network topology and monitors the workload of the switch
to control the repair rate.

2. Calculation phase (Steps 8–10 in Figure 3): The switch delivers data to the top-of-rack
switch based on the flow table and achieves efficient data repair through pipelining
and parallelization.

In the aforementioned process, the OpenFlow protocol matches VLAN ID and VLAN
priority to route the data flow through the path designated by the controller. SDNC-Repair
provides three algorithms to improve data repair efficiency: an intelligent bandwidth
measurement-based data source selection algorithm and a dynamic feedback-based trans-
mission scheduling algorithm during the Transmission phase (shown in red in Figure 3),
and a cooperative and efficient data repair method during the Calculation phase (shown in
blue in Figure 3). These algorithms are discussed in Sections 4.2–4.4, respectively. Table 1
provides a summary of the notations used in this paper.

Sensors 2023, 23, 5809 7 of 20

Table 1. Notations used in SDNC-Repair.

Notation/Variable Description Notation/Variable Description

(n, k) Encoding parameter pj The j-th parity blocks, j ∈ {1, · · · , m}

x Number of data blocks lost,
x < n− k Rh The h-th rack, h ∈ {1, · · · , r}

r Number of racks r < k rh
The top-of-rack switch of the h-th

rack, h ∈ {1, · · · , r}

NNodei
The i-th new node,

i ∈ {1, · · · , x} as
The s-th coefficient in the decoding

matrix, s ∈ {1, · · · , k}

SNodej
The j-th surviving node,

j ∈ {1, · · · , k} asdi, as pj
Encoding units involve in data repair,

i ∈ {1, · · · , k}, j ∈ {1, · · · , m}

Di
The i-th data node,

i ∈ {1, · · · , k} Dnew A selected new node

Pj
The j-th parity node,

j ∈ {1, · · · , m} rnew
The top-of-rack switch where Dnew

is located

di
The i-th data blocks,

i ∈ {1, · · · , k}

4.2. Data Source Selection Algorithm Based on Intelligent Bandwidth Measurement

To reconstruct missing data, k providing nodes in the same stripe must be chosen, and
they must provide data for x new nodes. During this process, the repair speed is strongly
associated with system reliability. Practical measurements show that network transit time
accounts for 70–80% of the overall repair time. As shown in Figure 4, the x-axis labeled
“RS(3,2)-1” represents repairing one missing data block with RS (3,2), and the remaining
x-axes are similar. Network transmission is a key factor affecting the performance of
data repair.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21

𝑟𝑟 Number of racks 𝑟𝑟 < 𝑘𝑘 𝑟𝑟ℎ The top-of-rack switch of the h-th
rack, ℎ ∈ {1,⋯ , 𝑟𝑟}

𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑖𝑖 The i-th new node, 𝑖𝑖 ∈ {1,⋯ , 𝑥𝑥} 𝑎𝑎𝑠𝑠
The s-th coefficient in the decoding

matrix, 𝑠𝑠 ∈ {1,⋯ , 𝑘𝑘}

𝑆𝑆𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑗𝑗 The j-th surviving node, 𝑗𝑗 ∈ {1,⋯ , 𝑘𝑘} 𝑎𝑎𝑠𝑠𝑑𝑑𝑖𝑖 ,𝑎𝑎𝑠𝑠𝑝𝑝𝑗𝑗
Encoding units involve in data re-

pair, 𝑖𝑖 ∈ {1,⋯ , 𝑘𝑘}, 𝑗𝑗 ∈ {1,⋯ ,𝑚𝑚}
𝐷𝐷𝑖𝑖 The i-th data node, 𝑖𝑖 ∈ {1,⋯ , 𝑘𝑘} 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 A selected new node

𝑃𝑃𝑗𝑗 The j-th parity node, 𝑗𝑗 ∈ {1,⋯ ,𝑚𝑚} 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 The top-of-rack switch where 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛
is located

𝑑𝑑𝑖𝑖 The i-th data blocks, 𝑖𝑖 ∈ {1,⋯ , 𝑘𝑘}

4.2. Data Source Selection Algorithm Based on Intelligent Bandwidth Measurement
To reconstruct missing data, k providing nodes in the same stripe must be chosen,

and they must provide data for x new nodes. During this process, the repair speed is
strongly associated with system reliability. Practical measurements show that network
transit time accounts for 70–80% of the overall repair time. As shown in Figure 4, the x-
axis labeled “RS(3,2)-1” represents repairing one missing data block with RS (3,2), and the
remaining x-axes are similar. Network transmission is a key factor affecting the perfor-
mance of data repair.

Figure 4. The time distribution diagram of data repair based on actual measurements.

The goal of the algorithm is to select k nodes with high available bandwidth as
providing nodes, shorten network transit time, and improve system reliability. Existing
methods [4,22] assume that data repair occurs in a homogeneous network. However, the
traffic in data centers is high and dynamic, and the burdens on links vary. Correspond-
ingly, the available bandwidth between nodes also changes continuously. Therefore,
simply considering the available bandwidth between nodes as a fixed value cannot
achieve optimal transmission latency. Data repair involves data downloading, decoding,
and uploading of the repaired data block. The amount of transmission traffic and the num-
ber of switches it flows through are decisive factors in its occupation of the system. This
algorithm optimizes the use of system resources and improves data repair efficiency from
the root.

Figure 4. The time distribution diagram of data repair based on actual measurements.

The goal of the algorithm is to select k nodes with high available bandwidth as
providing nodes, shorten network transit time, and improve system reliability. Existing
methods [4,22] assume that data repair occurs in a homogeneous network. However, the
traffic in data centers is high and dynamic, and the burdens on links vary. Correspondingly,
the available bandwidth between nodes also changes continuously. Therefore, simply
considering the available bandwidth between nodes as a fixed value cannot achieve optimal

Sensors 2023, 23, 5809 8 of 20

transmission latency. Data repair involves data downloading, decoding, and uploading of
the repaired data block. The amount of transmission traffic and the number of switches it
flows through are decisive factors in its occupation of the system. This algorithm optimizes
the use of system resources and improves data repair efficiency from the root.

The algorithm uses SDN network virtualization technology to select k nodes with
high available bandwidth and a close address from n − x surviving nodes and in parallel
repairs data in x new nodes. The algorithm takes advantage of the SDN controller to
control the global network, sorts n − x surviving nodes according to the system load, and
dynamically selects the top k nodes with low transmission latency. The details of the data
source selection algorithm (Algorithm 1) are as follows.

Algorithm 1: Data source selection algorithm based on intelligent bandwidth measurement

Input: Group of new nodes Nx, Group of surviving nodes Sn−x, Topology graph G(V, E)
Output: Group of providing nodes Pk
1. n, k← getMetaIn f o(f ilename);
2. for Each node NNodei in Nx do
3. Assume Disti,j = 0 and Dist = ∅;
4. for Each node SNodej in Sn−x do
5. if Dist(i, j) > Disti,j then // Indicates that the new node and the

surviving node are connected
6. Add Dist(i, j) to Dist, // Generate node distance set
7. Add SNodej to Candidates(Pk); // Generate candidate data

source node set
8. end if
9. end for
10. end for
11. for Each node NNodei in Nx do
12. for Each node SNodej in Candidates(Pk) do

13. resBW(i, j)← getLinkIn f o
(

G(V, E), NNodei, SNodej

)
; // Generate

available bandwidth set
14. Delay(i, j) = α·Dist(i, j)/β·resBW(i, j); // Calculate latency

according to the decision parameter of Dist α and the
decision parameter of resBW β

15. end for
16. end for
17. Sort Candidates(Pk) in ascending order based on Delay; // Sort in ascending

order
18. Pk ← Find_K_th(Candidates(Pk), k); // Generate the first k low-latency providing

nodes set Pk
19. return Pk;

The inputs of the algorithm are a group of new nodes Nx, a group of surviving nodes
Sn−x, and a topology graph G(V, E) maintained by SDN controllers, where V represents
the switches that participate in data repair and E represents all the links between nodes.
The bandwidth information is the edge weight of the links in E. SDN controllers use the
link discovery protocol described in the literature [27] to create and maintain G(V, E). The
output of the algorithm is the node set Pk with low transmission latency.

