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Abstract: Payload weight detection plays an important role in condition monitoring and automation
of cranes. Crane cells and scales are commonly used in industrial practice; however, when their
installation to the hoisting equipment is not possible or costly, an alternative solution is to derive
information about the load weight indirectly from other sensors. In this paper, a static payload
weight is estimated based on the local strain of a crane’s girder and the current position of the trolley.
Soft-computing-based techniques are used to derive a nonlinear input–output relationship between
the measured signals and the estimated payload mass. Data-driven identification is performed using
a novel variant of genetic programming named grammar-guided genetic programming with sparse
regression, multi-gene genetic programming, and subtractive fuzzy clustering method combined
with the least squares algorithm on experimental data obtained from a laboratory overhead crane. A
comparative analysis of the methods showed that multi-gene genetic programming and grammar-
guided genetic programming with sparse regression performed similarly in terms of accuracy and
both performed better than subtractive fuzzy clustering. The novel approach was able to find a more
parsimonious model with its direct implantation having a lower execution time.

Keywords: overhead crane; payload estimation; identification; genetic programming; sparse regression;
subtractive fuzzy clustering

1. Introduction

Cranes are material-handling machines widely used in the industrial, construction,
and logistic sectors. Monitoring the static and dynamic load of material handling systems
is important to satisfy safety, reliability, performance, and cost requirements [1–4]. The
weight of the payload is crucial input information in crane applications, such as control,
condition monitoring, maintenance planning, prediction of failures, and remaining useful
life of crane equipment. Crane cells and scales are commonly used in industrial practice and
implemented in different forms in load monitoring systems, such as Load Moment Indicator
(LMI) and Rated Capacity Indicator (RCI) [1,2]. For hydraulic cranes, the payload weight
is usually determined based on the hydraulic pressures in the lift cylinders [5]. When the
load transportation is performed by cranes using ropes, cables, or chains, it requires an
additional installation, usually of a strain-gauge-based sensor, onto the hoisting equipment.

The development of controllers for the safe and efficient operation of cranes in terms
of crane positioning and payload sway suppression is an active area of research. There
have been several control strategies [6] such as partial feedback linearization [7], sliding
mode control [8], and nonlinear model predictive control [9] that require information about
the operating point of the crane such as payload mass. Payload weight detection also plays
an important role in condition monitoring [1,2]. However, in industrial practice there are
a variety of crane configurations, thus, when the crane scale installation to the hoisting
equipment is not possible, difficult, and costly, deteriorates crane maneuverability, or when
the complementary measurement devices for hybrid payload monitoring are required, an
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alternative solution is to derive information about the load weight indirectly from other
sensors. The problem of load estimation for material handling lifting systems in several
papers is studied through analytical modeling of their static and/or dynamics. A review of
model-based methods of payload estimations in hydraulic excavators and a discussion of
their applicability is provided in [10]. The model-based static and dynamic load estimation
for hydraulically actuated material handling machines is commonly performed based on
information obtained from the hydraulic pressure (pressure difference across the boom)
and angular position sensors, while the model parameters are estimated offline and/or
online usually using least square [11] or recursive least square method [12]. A variety of
models addressing the dynamics of a hoisted load are developed in the literature mostly
using the Lagrangian approach, such as a dynamic model of the hoisting motion of a
hydraulic lattice mobile crane [13] and an overhead crane hoist with a crane’s structure
dynamic model [14–16]. An overhead crane hoist with an asynchronous electric motor
model is developed and analyzed in numerical simulations to determine the relationship
between the weight of a payload and the deviation in the amplitude of the electric motor
current [17]. A digital-twin approach with a CAD model of a knuckle boom crane was
proposed for real-time monitoring of a payload weight in [18]. A virtual strain gauge
sensor was implemented with a nonlinear finite element model of a crane to find a linear
relationship between the payload weight input and strain output signals, then the load
weight is estimated through the inverse modeling approach applying the input signal
from the physical strain gauge used in the experimental setup. The idea to estimate a
payload weight using data-driven models identified using machine learning techniques
based on data collected from available sensors is implemented in several recent papers.
The ANN model trained using the Levenberg–Marquardt algorithm is developed in [19]
for payload weight detection of the John Deere 644J hydraulic four-wheel-drive loader
based on the differential pressure across the boom cylinder, boom and bucket strokes, and
vibration acceleration of the frame. The ANN model is used to estimate a payload mass
for a hydraulic forestry crane based on the hydraulic pressure of the inner boom cylinder
and the grapple position [20,21]. The vision system and convolutional neural network are
reported to recognize a wood log weight for a forestry crane [22]. The quay crane load
identification method based on the signals from an accelerometer and strain gauge sensors
installed on the crane’s structure parts is reported in [23].