1. The algorithm first calculates the distance between the new node NNodei and SNodej
in Sn−x, defined as the number of hops through switching devices, to determine if
nodes are reachable.

2. The distances between reachable nodes are then added to the decision parameter
set Dist, and reachable nodes SNodej are added to the candidate data source node
sequence set Candidates(Pk).

Sensors 2023, 23, 5809 9 of 20

3. The controller measures the remaining available bandwidth resBW in the ports of the
switch-connected nodes, which is the difference between the path bandwidth and the
smallest background load of all links in the path.

4. Based on Dist and resBW, along with their respective weight factors α and β, the
transmission delay Delay is calculated. The first k data sources with the lowest delay
are then selected from Candidates(Pk) based on the ascending order of Delay.

5. The flowchart of the algorithm is shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 21

1. The algorithm first calculates the distance between the new node 𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑖𝑖 and
𝑆𝑆𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑗𝑗 in 𝑆𝑆𝑛𝑛−𝑥𝑥, defined as the number of hops through switching devices, to deter-
mine if nodes are reachable.

2. The distances between reachable nodes are then added to the decision parameter set
𝐷𝐷𝑖𝑖𝑠𝑠𝑔𝑔, and reachable nodes 𝑆𝑆𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑗𝑗 are added to the candidate data source node se-
quence set 𝐶𝐶𝑎𝑎𝑛𝑛𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑔𝑔𝑁𝑁𝑠𝑠(𝑃𝑃𝑘𝑘).

3. The controller measures the remaining available bandwidth 𝑟𝑟𝑁𝑁𝑠𝑠𝑟𝑟𝑟𝑟 in the ports of
the switch-connected nodes, which is the difference between the path bandwidth and
the smallest background load of all links in the path.

4. Based on 𝐷𝐷𝑖𝑖𝑠𝑠𝑔𝑔 and 𝑟𝑟𝑁𝑁𝑠𝑠𝑟𝑟𝑟𝑟, along with their respective weight factors α and β, the
transmission delay 𝐷𝐷𝑁𝑁𝑓𝑓𝑎𝑎𝐷𝐷 is calculated. The first k data sources with the lowest delay
are then selected from 𝐶𝐶𝑎𝑎𝑛𝑛𝑑𝑑𝑖𝑖𝑑𝑑𝑎𝑎𝑔𝑔𝑁𝑁𝑠𝑠(𝑃𝑃𝑘𝑘) based on the ascending order of 𝐷𝐷𝑁𝑁𝑓𝑓𝑎𝑎𝐷𝐷.

5. The flowchart of the algorithm is shown in Figure 5.

Figure 5. The flowchart of Algorithm 1.

The algorithm’s results are used to provide data to the new node during the repair
operation. Data source nodes with low latency are obtained through intelligent measur-
ing. The node connectivity and the load of the links during the process are actively de-
tected, which makes the system highly adaptable to the network status.

4.3. Transmission Scheduling Algorithm Based on Dynamic Feedback
The transmission mode is crucial, since data transmission takes a long time in the

repair process. Higher bandwidth paths allow for faster transmission speeds than lower
bandwidth paths. However, imbalances in repair tasks and access, as well as system man-
agement-related events such as repair latency, can lead to unequal link utilization in real
situations. When this state accumulates and amplifies, it will inevitably lead to link con-
gestion, affecting system performance. System reliability can be critically damaged if data
are permanently lost during repair. Based on dynamic feedback, SDNC-Repair put

Figure 5. The flowchart of Algorithm 1.

The algorithm’s results are used to provide data to the new node during the repair
operation. Data source nodes with low latency are obtained through intelligent measuring.
The node connectivity and the load of the links during the process are actively detected,
which makes the system highly adaptable to the network status.

4.3. Transmission Scheduling Algorithm Based on Dynamic Feedback

The transmission mode is crucial, since data transmission takes a long time in the
repair process. Higher bandwidth paths allow for faster transmission speeds than lower
bandwidth paths. However, imbalances in repair tasks and access, as well as system
management-related events such as repair latency, can lead to unequal link utilization in
real situations. When this state accumulates and amplifies, it will inevitably lead to link
congestion, affecting system performance. System reliability can be critically damaged
if data are permanently lost during repair. Based on dynamic feedback, SDNC-Repair
put forward a transmission scheduling algorithm that considers data flow credibility and
latency requirements. To improve network throughput and avoid overloading switches
and links, the algorithm selects the low-cost routes between providing nodes and new
nodes according to the global network view and link status and reasonably schedules data
blocks to avoid transmission congestion. Algorithm 2 describes the scheduling algorithm
based on dynamic feedback.

Sensors 2023, 23, 5809 10 of 20

Algorithm 2: Transmission scheduling algorithm based on dynamic feedback

Input: The list of data to be transmitted trans f er_block_list, Global topology graph
G(V, E), The switch port length threshold Q′

Output: f lag // A sign determines whether the transmission is successful or not
1. Set f lag = f alse;
2. for Each block Blocki in trans f er_block_list do
3. Ri ← GetAvailablePathSet(Blocki, G(V, E));
4. for Each path path in Ri do
5. loadi,j(t)← getLinkIn f o(path); // Get the load of link(i, j) in path

at time t
6. Calculate Ui,j(t) = loadi,j(t)/Bi,j × 100%; // Calculate the
utilization of the links in the path
7. if Ui,j(t) > Lpath(t) then
8. Lpath(t) = Ui,j(t); // Calculate the load on the path
9. end if
10. end for
11. Find best_path, where Lpath(t) = Min

{
Lpath(t)

∣∣∣path ∈ Ri

}
; // Select

the route with the lowest background load
12. Q(t)← getSDNController(switchi); // Obtain the queue of the switch at time t
13. if Q(t) > Q′ then
14. sendMessage(congestion_noti f ication_message); // sent congestion signal,

notify other switches to reduce their sending rate.
15. end if
16. SendBlocks(Blocki, best_path);
17. end for
18. get f lag

The inputs of the algorithm are a list of data to be transmitted trans f er_block_list, a
global topology graph G(V, E), and a switch port length threshold Q′. The output is a sign
flag that determines whether the transmission was successful.

1. The algorithm first discovers the underlying network topology through the controller
to find the available path set Ri for the data blocks in the list.

2. Then, the controller queries the switch port flow statistics through traffic monitoring
components to calculate the link utilization Ui,j(t) and the path load Lpath(t), where
Lpath(t) represents the maximum utilization ratio of all links in the path.

3. To ensure that the transmission avoids bottleneck links, the path with the smallest
background load is selected as the transmission path best_path for the data block.

4. At the same time, the controller periodically checks the switch port queue length
Q(t) for the transmitted data block and dynamically adjusts the transmission rate by
comparing it with the system’s set threshold Q′. If Q(t) exceeds Q′, the switch sends
a congestion notification message to the controller to reduce the transmission rate and
avoid switch overload.

The purpose of setting Q′ is to detect the load of the switch and adjust the sending
rate to a suitable value. A fixed value of Q′ is not adaptable to the QoS of all networks due
to the different features of each network. Therefore, this article selects three volumes of
block-level tracking, volume_0, volume_1, and volume_2, which contain data collected
from practical applications. A description of the dataset is provided in Table 2. We test and
analyze the influence of the Q′ value on link utilization and latency by simulating node
failure through randomly erasing the data stored in data nodes.

Table 2. Characteristics of three traces.

Trace Load Density (%) Block Size (KB) Server Workload

volume_0 99.7 12.17 Research projects
volume_1 59.6 22.67 User home directories
volume_2 4.7 19.96 Hardware monitoring

Sensors 2023, 23, 5809 11 of 20

Figure 6a shows that when Q′ is low, the link utilization and latency are low due
to the small number of data blocks sent by the switch during the repair. As the value of
Q’ increases, link utilization increases synchronously. However, the high rate of sending
speed causes the accumulation of data blocks in the link, which further increases the repair
latency. Thus, it is essential to set the value of Q’ according to the actual size of data
blocks and bandwidth. The value of Q’ is inversely proportional to the size of data blocks
and directly proportional to bandwidth. An appropriate value of Q’ can effectively avoid
network congestion, increase repair throughput, and improve data repair performance.
The flowchart of Algorithm 2 is shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21

4. At the same time, the controller periodically checks the switch port queue length
𝑄𝑄(𝑔𝑔) for the transmitted data block and dynamically adjusts the transmission rate by
comparing it with the system’s set threshold 𝑄𝑄′. If 𝑄𝑄(𝑔𝑔) exceeds 𝑄𝑄′, the switch sends
a congestion notification message to the controller to reduce the transmission rate
and avoid switch overload.
The purpose of setting Q′ is to detect the load of the switch and adjust the sending

rate to a suitable value. A fixed value of Q′ is not adaptable to the QoS of all networks due
to the different features of each network. Therefore, this article selects three volumes of
block-level tracking, volume_0, volume_1, and volume_2, which contain data collected
from practical applications. A description of the dataset is provided in Table 2. We test
and analyze the influence of the Q′ value on link utilization and latency by simulating
node failure through randomly erasing the data stored in data nodes.

Table 2. Characteristics of three traces.

Trace Load Density (%) Block Size (KB) Server Workload
volume_0 99.7 12.17 Research projects
volume_1 59.6 22.67 User home directories
volume_2 4.7 19.96 Hardware monitoring

Figure 6a shows that when Q′ is low, the link utilization and latency are low due to
the small number of data blocks sent by the switch during the repair. As the value of Q’
increases, link utilization increases synchronously. However, the high rate of sending
speed causes the accumulation of data blocks in the link, which further increases the repair
latency. Thus, it is essential to set the value of Q’ according to the actual size of data blocks
and bandwidth. The value of Q’ is inversely proportional to the size of data blocks and
directly proportional to bandwidth. An appropriate value of Q’ can effectively avoid net-
work congestion, increase repair throughput, and improve data repair performance. The
flowchart of Algorithm 2 is shown in Figure 7.

The algorithm uses software-defined centralized control technology to select the
transmission route of the data block base on the effective link bandwidth and adjusts the
flow rate based on the link load to avoid link overload during the repair. Notably, the
algorithm focuses on improving the general throughput of the repair operation rather
than shortening the execution time of specific repair tasks. Section 4.4 discusses a cooper-
ative and efficient data repair method.

(a) (b)

Figure 6. The impact of a different threshold: (a) link utilization with different threshold; (b) latency
with a different threshold. Figure 6. The impact of a different threshold: (a) link utilization with different threshold; (b) latency

with a different threshold.
Sensors 2023, 23, x FOR PEER REVIEW 12 of 21

Figure 7. Flowchart of Algorithm 2.

4.4. Cooperative and Efficient Data Repair Method
Under the hierarchical network layout structure of the data center, the cross-rack net-

work bandwidth between storage nodes is often limited, and the data repair performance
is usually bottlenecked by the cross-rack bandwidth. The goals of this section are to reduce
the usage of cross-rack bandwidth and improve the computational efficiency of decoding
and reconstruction. Data blocks are first sent to a top-of-rack switch (ToR) before being
transmitted across the rack to the target node. To decrease the cross-rack bandwidth, ToR
is an appropriate place to aggregate data. SDNC-Repair introduces a cooperative and ef-
ficient data repair method that optimizes decoding by leveraging the characteristics of
data block transmission. By deploying the ToR in the SDNC-Repair framework as a soft-
ware switch and using its support for read/write operations and XOR operations of the
specified memory address, part of the repair task can be completed in the ToR, thus re-
ducing the amount of data transmission across the rack. Data exchange between racks
through the cooperation of nodes can also decrease repair costs.

We formalize the data repair calculation problem as follows: Suppose that a strip of
n storage nodes comprises k data nodes {𝐷𝐷1,𝐷𝐷2,⋯ ,𝐷𝐷𝑘𝑘} and m parity nodes {𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑚𝑚},
which respectively store the data blocks {𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑𝑘𝑘} and the parity blocks
{𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑚𝑚}. The storage nodes are distributed in 𝑟𝑟 racks {𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑟𝑟}, and ToRs are
denoted as {𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑟𝑟}. As the data repair process between strips is independent of each
other, this section focuses on the analysis of data repair on a single stripe. Assume that 𝐷𝐷ℎ

Figure 7. Flowchart of Algorithm 2.

Sensors 2023, 23, 5809 12 of 20

The algorithm uses software-defined centralized control technology to select the
transmission route of the data block base on the effective link bandwidth and adjusts the
flow rate based on the link load to avoid link overload during the repair. Notably, the
algorithm focuses on improving the general throughput of the repair operation rather than
shortening the execution time of specific repair tasks. Section 4.4 discusses a cooperative
and efficient data repair method.

4.4. Cooperative and Efficient Data Repair Method

Under the hierarchical network layout structure of the data center, the cross-rack
network bandwidth between storage nodes is often limited, and the data repair perfor-
mance is usually bottlenecked by the cross-rack bandwidth. The goals of this section are
to reduce the usage of cross-rack bandwidth and improve the computational efficiency of
decoding and reconstruction. Data blocks are first sent to a top-of-rack switch (ToR) before
being transmitted across the rack to the target node. To decrease the cross-rack bandwidth,
ToR is an appropriate place to aggregate data. SDNC-Repair introduces a cooperative
and efficient data repair method that optimizes decoding by leveraging the characteristics
of data block transmission. By deploying the ToR in the SDNC-Repair framework as a
software switch and using its support for read/write operations and XOR operations of
the specified memory address, part of the repair task can be completed in the ToR, thus
reducing the amount of data transmission across the rack. Data exchange between racks
through the cooperation of nodes can also decrease repair costs.

We formalize the data repair calculation problem as follows: Suppose that a strip of n
storage nodes comprises k data nodes {D1, D2, · · · , Dk} and m parity nodes {P1, P2, · · · , Pm},
which respectively store the data blocks {d1, d2, · · · , dk} and the parity blocks {p1, p2, · · · , pm}.
The storage nodes are distributed in r racks {R1, R2, · · · , Rr}, and ToRs are denoted as
{r1, r2, · · · , rr}. As the data repair process between strips is independent of each other, this
section focuses on the analysis of data repair on a single stripe. Assume that Dh (0 ≤ h ≤ k)
in Rh fails and dh is lost. As discussed in Section 2, any data block can be expressed as
a linear combination of the other k data blocks. Thus, dh can be repaired through the
following formula:

dh = ∑n
s=1 asdi + ∑k

s=n+1 as pj (i ∈ {1, 2, · · · , k}, j ∈ {1, 2, · · · , m}) (2)

where as is the coefficient of the decoding matrix.
The cooperative and efficient data repair method aims to parallelize the data recon-

struction process by disassembling Equation (2) and distributing the data repair calculations.
The specific steps can be broadly described as follows:

1. According to the algorithm in Section 4.2, the data nodes and parity nodes participat-
ing in the repair operation are determined. The data block di and the parity block pj
stored in Di and Pj are multiplied by their respective decoding coefficients as in the
decoding inverse matrix, resulting in the encoded blocks asdi and as pj.

2. The encoded blocks are then sent to the ToR rx, where they are aggregated through a
summation operation. The intermediate calculation results of partial repair, ∑n

s=1 asdi
and ∑k

s=n+1 as pj, are obtained as a result. Then, rx delivers the results to the ToR rnew
where the new node Dnew is located.

3. At the ToR rnew, all the received results are summed, the data block dh is recovered,
and it is sent to Dnew. Then, Dnew stores dh, indicating the completion of the repair.