Strain gauge sensors are used in a variety of crane applications. Strain-gauge-based
methods are applied to fatigue life prediction of existing crane runway girders and to
evaluate the residual operating life of a bridge crane girder [24–26]. A combination of
strain-gauge measurement and finite element analysis is used to identify crane wheel load
for a quay ship-to-shore crane [27]. Strain sensing is used to identify the occurrence and
intensity of the overhead crane skewing [28] and in the new technique of payload sway
angle measurement [29].

In this paper, a static payload weight is estimated based on the local strain of a crane’s
girder and the current displacement of the trolley. The problem of the crane girder’s defor-
mation due to a moving trolley with a rope-suspended payload is studied in the literature
mostly using analytical models developed based on the Euler-Bernoulli or Timoshenko
beam deformation theories [30–34], or through applying finite elements methods [35–38].
The analytical models can be used to solve a nonlinear static inverse problem: knowing
the deformation of the crane’s girder and trolley displacement, determine the payload
mass. However, obtaining an accurate mathematical model can be a challenging process
and there are many factors, complexity characteristics, nonlinearities, parameters’ uncer-
tainty, etc., affecting the deviation between a mathematical model and the physical system.
Thus, in this paper data-driven techniques are adapted to model-based estimation of a
static payload weight. This work follows the previous paper [39], in which a payload
weight is estimated for an overhead crane based on a local strain of a girder and the trolley
position using a data-driven Takagi–Sugeno fuzzy (TSF) model identified through the
subtractive clustering method and least square algorithm, thus, the nonlinear relation
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between the payload weight, strain, and trolley’s position is approximated by linear models
expressed in fuzzy rule consequents. In comparison to the previous work, this paper
addresses the issue of improving estimation accuracy and increasing interpretability using
genetic-programming-based model structure optimization. Genetic programming is an
evolutionary-based method whose outputs are computer programs. This makes genetic
programming well suited to find a mathematical function that relates the input to the out-
put, which is interpretable by the user and can be directly implemented reducing execution
time. The reduction in execution time of the model is a significant advantage since the
payload estimation is carried out online. Two variants of genetic programming, multi-gene
genetic programming (MGGP) and grammar-guided genetic programming with sparse
regression (G3PSR) are applied to obtain a static data-driven input–output model. The
G3PSR algorithm uses sparse regression on a fixed set of evolved candidate model terms
that are obtained from a biased search of the function space and the l0 penalty is added
for model selection, which results in reduced complexity and decreases the probability
of overfitting. The subsequent sparse regression problem is solved by using the mono-
tonically accelerated proximal gradient descent algorithm [40]. To the best of the authors’
knowledge, the only other evolutionary sparse regression algorithm is based on an elastic
net regularization [41]. The contribution of this paper can be summarized as follows:

• Develop a novel genetic programming variant called G3PSR that can be used for sym-
bolic regression problems that can be expressed as a linear in the parameters model.

• Apply genetic programming variants, namely G3PSR and MGGP, to identify a mathe-
matical relationship between the payload mass and the trolley position and girder strain.

• Compare the genetic programming models for mass estimation with a method pro-
posed in the literature [39].

The static model identification process was based on the experimental data obtained
from a laboratory overhead crane. The comparative analysis of G3PSR, MGGP, and TSF
models is presented in terms of accuracy and complexity. To the best of our knowledge, this
is the first work on the crane’s payload weight estimation using a data-driven model iden-
tified using multi-gene genetic programming and grammar-guided genetic programming
with sparse regression. The other genetic programming-based crane modeling approaches
used the MGGP for payload sway prediction [42,43]. Crane dynamics modeling and control
were also studied by using a genetic algorithm (GA) in [44–47].

The rest of the paper is organized as follows. In Section 2, the methods used to identify
the models for payload weight estimation are described. Section 3 presents the experimental
setup with a laboratory overhead crane, discusses the results of identification experiments,
and compares the model performances, while the final conclusions are delivered in Section 4.
The lists of symbols and abbreviations used in the paper with their definitions are exposed
in Appendix A.

2. Methodology

Genetic programming is an evolutionary algorithm that is able to synthesize programs
and was developed as an offshoot of genetic algorithms in the 1990s by Koza [48]. One
of the important applications of genetic programming has been symbolic regression in
which the aim is to identify a mathematical expression that best fits an input–output
dataset. In traditional genetic programming, an individual is represented by an abstract
syntax tree (AST) whose offspring, obtained by undergoing a variation operation, passes
on to the next generation. Different variants of genetic programming have developed,
such as multi-dimensional genetic programming, where an individual is composed of
different subprograms such as in multi-gene genetic programming [49], linear genetic
programming [50], grammatical evolution [51], Keizen programming [52], etc.
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2.1. Multi-Gene Genetic Programming

Multi-gene genetic programming is a robust variant of genetic programming that was
developed in [49]. In MGGP, each individual in the population is composed of a linear
combination of functions called genes

ŷ =
N

∑
i=1

θiGi (1)

where ŷ is the model output, θi is the coefficient of the i-th, gene and Gi is the result of
evaluating the function represented by the i-th gene. The expression in (1) allows MGGP
to combine traditional genetic programming’s ability to evolve a sequence of functions
together with the linear least squares algorithm to improve the performance in terms of
speed of finding a solution to the symbolic regression problem as well as accuracy.

Selection in MGGP occurs in two stages, at first a parent is selected based on the
individual’s fitness, then a gene within the parent is selected at random. Once the gene
is selected, it undergoes one of four variation operators: subtree crossover, high-level
crossover [53], subtree mutation, and point mutation as shown in Figures 1–4. GPTIPS2 [53]
an MGGP toolbox for MATLAB is used to obtain the model.
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The configuration of the multi-gene genetic programming hyperparameters used to
obtain the mathematical expression of the payload mass, m, given the input data x (trolley
position) and strain ε were obtained using trial and error based on previously published
values [54], with the exception of the maximum number of genes, which was chosen to be
25 in order to have a fair comparison between MGGP and G3PSR, is given in Table 1.

Table 1. Configuration of the MGGP hyperparameters.

Parameters Settings

Function set ×,
√

, inv
Terminal set x, ε

Population size 100
Number of generations 500

Initialization Ramped Half-and-Half
Maximum number of genes 25

Maximum tree depth 5
Tournament size 2

Crossover probability 0.84
Mutation probability 0.14
Direct reproduction 0.02
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2.2. Grammar-Guided Genetic Programming with Sparse Regression

Grammar-guided genetic programming with sparse regression is a novel algorithm
in which an individual is composed of Nmax functions, called model terms, and are the
equivalent of genes in MGGP. The difference in representation between MGGP and G3PSR
is that in MGGP an individual can have between 1—Nmax genes, while in G3PSR an
individual always has Nmax candidate model terms. In order to select which model terms
are included in the model an l0-penalty is added to the regression problem (2) which leads
to a sparse solution vector

F(θ) =
1
2
‖ y− φθ ‖2

2 + λ‖ θ ‖0 (2)

where the ‖ x ‖0 counts the number of nonzero elements in a vector, i.e., ‖ x ‖0 = #{i s.t. xi 6= 0},
y is the measured output data, φ is a matrix whose columns, j, are composed of evaluating
the functions represented by the model terms and normalized by max