Taking the RS (9,6) code as an example, suppose node D2 fails, and data block d2 needs
to be repaired. The repair process is shown in Figure 8.

1. Providing nodes D1, D3, D4, D5, D6 and P1 decode in parallel and obtain encoded
blocks a1d1, a2d3, a3d4, a4d5, a5d6, a6 p1. These encoded blocks are sent to ToR
r1, r2, r3, respectively.

Sensors 2023, 23, 5809 13 of 20

2. The ToR sums the received data and obtains an intermediate calculation result. Data
aggregation greatly reduces the amount of data transferred backward. Then, r1, r2
and r3 send the results to r4, where Dnew is located.

3. Finally, r4 sums the received intermediate calculation results to recovers d2 and sends
it to Dnew, which stores d2 and completes the data repair operation.

The cooperative and efficient data repair method utilizes the XOR operation mecha-
nism of software switches to aggregate data within a rack before transmitting repair data
across the rack. The intermediate calculation result formed by the encoded blocks has the
same size as a data block, but with fewer blocks. Reducing the number of blocks decreases
the amount of data that needs to be transmitted across the rack, resulting in improved
network efficiency and reduced costs. When the number of racks is fixed, a larger value
of k in an RS (n, k) code (which means that more data blocks are in the same stripe) leads
to better performance for the cooperative and efficient data repair method. This is be-
cause more data can be aggregated within each rack, improving the efficiency of the repair
process. Furthermore, distributing and parallelizing calculations can effectively utilize
the computing power of each storage node and switch involved in the repair, enabling
simultaneous transmission and computation. The experiments in Section 5 show that the
calculation efficiency of data repair can be improved by the method described above.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21

(0 ≤ ℎ ≤ 𝑘𝑘) in 𝑅𝑅ℎ fails and 𝑑𝑑ℎ is lost. As discussed in Section 2, any data block can be
expressed as a linear combination of the other k data blocks. Thus, 𝑑𝑑ℎ can be repaired
through the following formula:

𝑑𝑑ℎ = � 𝑎𝑎𝑠𝑠𝑑𝑑𝑖𝑖
𝑛𝑛

𝑠𝑠=1
+ � 𝑎𝑎𝑠𝑠𝑝𝑝𝑗𝑗

𝑘𝑘

𝑠𝑠=𝑛𝑛+1
 (𝑖𝑖 ∈ {1,2,⋯ , 𝑘𝑘}, 𝑗𝑗 ∈ {1,2,⋯ ,𝑚𝑚}) (2)

where 𝑎𝑎𝑠𝑠 is the coefficient of the decoding matrix.
The cooperative and efficient data repair method aims to parallelize the data recon-

struction process by disassembling Equation (2) and distributing the data repair calcula-
tions. The specific steps can be broadly described as follows:
1. According to the algorithm in Section 4.2, the data nodes and parity nodes partici-

pating in the repair operation are determined. The data block 𝑑𝑑𝑖𝑖 and the parity block
𝑝𝑝𝑗𝑗 stored in 𝐷𝐷𝑖𝑖 and 𝑃𝑃𝑗𝑗 are multiplied by their respective decoding coefficients 𝑎𝑎𝑠𝑠 in
the decoding inverse matrix, resulting in the encoded blocks 𝑎𝑎𝑠𝑠𝑑𝑑𝑖𝑖 and 𝑎𝑎𝑠𝑠𝑝𝑝𝑗𝑗.

2. The encoded blocks are then sent to the ToR 𝑟𝑟𝑥𝑥, where they are aggregated through
a summation operation. The intermediate calculation results of partial repair,
∑ 𝑎𝑎𝑠𝑠𝑑𝑑𝑖𝑖𝑛𝑛
𝑠𝑠=1 and ∑ 𝑎𝑎𝑠𝑠𝑝𝑝𝑗𝑗𝑘𝑘

𝑠𝑠=𝑛𝑛+1 , are obtained as a result. Then, 𝑟𝑟𝑥𝑥 delivers the results to
the ToR 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 where the new node 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 is located.

3. At the ToR 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛, all the received results are summed, the data block 𝑑𝑑ℎ is recovered,
and it is sent to 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛. Then, 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 stores 𝑑𝑑ℎ, indicating the completion of the repair.
Taking the RS (9,6) code as an example, suppose node 𝐷𝐷2 fails, and data block 𝑑𝑑2

needs to be repaired. The repair process is shown in Figure 8.
1. Providing nodes 𝐷𝐷1,𝐷𝐷3,𝐷𝐷4,𝐷𝐷5,𝐷𝐷6 and 𝑃𝑃1 decode in parallel and obtain encoded

blocks 𝑎𝑎1𝑑𝑑1,𝑎𝑎2𝑑𝑑3,𝑎𝑎3𝑑𝑑4,𝑎𝑎4𝑑𝑑5,𝑎𝑎5𝑑𝑑6,𝑎𝑎6𝑝𝑝1 . These encoded blocks are sent to ToR
 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, respectively.

2. The ToR sums the received data and obtains an intermediate calculation result. Data
aggregation greatly reduces the amount of data transferred backward. Then, 𝑟𝑟1, 𝑟𝑟2
and 𝑟𝑟3 send the results to 𝑟𝑟4, where 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 is located.

3. Finally, 𝑟𝑟4 sums the received intermediate calculation results to recovers 𝑑𝑑2 and
sends it to 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛, which stores 𝑑𝑑2 and completes the data repair operation.

Figure 8. Collaborative data repair.

The cooperative and efficient data repair method utilizes the XOR operation mecha-
nism of software switches to aggregate data within a rack before transmitting repair data
across the rack. The intermediate calculation result formed by the encoded blocks has the
same size as a data block, but with fewer blocks. Reducing the number of blocks decreases
the amount of data that needs to be transmitted across the rack, resulting in improved

Figure 8. Collaborative data repair.

5. Experiments and Evaluation
5.1. Experimental Configuration

To verify the effectiveness of SDNC-Repair, we conduct experiments on the Mininet
simulation platform, which creates a realistic virtual network on a single machine. We use
Floodlight 1.2 [28] as the SDN controller and Open vSwitch 2.9.5 to simulate OpenFlow
switches. To ensure experimental consistency, the server is generated through simulation,
and a batch of Docker container instances is created on the physical machine to build a
distributed storage system HDFS-RAID [6]. The operating system of the server is Ubuntu
18.04, and the version of Docker is 19.03.8. The Docker container acts as a virtual server
node, including one HDFS client node, one controller node, one metadata node (NameN-
ode) and the remaining nodes are data nodes and parity nodes. The data files are divided
into multiple fixed-size blocks and stored on different nodes of HDFS-RAID, while the
parity data generated by encoding is placed on different racks to ensure fault tolerance.
The physical server system is Ubuntu 18.04, with two quad-core 2.4 GHz Intel Xeon E5-260
CPUs and 16 GB RAM. Figure 9 shows the structure of the experimental environment.

Sensors 2023, 23, 5809 14 of 20

Sensors 2023, 23, x FOR PEER REVIEW 14 of 21

network efficiency and reduced costs. When the number of racks is fixed, a larger value
of k in an RS (n, k) code (which means that more data blocks are in the same stripe) leads
to better performance for the cooperative and efficient data repair method. This is because
more data can be aggregated within each rack, improving the efficiency of the repair pro-
cess. Furthermore, distributing and parallelizing calculations can effectively utilize the
computing power of each storage node and switch involved in the repair, enabling sim-
ultaneous transmission and computation. The experiments in Section 5 show that the cal-
culation efficiency of data repair can be improved by the method described above.