∣∣φj
∣∣, θ are the model

term coefficients and λ is a constant that promotes the sparsification of the solution. The
addition of the l0-penalty, which is nonconvex, makes solving (2) NP hard [55]. The
solution to (2) is found using the monotone approximated gradient descent algorithm
(mAPG) [40]. The pseudocode for mAPG is given in Algorithm 1, where the proximal
operator for the l0-penalty is the hard thresholding operator (3). The algorithm runs until
the maximum number of iterations has been reached or the objective function converges,
i.e., F(θk+1)− F(θk) is within a specified tolerance.

Algorithm 1: mAPG.

Input: φ, y, λ
Initialize: ρ < 1, δ, z1 = θ1 = θ0, t1 = 1, t0 = 0, k = 1

while not converged do
k← k + 1
wk = θk +

tk−1
tk

(zk − θk) +
tk−1−1

tk
(θk − θk−1)

Initialize step size ηw and ηθ using Barzilai-Borwein method
while F(zk+1) ≥ F(wk)− δ‖ zk+1 − wk ‖2

2 do
zk+1 = proxηwλ

(
zk − ηwφT(φzk − y)

)
ηw = ρηw

end while
while F(vk+1) ≥ F(θk)− δ‖ vk+1 − θk ‖2

2 do
vk+1 = proxηθ λ

(
vk − ηθφT(φvk − y)

)
ηθ = ρηθ

end while
tk+1 =

√
4t2

k+1+1
2

θk+1 =

{
zk+1
vk+1

if F(zk+1) ≤ F(vk+1)
otherwise

end while
Output: θ

proxγ‖v‖0
=

{
0 |v| ≤

√
2γv

υ |v| >
√

2γv
(3)

The variation operators used in G3PSR are similar to those used in MGGP with two
main differences: the offspring should be admissible, as defined by the grammar, and
in choosing the model terms that undergo crossover or mutation. Once an individual is
selected from the population using tournament selection, the variation step is biased in
the same manner as in [56] by setting the probability of choosing a model term from the
individual proportional to its coefficient. The coefficients are first normalized using (4) and
then the probability is calculated using (5), resulting in a higher chance of choosing model
terms that have low or zero coefficients.

θi =
∑

q
i=1|θi| − |θi|

∑
q
i=1|θi|

(4)
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P =
expθi

∑
q
i=1 expθi

(5)

Grammars have been used in genetic programming to restrict the search space to
increase interpretability and increase accuracy by incorporating prior knowledge about the
problem. Several variants of grammar-based genetic programming, such as context-free
grammar genetic programming [57] and grammatical evolution [51], have been applied suc-
cessfully including the identification of nonparametric models of mechanical systems [58].
Context-free grammar is a four-tuple (N, Σ, P, S) used in computer science to generate syntac-
tically correct sentences, where S is the start symbol, Σ is the set of terminal symbols, N is the
set of all nonterminal symbols, and P is the set of production rules. The configuration of the
G3PSR hyperparameters is given in Table 2, and the production rules are given in Table 3.

Table 2. Configuration of the G3PSR hyperparameters.

Parameters Settings

Set of nonterminal symbols N ×,
√

, inv
Set of terminal symbols Σ x, ε

Population size 100
Number of generations 500

Initialization Probability tree creation 2 (PTC2)
Number of candidate model terms 25

Maximum tree depth during initialization 8
Tournament size 2

Subtree crossover probability 0.75
High-level crossover probability 0.15

Mutation probability 0.1
Sparsification parameter λ 0.001

Table 3. Grammar used to obtain the G3PSR model.