5. Experiments and Evaluation
5.1. Experimental Configuration

To verify the effectiveness of SDNC-Repair, we conduct experiments on the Mininet
simulation platform, which creates a realistic virtual network on a single machine. We use
Floodlight 1.2 [28] as the SDN controller and Open vSwitch 2.9.5 to simulate OpenFlow
switches. To ensure experimental consistency, the server is generated through simulation,
and a batch of Docker container instances is created on the physical machine to build a
distributed storage system HDFS-RAID [6]. The operating system of the server is Ubuntu
18.04, and the version of Docker is 19.03.8. The Docker container acts as a virtual server
node, including one HDFS client node, one controller node, one metadata node
(NameNode) and the remaining nodes are data nodes and parity nodes. The data files are
divided into multiple fixed-size blocks and stored on different nodes of HDFS-RAID,
while the parity data generated by encoding is placed on different racks to ensure fault
tolerance. The physical server system is Ubuntu 18.04, with two quad-core 2.4 GHz Intel
Xeon E5-260 CPUs and 16 GB RAM. Figure 9 shows the structure of the experimental
environment.

Figure 9. Structure diagram of the simulation system.

To enhance network robustness, we use fat-tree topology to simulate the layered net-
work topology of data nodes and parity nodes deployed across the rack in experiments.
Flow control commands are used to set the intra-rack and cross-rack bandwidth, which
allows us to simulate scenarios with limited cross-rack bandwidth that is less than the
intra-rack bandwidth [29]. In the experiments, we set the fixed cycle interval of the con-
troller polling to 1 s, as recommended by [30–32], to achieve a balance between monitoring
accuracy and controller overhead. The experiment uses the Monte Carlo method to com-
pile a program to simulate the random generation of failed nodes. The default repair

Figure 9. Structure diagram of the simulation system.

To enhance network robustness, we use fat-tree topology to simulate the layered
network topology of data nodes and parity nodes deployed across the rack in experiments.
Flow control commands are used to set the intra-rack and cross-rack bandwidth, which
allows us to simulate scenarios with limited cross-rack bandwidth that is less than the intra-
rack bandwidth [29]. In the experiments, we set the fixed cycle interval of the controller
polling to 1 s, as recommended by [30–32], to achieve a balance between monitoring
accuracy and controller overhead. The experiment uses the Monte Carlo method to compile
a program to simulate the random generation of failed nodes. The default repair method
of RS code is used as the baseline (denoted Baseline), and its data repair performance is
compared with the SDNC-Repair introduced in this article. By comparing the throughput
and repair time of the two methods in different scenarios, the advantages of SDNC-Repair
are illustrated. Repair time, which refers to the response time from the submission of repair
operation requests to completion, and throughput, which is the average system throughput,
are the two performance indicators. Throughput is calculated as the total amount of data
processed by the system during the data repair process divided by the cumulative repair
time. Each experiment changes a parameter and tests a fixed number of requests (for
example, it is set to 1000 in the experiments). The results of each experiment are the average
of over 100 runs.

5.2. Results and Analysis
5.2.1. Data Repair Performance under Different Data Granularities

In the first set of experiments, we use RS (9,6) code and divide the data into sub-blocks,
which are placed in each node. Then, we randomly select a node, delete all its data blocks
and use Baseline and SDNC-Repair to repair. We set up different data block sizes to evaluate
repair performance under different data granularities. Next, we fix the data block size
to 128 MB and test the repair time of the two methods by changing the number of nodes
participating in repair. This allows us to explore the relationship between the change in the
number of nodes and the repair performance.

Figure 10a shows the relationship between the repair time of Baseline and SDNC-
Repair and the size of the data block. As the block size increases, the repair time of both
methods increases to varying degrees. This is because when the same number of data
blocks used for reconstruction are transmitted, the larger the data block is, the longer
the transmission time is. However, because SDNC-Repair reduces the amount of data
transferred backward through data aggregation in the rack, the repair time of SDNC-Repair
is shorter than that of Baseline, and the increased speed is also slower.

Sensors 2023, 23, 5809 15 of 20

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

method of RS code is used as the baseline (denoted Baseline), and its data repair perfor-
mance is compared with the SDNC-Repair introduced in this article. By comparing the
throughput and repair time of the two methods in different scenarios, the advantages of
SDNC-Repair are illustrated. Repair time, which refers to the response time from the sub-
mission of repair operation requests to completion, and throughput, which is the average
system throughput, are the two performance indicators. Throughput is calculated as the
total amount of data processed by the system during the data repair process divided by
the cumulative repair time. Each experiment changes a parameter and tests a fixed num-
ber of requests (for example, it is set to 1000 in the experiments). The results of each ex-
periment are the average of over 100 runs.

5.2. Results and Analysis
5.2.1. Data Repair Performance under Different Data Granularities

In the first set of experiments, we use RS (9,6) code and divide the data into sub-
blocks, which are placed in each node. Then, we randomly select a node, delete all its data
blocks and use Baseline and SDNC-Repair to repair. We set up different data block sizes
to evaluate repair performance under different data granularities. Next, we fix the data
block size to 128 MB and test the repair time of the two methods by changing the number
of nodes participating in repair. This allows us to explore the relationship between the
change in the number of nodes and the repair performance.

Figure 10a shows the relationship between the repair time of Baseline and SDNC-
Repair and the size of the data block. As the block size increases, the repair time of both
methods increases to varying degrees. This is because when the same number of data
blocks used for reconstruction are transmitted, the larger the data block is, the longer the
transmission time is. However, because SDNC-Repair reduces the amount of data trans-
ferred backward through data aggregation in the rack, the repair time of SDNC-Repair is
shorter than that of Baseline, and the increased speed is also slower.

(a) (b)

Figure 10. Repair time of Baseline and SDNC-Repair under different block sizes and number of
nodes. (a) Repair time with different data block sizes; (b) repair time with different numbers of
nodes.

Figure 10b shows the relationship between the repair time of the Baseline and SDNC-
Repair and the number of nodes. As the number of nodes increases, the repair time of
SDNC-Repair decreases more than that of Baseline. This is because with more nodes in-
volved in the repair, the data source selection algorithm of intelligent bandwidth meas-
urement can more easily select a node with high available bandwidth due to the larger
selection range. Providing nodes with high available bandwidth can increase the speed of
data transmission and reduce repair time. Moreover, the figure shows that when the num-
ber of nodes is small (e.g., 10), the repair time of SDNC-Repair can be higher than that of
the Baseline. The reason for this difference is that when the number of nodes is small, the

Figure 10. Repair time of Baseline and SDNC-Repair under different block sizes and number of
nodes. (a) Repair time with different data block sizes; (b) repair time with different numbers of nodes.

Figure 10b shows the relationship between the repair time of the Baseline and SDNC-
Repair and the number of nodes. As the number of nodes increases, the repair time of
SDNC-Repair decreases more than that of Baseline. This is because with more nodes
involved in the repair, the data source selection algorithm of intelligent bandwidth mea-
surement can more easily select a node with high available bandwidth due to the larger
selection range. Providing nodes with high available bandwidth can increase the speed
of data transmission and reduce repair time. Moreover, the figure shows that when the
number of nodes is small (e.g., 10), the repair time of SDNC-Repair can be higher than that
of the Baseline. The reason for this difference is that when the number of nodes is small,
the range of node selection is also small. However, SDNC-Repair still needs to spend more
time calculating link information and selecting nodes, resulting in a longer repair time than
that of the baseline.

5.2.2. Data Repair Performance under Different Numbers of Failed Nodes

The experiment also evaluates data repair performance in the presence of one or more
failed nodes. Nodes are randomly selected, and all data on them are erased. Both the
Baseline and SDNC-Repair methods are used to repair all erased data blocks to test the
node repair performance.

Figure 11 shows the increasing trend in the repair time of Baseline and SDNC-Repair
with failed nodes (failed data blocks). The abscissa “1 (30)” in the figure represents one
failed node with 30 failed data blocks, and the remaining results are similar. As the number
of failed nodes increases, the repair time of both methods increases linearly. However,
the repair time of SDNC-Repair is consistently lower than that of the baseline, and the
growth rate of the repair time of SDNC-Repair is also significantly less than that of the
baseline. This is because the cooperative and efficient data repair method can coordinate
storage nodes and switch nodes participating in the repair and use multiple nodes to
send and receive repair data in parallel, thereby improving the utilization of network
bandwidth. Moreover, the intermediate calculation results generated by the aggregation in
the ToR also reduce the amount of transmitted data. These results demonstrate that the
node repair performance of the proposed SDNC-Repair scheme is better than that of the
comparison method.

Sensors 2023, 23, 5809 16 of 20

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21

range of node selection is also small. However, SDNC-Repair still needs to spend more
time calculating link information and selecting nodes, resulting in a longer repair time
than that of the baseline.

5.2.2. Data Repair Performance under Different Numbers of Failed Nodes
The experiment also evaluates data repair performance in the presence of one or

more failed nodes. Nodes are randomly selected, and all data on them are erased. Both
the Baseline and SDNC-Repair methods are used to repair all erased data blocks to test
the node repair performance.

Figure 11 shows the increasing trend in the repair time of Baseline and SDNC-Repair
with failed nodes (failed data blocks). The abscissa “1 (30)” in the figure represents one
failed node with 30 failed data blocks, and the remaining results are similar. As the num-
ber of failed nodes increases, the repair time of both methods increases linearly. However,
the repair time of SDNC-Repair is consistently lower than that of the baseline, and the
growth rate of the repair time of SDNC-Repair is also significantly less than that of the
baseline. This is because the cooperative and efficient data repair method can coordinate
storage nodes and switch nodes participating in the repair and use multiple nodes to send
and receive repair data in parallel, thereby improving the utilization of network band-
width. Moreover, the intermediate calculation results generated by the aggregation in the
ToR also reduce the amount of transmitted data. These results demonstrate that the node
repair performance of the proposed SDNC-Repair scheme is better than that of the com-
parison method.

Figure 11. Repair time of Baseline and SDNC-Repair under different numbers of failure nodes
(blocks).

Furthermore, the comparison with Baseline verifies the repair efficiency of SDNC-
Repair and evaluates the impact on system performance during data repair. The data
block size is fixed at 128 MB, and nodes are randomly selected to erase the data 27 s after
the start of the test. The data repair operations of both methods are performed to evaluate
their average throughput in the two scenarios: single-node failure and two-node failure.

Figure 12a shows the trend of the throughput of Baseline and SDNC-Repair over time
in the single-node failure scenario. When an abnormal situation occurs, the throughput of
all methods suffers a collapse due to an abnormality detected in the communication pro-
cess, which is caused by the TCP connection mechanism. However, the data repair per-
formance of SDNC-Repair quickly recovers to its average level, while Baseline takes a
longer time to complete the repair, resulting in decreased system performance during the
repair.

Figure 11. Repair time of Baseline and SDNC-Repair under different numbers of failure nodes (blocks).

Furthermore, the comparison with Baseline verifies the repair efficiency of SDNC-
Repair and evaluates the impact on system performance during data repair. The data block
size is fixed at 128 MB, and nodes are randomly selected to erase the data 27 s after the
start of the test. The data repair operations of both methods are performed to evaluate their
average throughput in the two scenarios: single-node failure and two-node failure.

Figure 12a shows the trend of the throughput of Baseline and SDNC-Repair over time
in the single-node failure scenario. When an abnormal situation occurs, the throughput
of all methods suffers a collapse due to an abnormality detected in the communication
process, which is caused by the TCP connection mechanism. However, the data repair
performance of SDNC-Repair quickly recovers to its average level, while Baseline takes
a longer time to complete the repair, resulting in decreased system performance during
the repair.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21

Figure 12b shows the trend of the throughput of Baseline and SDNC-Repair over
time in the scenario where two nodes fail. Compared to single-node repair, two-node re-
pair requires more read and write operations, resulting in increased repair time for both
methods. However, SDNC-Repair still outperforms Baseline, with shorter repair time and
less impact on throughput. This is due to the good transmission scheduling of SDNC-
Repair, which can dynamically and evenly schedule the data flow, largely avoiding link
congestion and uneven usage.

(a) (b)

Figure 12. Throughput of Baseline and SDNC-Repair under different numbers of failure nodes: (a)
throughput in case of single-node failure; (b) throughput in case of two-node failure.

In general, SDNC-Repair has a faster repair speed in both single-node and two-node
failure scenarios, with minimal impact on system throughput.

5.2.3. Data Repair Performance under Different Erasure Code Parameters and Cross-
Rack Bandwidths

To further evaluate the influence of erasure code parameters and cross-rack band-
widths on repair performance, we vary the application parameters of “m = 3, k = {4,6,9}”
and “k = 6, m = {3,4,5}” under different cross-rack bandwidths.

Figure 13a,c,e show that as the value of parameter k increases, the repair time of both
methods increases. This is because k block decoding is required to repair each block, and
the larger k is, the more data is required for transmission and calculation. However, com-
pared to Baseline, the repair time of SDNC-Repair increases more slowly due to the ag-
gregation of more encode blocks in a rack, which reduces the amount of data transmitted
across racks and improves repair efficiency. Figure 13b,d,f show that as the value of pa-
rameter m increases, the repair time of Baseline also increases, while the repair time of
SDNC-Repair remains relatively stable. The reason is that the increase in m increases the
computational load of the new node and reduces its available bandwidth, leading to more
data transferred and longer repair time. However, SDNC-Repair’s distributed and paral-
lelized calculations enable simultaneous transmission and calculation, improving repair
efficiency.

Figure 13a–f describe the repair time of the measurement scheme under different
cross-rack bandwidth constraints of 0.5 GB/s, 1 GB/s, and 2 GB/s. The results show that
the repair time of both methods decreases significantly as the cross-rack bandwidth in-
creases because a larger cross-rack bandwidth enables faster data transmission speeds,
reducing the data transmission time. When the cross-rack bandwidth is limited to 0.5
GB/s, the repair time of SDNC-Repair and Baseline differ significantly because the intense
competition for network resources reduces the transmission efficiency of repair data.
However, SDNC-Repair’s transmission scheduling algorithm uses a greedy approach to
select the most suitable route, leading to a clear improvement in efficiency. As the cross-

Figure 12. Throughput of Baseline and SDNC-Repair under different numbers of failure nodes:
(a) throughput in case of single-node failure; (b) throughput in case of two-node failure.

Figure 12b shows the trend of the throughput of Baseline and SDNC-Repair over
time in the scenario where two nodes fail. Compared to single-node repair, two-node
repair requires more read and write operations, resulting in increased repair time for both
methods. However, SDNC-Repair still outperforms Baseline, with shorter repair time and
less impact on throughput. This is due to the good transmission scheduling of SDNC-
Repair, which can dynamically and evenly schedule the data flow, largely avoiding link
congestion and uneven usage.

In general, SDNC-Repair has a faster repair speed in both single-node and two-node
failure scenarios, with minimal impact on system throughput.

Sensors 2023, 23, 5809 17 of 20

5.2.3. Data Repair Performance under Different Erasure Code Parameters and
Cross-Rack Bandwidths

To further evaluate the influence of erasure code parameters and cross-rack band-
widths on repair performance, we vary the application parameters of “m = 3, k = {4,6,9}”
and “k = 6, m = {3,4,5}” under different cross-rack bandwidths.

Figure 13a,c,e show that as the value of parameter k increases, the repair time of both
methods increases. This is because k block decoding is required to repair each block, and the
larger k is, the more data is required for transmission and calculation. However, compared
to Baseline, the repair time of SDNC-Repair increases more slowly due to the aggregation
of more encode blocks in a rack, which reduces the amount of data transmitted across
racks and improves repair efficiency. Figure 13b,d,f show that as the value of parameter m
increases, the repair time of Baseline also increases, while the repair time of SDNC-Repair
remains relatively stable. The reason is that the increase in m increases the computational
load of the new node and reduces its available bandwidth, leading to more data transferred
and longer repair time. However, SDNC-Repair’s distributed and parallelized calculations
enable simultaneous transmission and calculation, improving repair efficiency.