〈S〉 ::= 〈exp〉
〈exp〉 ::= 〈opb〉 〈exp〉 〈exp〉 | 〈opu〉 〈exp〉 | 〈T〉
〈opb〉 ::= ×
〈opu〉 ::=

√
| inv

〈T〉 ::= x | ε

2.3. TS Fuzzy Model

TS fuzzy model [59,60] used in comparative study is defined as a set of R if-then rules
with locally linear models in rule consequents:

m̂i = pi1x + pi2ε + pi3 (6)

where i = 1, 2, . . . , R, pi1, pi2 and pi2 are the rule-consequent parameters estimated using the
least square method. The model output is calculated through interpolations of linear models
between centroids of fuzzy clusters in the input space corresponding to rule antecedents:

m̂ =
∑R

i=1 wim̂i

∑R
i=1 wi

(7)

where wi is a weight of i-th rule calculated as a product of Gaussian membership functions
of input variables x (trolley position) and ε (strain)

wi = exp

(
− (x− xi)

2

2σ2
xi

)
exp

(
− (ε− εi)

2

2σ2
εi

)
(8)
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where xi, εi, σxi, and σεi are the rule antecedent parameters corresponding to the expected
values (xi and εi coordinates of fuzzy clusters centroids in the input Cartesian space) and
their standard deviations (σxi and σεi).

The TSF model identification was performed using a combination of the fuzzy sub-
tractive clustering algorithm [61] and the least square method. The subtractive algorithm
was applied to derive the R rule’s antecedents from measurement data through an iterative
procedure that starts with the calculation of the potential of each k-th data point to be a
cluster center based on a squared distance to the other data points:

P(dk) = ∑n
j=1 exp

(
−
‖ dk − dj ‖2( ra

2
)2

)
(9)

where ra is a positive constant called cluster radius. The data point with the highest
potential is chosen as the first cluster center. In each next i-th step, the potential of all
remaining data points is reduced according to their distance to the cluster center ci−1
selected in the previous step:

P(dk) = P(dk)− P(ci−1)exp

(
−‖ dk − ci−1 ‖2( rb

2
)2

)
(10)

where rb = bra, and b is a positive parameter called the squash factor. The termination
condition is defined twofold [61]. The upper and lower thresholds of data points’ potential
are determined using ξ1 and ξ2 called the accept and reject ratio, respectively,

ξ1P1 < Pi < ξ2P1 (11)

where P1 is the potential of the data point chosen as the first cluster center. Thus, the
cluster centroid is either accepted if Pi > ξ1P1, or rejected if Pi < ξ2P1, and the algorithm
is terminated. If condition (11) is satisfied, the shortest distance dmin between dk and all
previously found centroids is verified using condition (12). The data point is accepted as
the centroid if condition (12) is satisfied, otherwise, the data point with the next highest
potential is tested, and the algorithm is terminated if all data points violate condition (12).

dmin
ra

+
Pi
P1
≥ 1 (12)

3. Results of Identification Experiments

The data used in the identification procedure were obtained from experiments carried
out on a double girder overhead crane installed in a laboratory (Figure 5). The trolley is
driven by an AC gear motor with a gear ratio of 15.5, operating at 1400 rpm and output
power of 0.12 kW. The girders’ length, trolley wheelbase, and traveling range are 2.4 m,
0.3 m, and 1.8 m, respectively. The trolley position x along the girders is measured using
the incremental encoder installed on the trolley’s wheel with a resolution of 200 pulses per
revolution (ppr). The strain gauge supplied by the ADAM 3016 input module is applied to
measure the strain at the middle point of the girder. The data from sensors are sampled at
10 Hz using a PC with 16GB RAM and Quad Core 4GHz Intel Core i7-6700K CPU running
Windows 10 and MATLAB R2020.