Figure 13a–f describe the repair time of the measurement scheme under different
cross-rack bandwidth constraints of 0.5 GB/s, 1 GB/s, and 2 GB/s. The results show
that the repair time of both methods decreases significantly as the cross-rack bandwidth
increases because a larger cross-rack bandwidth enables faster data transmission speeds,
reducing the data transmission time. When the cross-rack bandwidth is limited to 0.5 GB/s,
the repair time of SDNC-Repair and Baseline differ significantly because the intense com-
petition for network resources reduces the transmission efficiency of repair data. However,
SDNC-Repair’s transmission scheduling algorithm uses a greedy approach to select the
most suitable route, leading to a clear improvement in efficiency. As the cross-rack band-
width increases, such as when it reaches 2 GB/s, the effect of the transmission scheduling
algorithm becomes less significant as the increase in bandwidth alleviates the network
transmission bottleneck.

In summary, SDNC-Repair performs better under obvious bandwidth limitations,
indicating that the method is more limited by cross-rack bandwidth.

In conclusion, conventional data repair methods suffer from randomly selecting
data sources without considering the heterogeneous characteristics of the source nodes.
SDNC-Repair employs a data source selection algorithm based on intelligent bandwidth
measurement to calculate the available bandwidth of providing nodes based on the actual
interconnection status and link load and selects the optimal data source node combination.
To address the dynamic nature of network traffic and link utilization imbalance, SDNC-
Repair adopts a transmission scheduling algorithm based on dynamic feedback to improve
link utilization and repair throughput. Furthermore, to reduce the pressure on network
transmission and node decoding reconstruction computation, SDNC-Repair employs a
collaborative and efficient data repair method. By splitting the repair decoding computation
into sub-decoding operations and enabling pipeline parallel repair operations, the method
achieves efficient computation while reducing bandwidth consumption on backward
links through information aggregation. Experimental results are shown in Table 3 and
demonstrate that SDNC-Repair effectively reduces latency and improves repair efficiency.
In most application scenarios, the proposed method significantly outperforms conventional
methods in erasure code data repair performance and exhibits high stability.

Sensors 2023, 23, 5809 18 of 20

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21

rack bandwidth increases, such as when it reaches 2 GB/s, the effect of the transmission
scheduling algorithm becomes less significant as the increase in bandwidth alleviates the
network transmission bottleneck.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Repair time of Baseline and SDNC-Repair under different cross-rack bandwidth settings
with different coding parameters: (a) 0.5 GB/s, m = 3 and k = {4,6,9}; (b) 0.5 GB/s, k = 6 and m = {3,4,5};
(c) 1 GB/s, m = 3 and k = {4,6,9}; (d) 1 GB/s, k = 6 and m = {3,4,5}; (e) 2 GB/s, m = 3 and k = {4,6,9}; (f) 2
GB/s, k = 6 and m = {3,4,5}.

In summary, SDNC-Repair performs better under obvious bandwidth limitations,
indicating that the method is more limited by cross-rack bandwidth.

In conclusion, conventional data repair methods suffer from randomly selecting data
sources without considering the heterogeneous characteristics of the source nodes. SDNC-
Repair employs a data source selection algorithm based on intelligent bandwidth meas-
urement to calculate the available bandwidth of providing nodes based on the actual in-
terconnection status and link load and selects the optimal data source node combination.

Figure 13. Repair time of Baseline and SDNC-Repair under different cross-rack bandwidth settings
with different coding parameters: (a) 0.5 GB/s, m = 3 and k = {4,6,9}; (b) 0.5 GB/s, k = 6 and m = {3,4,5};
(c) 1 GB/s, m = 3 and k = {4,6,9}; (d) 1 GB/s, k = 6 and m = {3,4,5}; (e) 2 GB/s, m = 3 and k = {4,6,9};
(f) 2 GB/s, k = 6 and m = {3,4,5}.

Table 3. Comparison between Baseline and SDNC-Repair.

Baseline SDNC-Repair

Repair time with different data block size Longer repair time as data block size increases Shorter repair time due to data aggregation in
the rack

Repair time with different number of nodes Longer repair time as the number of
nodes increases

Shorter repair time due to data source
selection algorithm

Repair time with one or more failed nodes Higher repair time with the growth rate
significantly higher Consistently lower repair time

Impact on system performance during
data repair

Longer time to complete repair, decreasing
system performance Quickly recovers to average level

Repair time with different erasure code
parameters Increases more quickly Increases more slowly due to data aggregation

in the rack
Repair time with different cross-rack
bandwidths

Longer repair time due to intense competition
for network resources

Shorter repair time due to transmission
scheduling algorithm

Sensors 2023, 23, 5809 19 of 20

6. Conclusions

This paper presented a study on a data repair mechanism based on erasure codes.
Existing repair schemes do not consider the dynamic nature of network traffic and the
imbalance of user access, resulting in less-than-ideal performance under actual workloads.
To address these issues, this paper proposed a cooperative repair strategy based on an SDN
controller, SDNC-Repair, and described its framework. SDNC-Repair provides solutions
in data source selection, transmission scheduling, and cooperative and efficient data re-
pair. The simulation results showed that SDNC-Repair effectively improves system repair
throughput and reduces average repair time.

There is still much room for improving SDNC-Repair. Future work will include adding
a link weight calculation algorithm and cache mechanism to further reduce repair costs;
constructing a transmission structure with minimum latency across data centers and a com-
putation model with minimum redundancy to ensure data repair efficiency of erasure codes;
and slicing data blocks, retaining necessary information fragments, and performing fine-
grained scheduling and control. These improvements can further enhance the performance
of SDNC-Repair and make it more adaptable to various network environments.

Author Contributions: Conceptualization, N.C.; Formal analysis, W.L. and Y.L.; Investigation, Q.Z.;
Methodology, W.P.; Software, W.P. and Q.Z.; Supervision, N.C.; Validation, W.P.; Visualization, Y.L.
and Q.Z.; Writing—original draft, W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Natural Science Foundation of China (No. 62162003, No. 61762008).

Data Availability Statement: Data available on request due to restrictions, e.g., privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Balaji, S.B.; Krishnan, M.N.; Vajha, M.; Ramkumar, V.; Sasidharan, B.; Kumar, P.V. Erasure Coding for Distributed Storage: An

Overview. Sci. China Inf. Sci. 2018, 61, 100301. [CrossRef]
2. Yingxun, F.; Shilin, W.; Li, M.; Jiwu, S. Survey on Single Disk Failure Recovery Methods for Erasure Coded Storage Systems.

J. Comput. Res. Dev. 2018, 55, 1–13. [CrossRef]
3. Wang, Y.-J.; Xu, F.-L.; Pei, X.-Q. Research on Erasure Code-Based Fault-Tolerant Technology for Distributed Storage. Chin. J.

Comput. 2017, 40, 236–255. [CrossRef]
4. Reed, I.S.; Solomon, G. Polynomial Codes over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [CrossRef]
5. Corbett, J.C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J.J.; Ghemawat, S.; Gubarev, A.; Heiser, C.; Hochschild, P.; et al.

Spanner: Google’s Globally Distributed Database. ACM Trans. Comput. Syst. 2013, 31, 1–22. [CrossRef]
6. Yahoo Developer Network. HUG Meetup Nov 2010: HDFS RAID. Available online: https://www.youtube.com/watch?v=

TeeqmqTRD20 (accessed on 17 May 2023).
7. Huang, C.; Simitci, H.; Xu, Y.; Ogus, A.; Calder, B.; Gopalan, P.; Li, J.; Yekhanin, S. Erasure Coding in Windows Azure Storage. In

Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), Boston, MA, USA, 13–15 June 2012; pp. 15–26.
8. Dai, M.; Cheng, G.; Zhou, Y. Survey on Measurement Methods in Software-Defined Networking. J. Softw. 2019, 30, 1853–1874.

[CrossRef]
9. Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. Network Coding for Distributed Storage Systems. IEEE

Trans. Inf. Theory 2010, 56, 4539–4551. [CrossRef]
10. Liang, W.; Fan, Y.; Li, K.-C.; Zhang, D.; Gaudiot, J.-L. Secure Data Storage and Recovery in Industrial Blockchain Network

Environments. IEEE Trans. Ind. Inform. 2020, 16, 6543–6552. [CrossRef]
11. Shan, Y.; Chen, K.; Gong, T.; Zhou, L.; Zhou, T.; Wu, Y. Geometric Partitioning: Explore the Boundary of Optimal Erasure Code

Repair. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, Koblenz, Germany, 26–29 October
2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 457–471.

12. Li, R.; Li, X.; Lee, P.P.; Huang, Q. Repair Pipelining for Erasure-Coded Storage. In Proceedings of the USENIX Annual Technical
Conference, Santa Clara, CA, USA, 12 July 2017; pp. 567–579.

13. Mitra, S.; Panta, R.; Ra, M.-R.; Bagchi, S. Partial-Parallel-Repair (PPR): A Distributed Technique for Repairing Erasure Coded
Storage. In Proceedings of the Eleventh European Conference on Computer Systems, London, UK, 18–21 April 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 1–16.

https://doi.org/10.1007/s11432-018-9482-6
https://doi.org/10.7544/issn1000-1239.2018.20160506
https://doi.org/10.11897/SP.J.1016.2017.00236
https://doi.org/10.1137/0108018
https://doi.org/10.1145/2491245
https://www.youtube.com/watch?v=TeeqmqTRD20
https://www.youtube.com/watch?v=TeeqmqTRD20
https://doi.org/10.13328/j.cnki.jos.005832
https://doi.org/10.1109/TIT.2010.2054295
https://doi.org/10.1109/TII.2020.2966069

Sensors 2023, 23, 5809 20 of 20

14. Li, X.; Yang, Z.; Li, J.; Li, R.; Lee, P.P.C.; Huang, Q.; Hu, Y. Repair Pipelining for Erasure-Coded Storage: Algorithms and
Evaluation. ACM Trans. Storage 2021, 17, 1–29. [CrossRef]

15. Hu, Y.; Li, X.; Zhang, M.; Lee, P.P.C.; Zhang, X.; Zhou, P.; Feng, D. Optimal Repair Layering for Erasure-Coded Data Centers:
From Theory to Practice. ACM Trans. Storage 2017, 13, 1–24. [CrossRef]

16. Xu, L.; Lyu, M.; Li, Z.; Li, C.; Xu, Y. A Data Layout and Fast Failure Recovery Scheme for Distributed Storage Systems With Mixed
Erasure Codes. IEEE Trans. Comput. 2022, 71, 1740–1754. [CrossRef]

17. Liu, K.; Peng, J.; Wang, J.; Huang, Z.; Pan, J. Adaptive and Scalable Caching with Erasure Codes in Distributed Cloud-Edge
Storage Systems. IEEE Trans. Cloud Comput. 2022, 11, 1840–1853. [CrossRef]

18. Nehra, A.; Tripathi, M.; Gaur, M.S.; Battula, R.B.; Lal, C. TILAK: A Token-Based Prevention Approach for Topology Discovery
Threats in SDN. Int. J. Commun. Syst. 2019, 32, e3781. [CrossRef]

19. Marathe, N.; Gandhi, A.; Shah, J.M. Docker Swarm and Kubernetes in Cloud Computing Environment. In Proceedings of the 2019
3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 179–184.

20. Blaum, M.; Farrell, P.G.; van Tilborg, H.C.; Pless, V.S.; Huffman, W.C. Array Codes. Handb. Coding Theory 1998, 2, 1855–1909.
21. Zheng, L.; Li, X. Low-cost Multi-node Failure Repair Method for Erasure Codes. Comput. Eng. 2017, 43, 110–118, 123. [CrossRef]
22. Zhang, H.; Li, H.; Li, S.-Y.R. Repair Tree: Fast Repair for Single Failure in Erasure-Coded Distributed Storage Systems. IEEE Trans.

Parallel Distrib. Syst. 2017, 28, 1728–1739. [CrossRef]
23. Huang, Y.; Ye, M.; Cai, Y. A Node Selection Scheme for Data Repair Using Erasure Code in Distributed Storage System. In

Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications, Jilin,
China, 23–25 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 19–24.

24. Zhou, A.; Yi, B.; Luo, L. Tree-Structured Data Placement Scheme with Cluster-Aided Top-down Transmission in Erasure-Coded
Distributed Storage Systems. Comput. Netw. 2022, 204, 108714. [CrossRef]

25. Wang, F.; Tang, Y.; Xie, Y.; Tang, X. XORInc: Optimizing Data Repair and Update for Erasure-Coded Systems with XOR-Based
In-Network Computation. In Proceedings of the 2019 35th Symposium on Mass Storage Systems and Technologies (MSST), Santa
Clara, CA, USA, 20–24 May 2019; pp. 244–256.

26. Hou, H.; Lee, P.P.C.; Shum, K.W.; Hu, Y. Rack-Aware Regenerating Codes for Data Centers. IEEE Trans. Inf. Theory 2019, 65,
4730–4745. [CrossRef]

27. Peizhe, L.; Zhenfeng, X.; Zhongwei, C.; Yichao, W.; Xiangqi, L.; Jin, C.; Jingwen, X.; Yunwei, Z. A Network Traffic Scheduling
Strategy for Energy Storage Data Centers Based on SDN. In Proceedings of the 2019 IEEE 19th International Conference on
Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1413–1417.

28. Aly, W.H.F. Controller Adaptive Load Balancing for SDN Networks. In Proceedings of the 2019 Eleventh International Conference
on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 514–519.

29. Liu, W.; Wang, Y.; Zhang, J.; Liao, H.; Liang, Z.; Liu, X. AAMcon: An Adaptively Distributed SDN Controller in Data Center
Networks. Front. Comput. Sci. 2020, 14, 146–161. [CrossRef]

30. Rizvi, S.; Li, X.; Wong, B.; Kazhamiaka, F.; Cassell, B. Mayflower: Improving Distributed Filesystem Performance Through
SDN/Filesystem Co-Design. In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS), Nara, Japan, 27–30 June 2016; pp. 384–394.

31. Pu, W.; Chen, N.; Zhong, Q. SDCUP: Software-Defined-Control Based Erasure-Coded Collaborative Data Update Mechanism.
IEEE Access 2020, 8, 180646–180660. [CrossRef]

32. Craig, A.; Nandy, B.; Lambadaris, I.; Ashwood-Smith, P. Load Balancing for Multicast Traffic in SDN Using Real-Time Link Cost
Modification. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015;
pp. 5789–5795.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3436890
https://doi.org/10.1145/3149349
https://doi.org/10.1109/TC.2021.3105882
https://doi.org/10.1109/TCC.2022.3168662
https://doi.org/10.1002/dac.3781
https://doi.org/10.3969/j.issn.1000-3428.2017.07.018
https://doi.org/10.1109/TPDS.2016.2628024
https://doi.org/10.1016/j.comnet.2021.108714
https://doi.org/10.1109/TIT.2019.2902835
https://doi.org/10.1007/s11704-019-7266-6
https://doi.org/10.1109/ACCESS.2020.3028381

	Introduction
	Background and Motivation
	Background
	Motivation

	Related Works
	SDNC-Repair
	The SDNC-Repair Framework
	Data Source Selection Algorithm Based on Intelligent Bandwidth Measurement
	Transmission Scheduling Algorithm Based on Dynamic Feedback
	Cooperative and Efficient Data Repair Method

	Experiments and Evaluation
	Experimental Configuration
	Results and Analysis
	Data Repair Performance under Different Data Granularities
	Data Repair Performance under Different Numbers of Failed Nodes
	Data Repair Performance under Different Erasure Code Parameters and Cross-Rack Bandwidths

	Conclusions
	References