A series of experiments with different payload masses within the range of 20 kg
and 100 kg were carried out to collect training and testing data for identification. It
was assumed, that payload weight estimation is performed based on the signal from the
strain gauge located at the midpoint of the girder and the trolley position ranging in
x = [0.4 m, 1.4 m] (with the strain gauge sensor at the midpoint of this interval). Figure 6
presents the experimental data obtained in experiments in which the trolley transported
payload along the girder. The experimental data used to identify G3PSR and MGGP models
were partitioned into three sets, the training set, validation set, and testing set. The training
set is used to minimize (2) for G3PSR and (1) for MGGP, and the root mean square error



Sensors 2023, 23, 5842 9 of 17

(RMSE) (13) on the training set is used as the fitness function in G3PSR and MGGP. The
validation set is used for model selection, i.e., the model with the lowest RMSE on the
validation set is stored as the best model, while the testing set is used to evaluate the
performance of the obtained model. The testing set comprises data from experiments
with payload masses of 30, 50, 70, and 90 kg (Figure 6), while the rest of the experimental
data (payload mass: 20, 40, 60, 80, and 100 kg) are combined and split randomly with
a 70:30 ratio into the training and validation sets, respectively. The performances of the
models were compared using relative error (RE), mean relative error (MRE), and RMSE
(13), where m and m̂ are the real and model-estimated values of weight, respectively, and n
is the number of sample data.

RE =
|m− m̂|

m
, MRE =

1
N ∑n

i=1
|m− m̂|

m
, RMSE =

√
∑n

i=1(mi − m̂i)
2

n
(13)
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The model terms and their corresponding coefficients for G3PSR and MGGP static
models obtained in identification experiments are given in Table 4. The value of the fitness
function (RMSE) for both the training and validation data sets are shown in Figures 7 and 8,
for the G3PSR and MGGP models, respectively. Since both strategies use the performance
on the validation set as the criteria for selection, the final models had RMSEs on the valida-
tion set of 1.2077 and 1.2565 by applying the G3PSR and MGGP techniques, respectively.
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Table 4. The model terms and coefficients generated by G3PSR and MGGP.

G3PSR MGGP

Model Coefficients Model Terms Model Coefficients Model Terms
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√
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−982.1465
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In the case of the TSF model identified using the combination of subtractive clustering
and least square methods, the best model was obtained by setting by trial and error the
cluster radius and squash factor to ra = 0.7 and b = 1.1, respectively. For this setting,
a clustering technique partitioned input space into eight clusters generating rules with
premise and consequent parameters given in Table 5.

Table 5. TSF model parameters.

Rule
Number Antecedent (Gaussian) Parameters Consequent

(Linear Function) Parameters

i [σxi, xi] [σεi, εi]× 10−5 [p1i, p2i, p3i]

1 [0.250, 0.8652] [2.447, 5.8133]
[
−60.65, 3.97× 103, 1.288× 102]

2 [0.250, 0.8523] [2.447, 9.4161]
[
−286.01, 5.605× 105, 286.19

]
3 [0.250, 1.2646] [2.447, 5.2689]

[
32.11,−1.4716× 106, 228.17

]
4 [0.250, 0.4850] [2.447, 5.0614]

[
5.81× 103,−2.467× 108, 1.824× 104]

5 [0.250, 1.2048] [2.447, 3.3429]
[
119.45,−1.365× 105,−270.93

]
6 [0.250, 1.2379] [2.447, 9.1502]

[
2.16, 1.211× 106, 34.67

]
7 [0.250, 0.5311] [2.447, 3.4812]

[
3.99× 103,−1.309× 108,−8.82× 103]

8 [0.250, 0.4473] [2.447, 7.4674]
[
−230.99, 3.9165× 107, 5.935× 103]

The comparison of model performances for testing data in terms of accuracy and com-
plexity is presented in Table 6. The G3PSR and MGGP models show similar performances
for testing data: RMSE and MRE are 1.7813 and 0.0285 for G3PSR, while for MGGP they
are 1.8069 and 0.0283, respectively. The TSF model performs slightly worse, as the RMSE
and MRE are 1.8875 and 0.0294, respectively. In terms of the number of parameters to be
estimated, the G3PSR and MGGP models have 14 and 17 parameters, respectively, while
the number of parameters of the TSF model (56 parameters) is significantly greater. The
G3PSR model notably outperforms the other models in terms of computational complex-
ity, since the execution time (mean value from 103 runs plus/minus standard deviation)
is 5.2 × 10−3 ± 5.8 × 10−7 ms, while the MGGP and TSF models’ execution times are
80.4× 10−3 ± 5.5× 10−3 ms and 367.5× 10−3 ± 7.6× 10−3 ms, respectively.

Table 6. Comparison of models complexity and performances for testing data.

G3PSR MGGP TSF

RMSE 1.7813 1.8069 1.8875
MRE 0.0285 0.0283 0.0294

No. of parameters 14 17 56
Mean execution time (ms)
± standard deviation

5.2× 10−3

±5.8× 10−7 80.4× 10−3 ± 5.5× 10−3 367.5× 10−3 ± 7.6× 10−3

Payload estimated mass along the test trajectories is compared in Figure 9, while
the relative errors between the real and model-estimated values of weight for G3PSR,
MGGP, and TSF models estimating mass 30 kg, 50 kg, 70 kg, and 90 kg are presented
in Figures 10–13, as well as in Table 7 where the models’ performances are compared
using the MRE and maximum value of RE. Obviously, the accuracy in weight estimation
increases with the increase in the payload mass. The models’ performances are similar
for a payload mass of 90 kg. The maximum relative error is 0.0395, 0.0388, and 0.0402 for
G3PSR, MGGP, and TSF models, respectively. The second obvious conclusion, which comes
from Figures 9–13 is that dividing a girder length into more sections with strain gauges
at midpoints enhances estimation accuracy at the cost of more sensors and models to be
used. It should be also noticed that the models were developed for the payload weight
range of 20-100 kg, and we can expect that model complexity can rise with the increase in
the range of the payload mass to be estimated. Thus, model optimization is necessary to
save computational consumption.
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Table 7. Models performances at testing operating points.

G3PSR MGGP TSF

Payload Mass (kg) MRE max RE MRE max RE MRE max RE

30 0.0502 0.1523 0.0449 0.1570 0.0499 0.1108
50 0.0302 0.0883 0.0320 0.0862 0.0344 0.1033
70 0.0200 0.0585 0.0219 0.0606 0.0207 0.0802
90 0.0148 0.0395 0.0156 0.0388 0.0142 0.0402

Uncertainty analysis is performed taking into account the effect of the strain signal
variation. Another set of testing data obtained from eight experiments carried out on
the laboratory stand was used to determine the standard deviation of strain signal with
respect to the data used to identify the models assumed as the nominal data for comparison.
The nominal strain input data used for models identification were then perturbed with
a standard deviation of σ = 0.8463× 10−6. The comparison of model performances at
testing operating points for nominal input data (ε) and strain signal deviated by ε± σ is
presented in Table 8 using RMSE and MRE. All models exhibit a similar increase in RMSE
(2.2115, 2.2104, and 2.2889 for G3PSR, MGGP, and TSF models, respectively) when the
nominal trajectory of strain signal is deviated by ε + σ, while the G3PSR model is slightly
less affected by strain signal perturbation ε− σ, since the RMSE is 2.0835, 2.2169, and 2.2169
for G3PSR, MGGP, and TSF models, respectively. Taking into account the nominal and
deviated strain signal, the uncertainty of the models’ output (estimated payload weight)
is expressed by standard error calculated according to (14), and the results are presented
in Table 9 and Figure 14 (where the dotted line is a linear interpolation between testing
points). The general tendency observed in Figure 14 and Table 9 is that the standard error
decreases with the increase in the payload weight from 30 to 90 kg, from 2.2297 to 1.7460
for the G3PSR model, and from 2.0670 to 1.7786 and from 2.2066 to 1.7740 for MGGP and
TSF models, with the exception of 50 kg.

s =

√
∑N

i=1(mi − m̂i)
2

N − 1
(14)
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Table 8. Models performances at testing operating points for deviated strain input signal.

G3PSR MGGP TSF

ε ε + σ ε − σ ε ε + σ ε − σ ε ε + σ ε − σ

RMSE 1.7813 2.2115 2.0835 1.8069 2.2104 2.2169 1.8875 2.2889 2.2169

Payload mass (kg) MRE

ε ε + σ ε− σ ε ε + σ ε− σ ε ε + σ ε− σ

30 0.0502 0.0793 0.0504 0.0449 0.0748 0.0469 0.0499 0.0771 0.0532
50 0.0302 0.0255 0.0487 0.0320 0.0246 0.0518 0.0344 0.0348 0.0474
70 0.0200 0.0296 0.0155 0.0219 0.0318 0.0172 0.0207 0.260 0.0196
90 0.0148 0.0161 0.0169 0.0156 0.0172 0.0166 0.0142 0.0177 0.0153

Table 9. Standard error at testing operating points.

G3PSR MGGP TSF

Payload Mass (kg) Standard Error (kg)

30 2.2297 2.0670 2.2066
50 2.1200 2.1813 2.4352
70 1.9005 2.0492 2.0698
90 1.7460 1.7786 1.7740

4. Conclusions

The paper compares the data-driven soft-computing models for payload weight
estimation for an overhead crane. The payload mass is estimated based on a local strain of
a crane’s girder and the trolley position. Two genetic programming variants are used for
model optimization, multi-gene genetic programming, a novel technique and grammar-
guided genetic programming with sparse regression. The genetic programming methods
are compared with the TSF model evolved using the fuzzy subtractive clustering and
least square methods. The comparative study is presented in terms of accuracy and
complexity. The G3PSR and MGGP models show similar estimation accuracy with an
RMSE of 1.7813 and 1.8069 respectively, and slightly better than in the case of the TSF
model with an RMSE of 1.8875. The relative error decreased for all models identified as the
payload mass increased, this is due to the fact that the absolute error does not differ by a
significant amount depending on the payload mass while the relative error is normalized
by the payload mass, which, when increased, results in a decrease in the relative error.
The model complexity expressed as the number of model parameters to be estimated is
lowest for the G3PSR model (14 parameters) in comparison to the MGG and TSF models
at 17 and 56 parameters, respectively. The significant difference we observe in the model
execution time is that the G3PSR outperforms the other models with a mean execution
time of 5.2× 10−3 ms, while the MGGP model and the TSF model had mean execution
times of 80.4× 10−3 ms and 367.5× 10−3 ms, respectively. The direct implementation of
the input–output function decreased the computational time by approximately 98.6% and
78.1% for the G3PSR and MGGP models, respectively, when compared to the TSF model.
Future works will be focused on testing the proposed approach on a crane system with a
larger girder length and payload weight range. The G3PSR algorithm would also be applied
to the inverse modeling approach to estimate the strain/stress of a girder [18] for a given
payload mass, as well as in other static and dynamic model optimization problems [62,63].
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Appendix A. Symbols and Definitions

This appendix consists of a list of all the symbols used in this paper along with their
definitions (Table A1) in addition to abbreviations (Table A2).

Table A1. List of symbols and their definitions.

Variable Definition

b, c, d Squash factor, cluster center, distance between cluster centers
m Suspended payload mass

pi1, pi2, pi3 Rule consequent parameters
ra Cluster radius
wi Weights of i-th rule
x Trolley position
N Set of all nonterminal symbols
P Set of production rules (also potential of chosen datapoint as cluster center and probability of selection)
S Start symbol
ε Strain

ζ1, ζ2 Accept ratio, reject ratio
η Step size
θ Model term coefficients
θ Normalized coefficients
λ Sparsification parameter
φ Regressor matrix
Σ Set of all terminal symbols

Table A2. List of abbreviations and their definitions.

Abbreviation Definition

GP Genetic programming
G3PSR Grammar guided genetic programming with sparse regression
mAPG Monotone accelerated proximal gradient descent
MGGP Multi-gene genetic programming
PTC2 Probability tree creation 2
TSF Takagi–Sugeno fuzzy
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